

Einführung von...

# NEUEN PRODUKTEN



TOP DRILL S™ für rostfreie Stähle
Seite 68–77

Universal-Schaftfräser

Modulare Schaftfräser mit Duo-Lock™ Schnittstelle Seite 48–64



Kürzere Bearbeitungszeit, höhere Standzeit und geringere Oberflächenspannungen

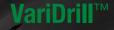




# WS40PM

Führend in Bezug auf Leistung bei anspruchsvollen Fräsbearbeitungen von Titan, hochwarmfesten Legierungen und rostfreien Stählen.

Seite 27




# VariMill II™ ER und VariMill III™ ER

Führend in Bezug auf Leistung bei anspruchsvollen Fräsbearbeitungen von exotischen Werkstoffen für Luft- und Raumfahrtindustrie.



Hochleistungslösungen zum Drehen von Werkstoffen auf Nickel-, Kobaltund Fe-Basis sowie für schwierig zu zerspanende rostfreie Stähle und Kobalt-Chrom-Legierungen.



Die Ausführung mit verbesserter Spitzengeometrie bietet die ultimative Lösung zum Bohren in hochwarmfesten Legierungen.

| ı                     | BR — Titan 6AL-4V  |                     |
|-----------------------|--------------------|---------------------|
|                       | Aktuelle Parameter | WIDIA™              |
| Bearbeitungszeit      | 75 min             | 18 min              |
| Standzeit: Anz. Teile | 3                  | 11                  |
| Kosteneinsparungen    | _                  | 270.000 \$ pro Jahr |







# Die ultimative Lösung für das zeilenförmige Fräsen von hohen Schultern





# **VSM490<sup>™</sup>-10**

Ap-Leistung: Bis zu 10 mm

Aufschraubbare Schaftfräser: 16-32 mm

Schaftfräser mit Weldon® Schaft: 16-32 mm

Schaftfräser mit Zylinderschaft: 16-32 mm

Aufsteckfräser: 40-125 mm

Aufsteckfräser JIS: 80-125 mm

M4000 Kassetten-Frässystem: 125-315 mm

# VSM490<sup>™</sup>-15

Ap-Leistung: Bis zu 15 mm

Aufschraubbare Schaftfräser: 25-35 mm

Schaftfräser mit Weldon Schaft: 25-40 mm

Schaftfräser mit Zylinderschaft: 25-32 mm

Aufsteckfräser: 40-160 mm

Aufsteckfräser JIS: 80-160 mm

M4000 Kassetten-Frässystem: 125-315 mm



# 90° Victory™ Eckfräser (VSM) mit doppelseitigen 4-schneidigen Wendeschneidplatten

Hohe Produktivität und hervorragende Zerspanungseigenschaften beim zeilenförmigen Fräsen von hohen Schultern.

Macht Schlichtbearbeitungen bei vielen Bearbeitungen überflüssig.

Vielseitig: Stahl, Gusseisen, rostfreie Stähle, Titan und Aluminium – für Bearbeitungen vom Schruppen bis zum Schlichten.

Doppelseitige, robuste Wendeschneidplatte mit vier Schneidkanten; hochpositive Geometrie für niedrigere Schnittkräfte.



# **VSM490™-10**

90° Victory™ Eckfräser (VSM) mit doppelseitigen 4-schneidigen Wendeschneidplatten

- Schruppwerkzeug f
  ür echte 90° mit integrierter Schlichtf
  ähigkeit in einem Werkzeug.
- Bis zu Ap1 max = 10 mm.
- Herausragende Oberflächengüte beim zeilenförmigen Fräsen von hohen Schultern.
- · Geringere Schnittkräfte und weicher Schnitt.
- Perfekte Wahl für Maschinenspindeln und angetriebenen Einheiten mit ISO 40 Steilkegel.



### Vier Wendeschneidplattengeometrien für das Eckfräsen in allen Werkstoffen.





Für NE-Metalle





Hauptanwendung für rostfreie Stähle, leichte und Schlichtbearbeitungen.





