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Summary
In this white paper, we aim to define generations of machine learning and to explain 
the maturity levels of artificial intelligence (AI) and machine learning (ML) that are 
being applied to cybersecurity today. In addition, the paper seeks to explain that 
while a great deal of progress has been made in the evolution of machine learning’s 
application to cybersecurity challenges, there remains an immense amount 
of opportunity for innovation and advancement in the field, and we expect the 
sophistication of applications of machine learning to continue to evolve over time.

This white paper is organized into sections that provide the following information:

•• An introduction which briefly summarizes the context of machine learning’s 
application within cybersecurity, and the case for an official categorization of 
cybersecurity machine learning models into generations

•• A review of key machine learning concepts and considerations when drawing 
distinctions between generations

•• Definitions for five distinct cybersecurity machine learning generations
•• The greater implications of this machine learning generational framework
•• A brief conclusion

Introduction
The Defense Advanced Research Projects Agency (DARPA) has defined AI in three 
foundational ways, referring to these as the Three Waves of AI. 

…we expect the 
sophistication of 
applications of machine 
learning to continue to 
evolve over time.
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The first wave is handcrafted knowledge, which defines 
rules that humans use to carry out certain functions, and 
from which computers can learn to automatically apply 
these rules to create logical reasoning. However, within 
this first wave there is no learning applied to higher levels. 
One example of cybersecurity inside this first wave is the 
DARPA Cyber Grand Challenge. 

The second wave is statistical learning. Often used in 
self-driving cars, smartphones, or facial recognition, this 
wave of AI uses machine learning to perform probabilistic 
decision making on what it should or should not do. In this 
second wave, the systems are good at learning, but their 
weakness lies in their ability to perform logical reasoning. 
In other words, the systems classify and predict data, but 
don’t understand the context. 

This is where the third wave, known as contextual 
adaptation, comes into play. In this wave, the systems 
themselves construct explanatory models for the real 
world itself. In the third wave, the systems should be able 
to describe exactly why the characterization occurred just 
as a human would.

Machine learning has been quickly adopted in 
cybersecurity for its potential to automate the detection 
and prevention of attacks, particularly for next-generation 
antivirus (NGAV) products. ML models in NGAV have 
fundamental advantages compared to traditional AV, 

including the higher likelihood of identifying novel, zero-
day attacks and targeted malware, an increased difficulty 
of evasion, and continued efficacy during prolonged 
offline periods. 

Most attempts to apply ML and AI to cybersecurity fall 
into DARPA’s first wave, handcrafted knowledge, using 
human defined rules, and defined patterns. A scant few 
cybersecurity technologies can claim involvement, much 
less maturity, in DARPA’s second wave, statistical learning. 

The first wave ML models inevitably suffer from high false 
positive rates and can be easily bypassed. Since there 
are now several iterations of ML applications for AV, it 
is no longer sufficient to differentiate only between the 
current version or release of an AV, and the forthcoming 
one. Instead, the time has come to provide a high-level 
description of the evolving generations of ML both as it 
has been, and will be, applied to cybersecurity in the future.

In this paper, we explore the sub-categories of machine 
learning generations inside DARPA’s second wave, 
statistical learning. We aim to explain the maturity levels of 
AI represented in applications within cybersecurity today, 
and how we expect them to evolve over time.

Concepts and Considerations
This section explains the terms and concepts employed in 
this document that assist in drawing distinctions between 
generations of ML models, and also provides commentary 
on why these concepts are relevant to security.

Statistical learning is often used in self-
driving cars, smartphones, or facial 
recognition. This wave of AI uses machine 
learning to perform probabilistic decision 
making on what it should or should not do. 
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Runtime
Machine learning algorithms universally involve two 
fundamental steps:

•• Training, when a model learns from a data set of 
known samples

•• Prediction, when a trained model makes an educated 
guess about a new, unknown sample

The training step is the much more intense computational 
operation — modern deep neural networks can take 
months to train even on large clusters of high-performance 
cloud servers. Once a model has been trained, prediction is 
comparatively straightforward, although prediction often 
still requires significant memory and CPU usage. To train 
a classifier, samples from the input dataset must have 
associated labels (e.g. malicious or non-malicious).