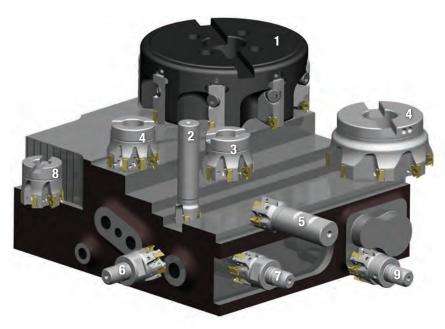


Erste Wahl für die allgemeine Bearbeitung vieler Werkstoffe.

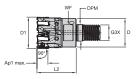






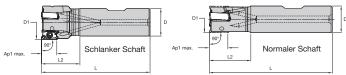

Erste Wahl zum HPC-Schruppen von Gusseisen. Bester Schneidkantenschutz mit zusätzlichen Führungsfasen.

Schlichtfähigkeit/Geringere Schnittkräfte


Geometrie-Stabilität

### Anwendungen

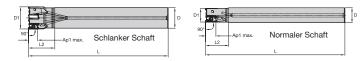
- Planfräsen mit modularem M4000 Kassetten-Frässystem.
- 2. Vollnutenfräsen mit 100 % radialem Eingriff.
- Hervorragenden Eigenschaften und hohe Oberflächengüten beim zeilenförmigen Fräsen von hohen Schultern.
- 4. Schulterfräsen mit geringem axialen und hohem radialen Eingriff.
- 5. Schulterfräsen mit geringem radialen und hohem axialen Eingriff.
- 6. HPC-Planfräsen. Perfekte Wahl zur Oberflächenbearbeitung von Gussteilen.
- 7. Zykloidisches Nutenfräsen.
- 8. Z-Achsen-Eintauchfräsen.
- 9. Konturfräsen.




# Victory™ Eckfräser • VSM490™-10



### ■ Aufschraubbare Schaftfräser


| Bestellnr. | Katalognummer        | D1 | D  | DPM  | G3X | L2 | WF | Ap1 max | Z | max.<br>Drehzahl | Innere<br>Kühlmittel-<br>zuführung | kg   |
|------------|----------------------|----|----|------|-----|----|----|---------|---|------------------|------------------------------------|------|
| 6425553    | VSM490D016Z02M08XN10 | 16 | 13 | 8,5  | M8  | 25 | 10 | 10,0    | 2 | 48000            | Yes                                | 0,03 |
| 6425554    | VSM490D020Z03M10XN10 | 20 | 18 | 10,5 | M10 | 28 | 15 | 10,0    | 3 | 40200            | Yes                                | 0,05 |
| 6425555    | VSM490D025Z04M12XN10 | 25 | 21 | 12,5 | M12 | 32 | 17 | 10,0    | 4 | 34300            | Yes                                | 0,09 |
| 6425556    | VSM490D032Z05M16XN10 | 32 | 29 | 17,0 | M16 | 40 | 24 | 10,0    | 5 | 29200            | Yes                                | 0,20 |
| 6425557    | VSM490D032Z06M16XN10 | 32 | 29 | 17,0 | M16 | 40 | 24 | 10,0    | 6 | 29200            | Yes                                | 0,20 |

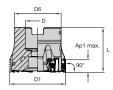


### ■ Schaftfräser mit Weldon® Schaft

| Bestellnr. | Katalognummer        | D1 | D  | L  | L2 | Ap1 max | Z | max.<br>Drehzahl | Innere<br>Kühlmittel-<br>zuführung | kg   |
|------------|----------------------|----|----|----|----|---------|---|------------------|------------------------------------|------|
| 6425558    | VSM490D016Z02B16XN10 | 16 | 16 | 74 | 25 | 10,0    | 2 | 48000            | Yes                                | 0,09 |
| 6425559    | VSM490D020Z02B20XN10 | 20 | 20 | 79 | 28 | 10,0    | 2 | 40200            | Yes                                | 0,16 |
| 6425560    | VSM490D020Z03B20XN10 | 20 | 20 | 79 | 28 | 10,0    | 3 | 40200            | Yes                                | 0,16 |
| 6425571    | VSM490D025Z03B20XN10 | 25 | 20 | 79 | 28 | 10,0    | 3 | 34300            | Yes                                | 0,18 |
| 6425572    | VSM490D025Z03B25XN10 | 25 | 25 | 89 | 32 | 10,0    | 3 | 34300            | Yes                                | 0,29 |
| 6425573    | VSM490D025Z04B25XN10 | 25 | 25 | 89 | 32 | 10,0    | 4 | 34300            | Yes                                | 0,29 |
| 6425574    | VSM490D032Z04B25XN10 | 32 | 25 | 89 | 32 | 10,0    | 4 | 29200            | Yes                                | 0,29 |
| 6425575    | VSM490D032Z05B25XN10 | 32 | 25 | 89 | 32 | 10,0    | 5 | 29200            | Yes                                | 0,33 |