Runtime is the environment where training or prediction 
could occur: local, e.g. on endpoint, or remote, e.g. in 
cloud. The runtime for each ML step informs how quickly 
a model can be updated with new samples, the impacts 
of decision making, and dependence on resources such 
as CPU, memory, and IO. For supervised models, note that 
labels must be available during training, so training can 
only occur where labels are available. In practice, training 
is typically done in a cluster of distributed servers in the 
cloud. Prediction is more common in the cloud as well, 
but increasingly performed locally. Distributed training on 
local user or customer devices is an emerging technology. 
Although there are major possible benefits, including 
reduced IO and protection of sensitive data, there are many 
challenges such as heterogeneous resources, unreliable 
availability, and slower experimental iterations.

Features
The set of features, or feature space, specifies precisely 
what properties of each example are taken into 
consideration by a model. For portable executable (PE) 
files, the feature set could include basic statistics such as 
file size and entropy, as well as features based on parsed 
sections of the PE, for example, the names of each entry in 
the section table. We could include the base-2 logarithm 
of file size as another derived feature. Some features 
could be extracted conditionally based on other features; 
other features could represent combinations. The space 
of possible features is very large, considering that there 
are innumerable transformations that can be applied to 
the features. 

The features are critical to any ML model because they 
determine what and how information is exposed. Besides 
the important question of what information to include, it 
also matters how to encode the information. The process 
of creating model-amenable features is called feature 

engineering. Some models are more sensitive than 
others to how features are encoded. Although it is often 
tempting to provide as many features as possible, there 
are disadvantages in using too many features: greater 
risking of overfitting, higher resource consumption, and 
possibly more vulnerability to adversarial attacks. The 
efficacy, interpretability, and robustness of the model all 
hinge on the features.

Data Sets
The data used to train and evaluate the model 
fundamentally and hugely impacts its performance. If 
the data used to train the model are not representative 
of the real world, then the model will fail to do well in the 
field. Labels for each sample, such as benign or malicious, 
are necessary for training classifiers. The labels need to 
be vetted carefully, since any mislabeling, also known as 
label noise, can bias the model. As more data is gathered, 
the labeled datasets must be continuously monitored to 
ensure consistency and ongoing hygiene. In practice, the 
data may come from a wide variety of sources. Each source 
must be evaluated for the degree of trust and reliability so 
that downstream uses can take these factors into account. 

A common problem which is present for many security 
applications is how to handle unbalanced data, which 
occurs when one label (benign) is much more common 
than others (malicious). Unbalanced labeled data can 
be mitigated by various modelling strategies, but ideally, 
there are many representative samples for each label. 
The feature set and dataset are closely related, since 
many features will be generated using the training set. 
The dataset also impacts crucial feature pre-processing, 
such as normalization, or weighting schemes, such as term 
frequency-inverse document frequency (TF-IDF).

For a sophisticated model, it’s necessary to have a very 
large dataset. However, it is easy to fall into the trap of 
assuming that a sufficiently large dataset will lead to better 
performance. While, in general, larger datasets enable 
training of more sophisticated models, a huge dataset 
does not guarantee performance. A good dataset should 
have a wide variety and should fairly represent the samples 
that a model might see when deployed. The desired variety 
can be represented quantitatively as rough balance in 
feature values among labeled examples.

Human Interaction
Models are often thought of as black boxes, but they need 
not be. Models which can support modes of interaction 
with people have several advantages. They can receive 
expert feedback more readily, which can be useful for 
improving both labels and features, and allowing the model 
to improve in otherwise difficult ways. Human confidence 
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and trust in the model can be made more quickly when 
there is some way of understanding how the model 
decisions are made. 

Having methods for exploring the model can also help to 
validate the underlying data. Figure 1 shows Anscombe’s 
quartet, in which four very different input datasets yield 
precisely the same linear regression model. Based on 
the summary statistics and model parameters, the four 
cases are practically indistinguishable. When plotted, it is 
immediately clear that only the upper-left quadrant model 
is fit appropriately to its dataset. The other models, with 
more dimensions and parameters, are much more difficult 
to explore and understand. However, without some type of 
human validation, it is likely that qualitative model or data 
issues could go quietly unnoticed, and lead to poor efficacy 
or vulnerabilities.

Supporting modes of human interaction is also important 
in cases where the model fails. If the model is a black 
box, it can be difficult to identify the cause of systematic 
modelling errors. Tools for inspecting and understanding 
the model enable troubleshooting and diagnostics. Such 
tools need to be carefully controlled and may not be 
integrated into the end product, since they leak intellectual 
property and could potentially expose vulnerabilities  
to adversaries.

Goodness of Fit
Some models better represent the real world better than 
others. When a model is oversimplified, it has poor efficacy 
but generalizes well to new data. These models are called 
“underfit”, in the sense that there is more information 
available to the model which it is not fully taking into 
account. Conversely, a model can memorize, or “overfit”. 
When overfitting, the model learns too much about the 
specific samples on which it was trained, but does not 
transfer its representation well to new samples in the 
real world.

In Figure 2, the dashed line represents the decision 
boundary of an overfit classifier for green vs. blue points. 
The green line represents an appropriate decision 
boundary. Although it does not classify perfectly on the 
shown points, its performance will be better for new points.

A well-fit model will maintain its validation performance 
after deployment. Concept drift is a related concept which 
occurs when there are nonstationary changes in the data 
over time, e.g. the set of PE files on endpoints changes 
from year to year. As the population of sample PE files 
change, the model should be prepared to adapt to the 
changes in the population it targets.

Figure 2 — Data points from two classes, each class indicated by 
its color. The two lines show alternative decision boundaries from 
hypothetical classifiers.
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Figure 1 — Four very different datasets, shown by points, 
which result in the same fitted predictive model, represented 
by each line. This famous set of datasets is known as 
Anscombe’s quartet.
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How Generations Are Defined
Cybersecurity machine learning generations are 
distinguished from one another according to five primary 
factors, which reflect the intersection of data science and 
cybersecurity platforms.

•• Runtime: Where does the ML training and prediction 
occur (e.g. in the cloud, or locally on the endpoint)?

•• Features: How many features are generated? How are 
they pre-processed and evaluated?

•• Datasets: How is trust handled in the process of data 
curation? How are labels generated, sourced, and 
validated?

•• Human Interaction: How do people understand the 
model decisions and provide feedback? How are 
models overseen and monitored?

•• Goodness of Fit: How well does the model reflect the 
datasets? How often does it need to be updated? 

These factors enable us to separate cybersecurity 
technologies into five distinct generations of ML, each 
defined by its progression in each category. Typically, a 
productized model takes two to three years to advance 
from one generation to the next, and the majority of 
technologies that integrate machine learning will become 
trapped in the first or second generations. Only a few have 

entered the third generation, and that evolution was hard 
won after many lessons learned in the field. Graduating to 
the fourth and fifth generations will require substantially 
more research and development. The requirements of the 
domain applications in cybersecurity are quickly catching 
up to the state of the art in ML research, particularly in the 
areas of adversarial learning, active learning, federated 
learning, and model interpretability.

The table below summarizes the characteristics of the 
generations according to the achievement within the 
factors previously described. 

The Greater Implications 
of Each Generation of 
Machine Learning
The table below lays out the distinguishing features of each 
generation. Each generation builds on the last one. The 
dataset size and number of features grows substantially in 
each generation. In this section, we focus on the qualitative 
differences from each generation to the next. 

•• First-Generation Machine Learning: Application of 
off-the-shelf ML toolkits such as scikit-learn, using 
standard models. All good/bad labels are provided 
by human analysis, meaning the feature set is small, 

Generation Runtime

Where do training 
and prediction occur?