HINWEIS: Ausführung mit Weldon Schaft nicht für Schlichtbearbeitungen empfohlen.




# ■ Schaftfräser mit Zylinderschaft (normale und lange Ausführung)

| Bestellnr. | Katalognummer            | D1 | D  | L   | L2 | Ap1 max | z | max.<br>Drehzahl | Innere<br>Kühlmittel-<br>zuführung | kg   |
|------------|--------------------------|----|----|-----|----|---------|---|------------------|------------------------------------|------|
| 6425502    | VSM490D016Z02A16XN10L090 | 16 | 16 | 90  | 25 | 10,0    | 2 | 48000            | Yes                                | 0,12 |
| 6425503    | VSM490D016Z02A16XN10L150 | 16 | 16 | 150 | 25 | 10,0    | 2 | 48000            | Yes                                | 0,21 |
| 6425504    | VSM490D018Z02A16XN10L150 | 18 | 16 | 150 | 25 | 10,0    | 2 | 43500            | Yes                                | 0,21 |
| 6425506    | VSM490D020Z02A20XN10L150 | 20 | 20 | 150 | 28 | 10,0    | 2 | 40200            | Yes                                | 0,33 |
| 6425505    | VSM490D020Z03A20XN10L090 | 20 | 20 | 90  | 28 | 10,0    | 3 | 40200            | Yes                                | 0,19 |
| 6425507    | VSM490D020Z03A20XN10L150 | 20 | 20 | 150 | 28 | 10,0    | 3 | 40200            | Yes                                | 0,33 |
| 6425508    | VSM490D022Z03A20XN10L150 | 22 | 20 | 150 | 28 | 10,0    | 3 | 37500            | Yes                                | 0,34 |
| 6425509    | VSM490D025Z03A20XN10L100 | 25 | 20 | 100 | 28 | 10,0    | 3 | 34300            | Yes                                | 0,23 |
| 6425511    | VSM490D025Z03A25XN10L170 | 25 | 25 | 170 | 43 | 10,0    | 3 | 34300            | Yes                                | 0,60 |
| 6425510    | VSM490D025Z04A25XN10L100 | 25 | 25 | 100 | 43 | 10,0    | 4 | 34300            | Yes                                | 0,33 |
| 6425512    | VSM490D025Z04A25XN10L170 | 25 | 25 | 170 | 43 | 10,0    | 4 | 34300            | Yes                                | 0,59 |
| 6425513    | VSM490D028Z04A25XN10L170 | 28 | 25 | 170 | 32 | 10,0    | 4 | 31800            | Yes                                | 0,61 |
| 6425514    | VSM490D032Z04A25XN10L110 | 32 | 25 | 110 | 32 | 10,0    | 4 | 29200            | Yes                                | 0,41 |
| 6425516    | VSM490D032Z04A25XN10L200 | 32 | 25 | 200 | 32 | 10,0    | 4 | 29200            | Yes                                | 0,75 |
| 6425515    | VSM490D032Z05A25XN10L110 | 32 | 25 | 110 | 32 | 10,0    | 5 | 29200            | Yes                                | 0,41 |
| 6425517    | VSM490D032Z05A25XN10L200 | 32 | 25 | 200 | 32 | 10,0    | 5 | 29200            | Yes                                | 0,75 |