Features

Characteristics, 
elements

Datasets

Sizes and label 
provenance

Interactivity

Human  
interpretability

Goodness of Fit

How well the model 
suits the real world

First •	 Cloud training
•	 Cloud prediction

•	 Over 1,000  
features

•	 Over 1M data 
examples

•	 Human labeled

•	 Human 
understands 
decisions

•	 Underfit, high false 
positive rate

Second •	 First generation 
•	 Local prediction

•	 Over 100,000 
features

•	 Over 100M data 
examples

•	 Human labeled, 
some heuristic 
labels

•	 Model struggles to 
explain decisions

•	 Overfit, misleading 
false positive rate

Third •	 Second generation
•	 Cloud enhanced 

models

•	 1 to 3M features •	 Over 1B data 
examples

•	 Largely heuristic 
labeled

•	 Model provides 
understandable 
explanations

•	 Fit appropriately, 
accuracy metrics 
generalize

Fourth •	 Third generation 
•	 Local training

•	 Over 3M features •	 Online learning •	 Model explains 
strategy, receives 
high-level 
feedback 

•	 Model fits current 
inputs as well as 
future inputs

Fifth •	 Fourth generation 
•	 Unsupervised local 

training

•	 Unlimited with 
semi-supervised 
discovery

•	 Active learning •	 Human input 
optional; 
interpretable 
insights

•	 Model identifies 
and adapts to 
concept drift
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fixed, and picked by a human. These models cannot be deployed to endpoints. 
They typically result in high levels of false positives and will suffer from very 
limited efficacy. They are also easy to bypass.

•• Second-Generation Machine Learning: Most labels are still applied 
manually, but at this stage, heuristics are used to supplement human labels. 
This application allows for local model predictions, but still requires cloud-
based training. The local model is a clone of the cloud model. Interpretation 
is provided by human descriptor methods, which are post-hoc and not truly 
connected to the model’s decision procedure. Models in this stage are typically 
overfit to training data. Although models in this class have some predictive 
power, they still need periodic updating to avoid suffering from concept drift.

•• Third-Generation Machine Learning: The cloud model is more advanced, and 
complements and protects the local model. Decisions are explained by the 
model in a way that reflects its decision process. Models are evaluated and 
designed to be hardened against attacks. Concept drift is mitigated by great 
generalizability.

•• Fourth-Generation Machine Learning: Models learn from local data, 
without needing to upload observations. Features are designed by strategic 
interactions between humans and models. New features and models are 
constantly evaluated by ongoing experiments. Humans can provide feedback 
to correct and guide the model. Most are robust to well-known ML attacks.

•• Fifth-Generation Machine Learning: Supervision becomes optional. Models 
learn in a distributed, semi-supervised environment. Human analysis is 
guided by model-provided insights. Models can be monitored and audited for 
tampering, and support deception capabilities for detecting ML attacks.

Conclusion
The application of machine learning to cybersecurity is still a very recent 
development in the industry (since circa 2013). As such, we are just beginning our 
journey to apply ML in an attempt to solve very challenging problems in the journey 
towards cyber protection. As each ML advancement is made, future generations will 
only get better and better at providing all five areas of maturity (Runtime, Features, 
Datasets, Human Interaction, Goodness of Fit).

Hype around ML in cybersecurity has been driven in large part by two areas of 
application, which are respectively outside and inside of cybersecurity:

•• State-of-the-art ML engineering by Google, Amazon, Facebook, and others, 
primarily targeting mass market applications, e.g. image and video, natural 
language, recommender systems, and self-driving cars

•• Very simple, off-the-shelf ML applied to classical problems in cybersecurity
While ML has demonstrated some degree of applicability in a wide variety of 
domains, the adaptations to cybersecurity are still relatively young. The importance 
of cybersecurity merits novel research aimed at open problems in cybersecurity, 
and not just training a simple model on a cyber dataset.

Each generation represents a qualitative improvement over previous generations. 
Maturity has a direct impact on the value provided by ML because the changes 
are not just marginal improvements in efficacy, but rather represent leaps in the 
fundamental abilities of ML to detect and prevent attacks. The ML approach has 
quickly proven to have value, but the full defensive potential will only be developed 
by the more advanced generations of ML.

For more information about new ML-based cybersecurity technologies that can 
secure all of your organization’s endpoints, visit www.cylance.com.
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