# VSM490<sup>™</sup>-10

Victory™ Eckfräser • VSM490-10





### Aufsteckfräser

| Bestellnr. | Katalognummer        | D1  | D  | D6 | L  | Ap1 max | z  | max.<br>Drehzahl | Innere<br>Kühlmittel-<br>zuführung | kg   |
|------------|----------------------|-----|----|----|----|---------|----|------------------|------------------------------------|------|
| 6425434    | VSM490D040Z04S16XN10 | 40  | 16 | 37 | 40 | 10,0    | 4  | 25400            | Yes                                | 0,23 |
| 6425435    | VSM490D040Z06S16XN10 | 40  | 16 | 37 | 40 | 10,0    | 6  | 25400            | Yes                                | 0,23 |
| 6425436    | VSM490D040Z07S16XN10 | 40  | 16 | 37 | 40 | 10,0    | 7  | 25400            | Yes                                | 0,23 |
| 6425437    | VSM490D050Z05S22XN10 | 50  | 22 | 42 | 40 | 10,0    | 5  | 22300            | Yes                                | 0,31 |
| 6425438    | VSM490D050Z07S22XN10 | 50  | 22 | 42 | 40 | 10,0    | 7  | 22300            | Yes                                | 0,35 |
| 6425439    | VSM490D050Z09S22XN10 | 50  | 22 | 42 | 40 | 10,0    | 9  | 22300            | Yes                                | 0,32 |
| 6425440    | VSM490D063Z05S22XN10 | 63  | 22 | 49 | 40 | 10,0    | 5  | 19500            | Yes                                | 0,56 |
| 6425481    | VSM490D063Z07S22XN10 | 63  | 22 | 49 | 40 | 10,0    | 7  | 19500            | Yes                                | 0,56 |
| 6425482    | VSM490D063Z09S22XN10 | 63  | 22 | 49 | 40 | 10,0    | 9  | 19500            | Yes                                | 0,56 |
| 6425483    | VSM490D080Z06S27XN10 | 80  | 27 | 60 | 50 | 10,0    | 6  | 17100            | Yes                                | 1,10 |
| 6425484    | VSM490D080Z08S27XN10 | 80  | 27 | 60 | 50 | 10,0    | 8  | 17100            | Yes                                | 1,11 |
| 6425485    | VSM490D080Z10S27XN10 | 80  | 27 | 60 | 50 | 10,0    | 10 | 17100            | Yes                                | 1,12 |
| 6425486    | VSM490D100Z08S32XN10 | 100 | 32 | 80 | 50 | 10,0    | 8  | 15200            | Yes                                | 1,73 |
| 6425487    | VSM490D100Z12S32XN10 | 100 | 32 | 80 | 50 | 10,0    | 12 | 15200            | Yes                                | 1,74 |
| 6425488    | VSM490D125Z10S40XN10 | 125 | 40 | 90 | 63 | 10,0    | 10 | 13500            | Yes                                | 3,18 |
| 6425489    | VSM490D125Z14S40XN10 | 125 | 40 | 90 | 63 | 10,0    | 14 | 13500            | Yes                                | 3,20 |

# ■ Aufsteckfräser • Japanischer Industriestandard (JIS)

| Bestellnr. | Katalognummer             | D1  | D     | D6 | L  | Ap1 max | z  | max.<br>Drehzahl | Innere<br>Kühlmittel-<br>zuführung | kg   |
|------------|---------------------------|-----|-------|----|----|---------|----|------------------|------------------------------------|------|
| 6425490    | VSM490D080Z06S254XN10JIS  | 80  | 25,40 | 50 | 50 | 10,0    | 6  | 17100            | Yes                                | 0,93 |
| 6425491    | VSM490D080Z08S254XN10JIS  | 80  | 25,40 | 50 | 50 | 10,0    | 8  | 17100            | Yes                                | 0,94 |
| 6425492    | VSM490D100Z08S3175XN10JIS | 100 | 31,75 | 60 | 50 | 10,0    | 8  | 15200            | Yes                                | 1,41 |
| 6425493    | VSM490D125Z10S381XN10JIS  | 125 | 38,10 | 80 | 63 | 10,0    | 10 | 13500            | Yes                                | 3,02 |

### ■ Ersatzteile

| D4       | Wendeschneidplatten- | Empfohlenes maximales Anzugsmoment (Nm) für Spannschraube | Spann-    |  |
|----------|----------------------|-----------------------------------------------------------|-----------|--|
| וט       | Spannschraube        | iui opailiisciliause                                      | schlüssel |  |
| 16 - 125 | MS2263               | 1.5                                                       | DT9IP     |  |

Für das M4000 Kassetten-Frässystem siehe Seite 35.



# Victory™ Eckfräser • VSM490™-10

|                    |               |        | W Re U | s s  | ● Erste<br>○ Altern |      | P M K N S S H | •       | •                | 0       | 0       |                  | •       |
|--------------------|---------------|--------|--------|------|---------------------|------|---------------|---------|------------------|---------|---------|------------------|---------|
| ■ Wendeschneidplat | ten fur VSM4  | 190-10 |        |      |                     |      |               | WK15CM  | WK15PM<br>WN25PM | WP25PM  | WP35CM  | WP40PM<br>WS40PM | WU10PM  |
| Katalognummer      | Schneidkanten | LI     | S      | W    | BS                  | Rε   | hm            | Š       | Š                | ₹       | ×.      | \$ \$            | ×       |
| XNGU100404ERALP    | 4             | 11,66  | 4,83   | 6,60 | 1,37                | 0,40 | 0,02          | ı       | 6425382          | 1       | ı       |                  |         |
| XNGU100408ERALP    | 4             | 11,66  | 4,83   | 6,60 | 1,00                | 0,80 | 0,02          | ı       | 6425411          | 1       | ı       | 1 1              | 1       |
| XNGU100404ERML     | 4             | 11,66  | 4,83   | 6,60 | 1,37                | 0,40 | 0,02          | ı       | 1 1              | 6425414 | 1       | 6425415          | 1       |
| XNGU100408ERML     | 4             | 11,66  | 4,83   | 6,60 | 1,00                | 0,80 | 0,02          |         |                  | 6425369 | ı       | 6425370          | 6425421 |
| XNGU100404SRMM     | 4             | 11,66  | 4,83   | 6,60 | 1,37                | 0,40 | 0,08          | ı       | 1 1              | 6425416 | ı       | 6425417          | -       |
| XNGU100408SRMM     | 4             | 11,66  | 4,83   | 6,60 | 1,00                | 0,80 | 0,08          | ı       | 1 1              | 6425422 | 1       | 6425423          | 6425424 |
| XNGU100408SRMH     | 4             | 11,66  | 4,83   | 6,60 | 0,90                | 0,80 | 0,08          | 6425359 | 1 1              | 6425356 | 6425360 | 6425357          |         |
| XNPU100408ERML     | 4             | 11,60  | 4,83   | 6,60 | 0,90                | 0,80 | 0,02          | 1       | 6425366          | 6425367 | ı       | 6425368          | 1       |
| XNPU100408SRMM     | 4             | 11,60  | 4,83   | 6,60 | 0,90                | 0,80 | 0,08          | 6425364 | 6425270          | 6425361 | 6425365 | 6425363          | -       |
| XNPU100412SRMM     | 4             | 11,61  | 4,83   | 6,60 | 0,50                | 1,20 | 0,08          | 6425355 | 1 1              | 6425352 | 1 10    | 6425354          | 1       |
| XNPU100416SRMM     | 4             | 11,61  | 4,83   | 6,60 | 0,10                | 1,60 | 0,08          | ı       | 1 1              | 6425267 | 1       | 6425269          | 1       |

HINWEIS: XNGU: Hochpräzise umfangseitig geschliffene Wendeschneidplatten. XNPU: Präzisionsgepresste und auf Maß gesinterte Wendeschneidplatten.

# VSM490<sup>™</sup>-10

Victory<sup>™</sup> Eckfräser • VSM490-10



## Auswahlhilfe für Wendeschneidplatten

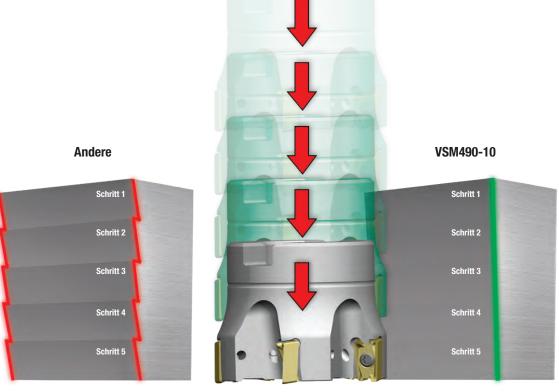
| Werkstoff- |           | chte<br>eitung |           | meine<br>ndung | Schr<br>bearb |        |
|------------|-----------|----------------|-----------|----------------|---------------|--------|
| gruppe     | Geometrie | Sorte          | Geometrie | Sorte          | Geometrie     | Sorte  |
| P1-P2      | XNGU-ML   | WP40PM         | XNPU-MM   | WP40PM         | XNPU-MM       | WP40PM |
| P3-P4      | XNGU-ML   | WP40PM         | XNPU-MM   | WP40PM         | XNPU-MM       | WP40PM |
| P5-P6      | XNGU-MM   | WP25PM         | XNPU-MM   | WP35CM         | XNPU-MM       | WP40PM |
| M1-M2      | XNGU-ML   | WS40PM         | XNGU-ML   | WS40PM         | XNPU-MM       | WS40PM |
| M3         | XNGU-ML   | WS40PM         | XNGU-ML   | WS40PM         | XNPU-MM       | WS40PM |
| K1-K2      | XNPU-ML   | WK15PM         | XNGU-MH   | WK15CM         | XNGU-MH       | WK15CM |
| K3         | XNPU-MM   | WK15PM         | XNGU-MH   | WP35CM         | XNGU-MH       | WP35CM |
| N1-N2      | XNGU-ALP  | WN25PM         | XNGU-ALP  | WN25PM         | XNGU-ALP      | WN25PM |
| N3         | XNGU-ALP  | WN25PM         | XNGU-ALP  | WN25PM         | XNGU-ALP      | WN25PM |
| S1-S2      | XNGU-ML   | WP25PM         | XNGU-ML   | WS40PM         | XNPU-MM       | WS40PM |
| S3         | XNGU-ML   | WS40PM         | XNGU-ML   | WS40PM         | XNPU-MM       | WS40PM |
| <b>S4</b>  | XNGU-ML   | WS40PM         | XNGU-ML   | WS40PM         | XNPU-MM       | WS40PM |
| H1         | XNGU-ML   | WU10PM         | XNGU-MM   | WU10PM         | _             | _      |

### ■ Empfohlene Startwerte für Schnittgeschwindigkeiten und Vorschübe [m/min]\*

| Wer | kstoff- |     |      |     |     |       |     |      |       |     |     |       |     |     |       |     |     |       |     |     |       |     |     |      |     |
|-----|---------|-----|------|-----|-----|-------|-----|------|-------|-----|-----|-------|-----|-----|-------|-----|-----|-------|-----|-----|-------|-----|-----|------|-----|
| gr  | uppe    | W   | K15C | M   | W   | /K15P | M   | W    | N25PI | VI. | W   | /P25P | M   | l W | /P35C | M   | W   | /P40P | M   | W   | S40PI | VI  | W   | U10P | M   |
|     | 1       | _   | -    | -   | -   | -     | -   | -    | -     | _   | 330 | 285   | 270 | 455 | 395   | 370 | 295 | 260   | 245 | -   | -     | -   | _   | -    | _   |
|     | 2       | _   | -    | _   | -   | -     | -   | -    | -     | -   | 275 | 240   | 200 | 280 | 255   | 230 | 250 | 215   | 180 | _   | -     | -   | _   | -    | -   |
| P   | 3       | _   | -    | -   | -   | -     | -   | -    | -     | -   | 255 | 215   | 175 | 255 | 230   | 205 | 230 | 195   | 160 | -   | -     | -   | -   | -    | -   |
| F . | 4       | -   | -    | -   | -   | -     | -   | -    | -     | -   | 225 | 185   | 150 | 190 | 175   | 160 | 205 | 170   | 135 | –   | -     | -   | -   | -    | _   |
|     | 5       | _   | -    | -   | _   | -     | -   | _    | -     | -   | 185 | 170   | 150 | 260 | 230   | 210 | 170 | 155   | 135 | 170 | 145   | 120 | _   | -    | _   |
|     | 6       | -   | -    | _   | -   | -     | _   | -    | -     | -   | 165 | 125   | 100 | 160 | 135   | 110 | 150 | 115   | 90  | 150 | 110   | 80  | _   | -    | _   |
|     | 1       | _   | -    | -   | -   | -     | -   | -    | -     | -   | 205 | 180   | 165 | 205 | 185   | 155 | 195 | 170   | 155 | 210 | 170   | 140 | -   | -    | -   |
| M   | 2       | _   | -    | _   | _   | -     | -   | _    | -     | -   | 185 | 160   | 130 | 185 | 160   | 140 | 175 | 150   | 125 | 180 | 145   | 120 | _   | -    | - 1 |
|     | 3       | -   | -    | -   | -   | -     | -   | -    | -     | -   | 140 | 120   | 95  | 145 | 130   | 115 | 130 | 115   | 90  | 145 | 110   | 85  | _   | -    | _   |
|     | 1       | 420 | 385  | 340 | 270 | 245   | 215 | -    | -     | -   | 230 | 205   | 185 | 295 | 265   | 240 | _   | -     | _   | _   | -     | -   | 295 | 265  | 240 |
| K   | 2       | 335 | 295  | 275 | 210 | 190   | 175 | -    | -     | -   | 180 | 160   | 150 | 235 | 210   | 190 | _   | -     | -   | _   | -     | -   | 230 | 205  | 190 |
|     | 3       | 280 | 250  | 230 | 175 | 160   | 145 | -    | -     | _   | 150 | 135   | 120 | 195 | 175   | 160 | _   | _     | _   | _   |       | -   | 195 | 175  | 160 |
|     | 1       | -   | -    | -   | -   | -     | -   | 1075 | 945   | 875 | _   | -     | -   | -   | -     | -   | _   | -     | -   | _   | -     | -   | _   | -    | _   |
| N   | 2       | _   | _    | _   | -   | _     | _   | 945  | 875   | 760 | _   | _     | -   | -   | -     | _   | -   | -     | _   | –   | -     | -   | –   | -    | _   |
|     | 3       | _   | -    | -   | -   | -     | -   | 945  | 875   | 760 | _   | -     | _   | _   | -     | _   | _   |       | -   | _   |       | -   | _   |      | _   |
|     | 1       | -   | -    | -   | -   | -     | -   | -    | -     | -   | 40  | 35    | 25  | -   | -     | -   | -   | -     | -   | 40  | 35    | 25  | -   | -    | -   |
| s   | 2       | _   | -    | _   | _   | -     | -   | _    | -     | -   | 40  | 35    | 25  | _   | -     | _   | _   | -     | -   | 40  | 35    | 25  | _   | -    | _   |
| -3  | 3       | -   | -    | -   | -   | -     | -   | -    | -     | -   | 50  | 40    | 25  | -   | -     | _   | -   | -     | -   | 50  | 40    | 25  | -   | -    | _   |
|     | 4       | _   | -    | _   | -   | -     | -   | -    | -     | _   | 70  | 50    | 35  | _   | -     | _   | _   | _     | -   | 60  | 50    | 30  | _   | _    | _   |
| Н   | 1       | _   | -    | _   | _   | -     | -   | -    | -     | _   | _   | -     |     | _   | -     | _   | _   | _     | _   | _   |       | -   | 160 | 130  | 90  |

HINWEIS: Die Startwerte für Schnittgeschwindigkeit der ERSTEN Wahl sind **fett** gedruckt. Wenn die mittlere Spandicke zunimmt, sollte die Schnittgeschwindigkeit reduziert werden. 
\*Die Werkstoffgruppen P, M, K und H zeigen die empfohlenen Anfangsschnittgeschwindigkeiten zur Trockenbearbeitung. Bei der Nassbearbeitung die Schnittgeschwindigkeit um 20% reduzieren.
\*Die Werkstoffgruppen N und S zeigen die empfohlenen Anfangsschnittgeschwindigkeiten zur Nassbearbeitung. Zur Trockenbearbeitung nicht empfohlen.

### ■ Empfohlene Startwerte für Vorschübe [mm]

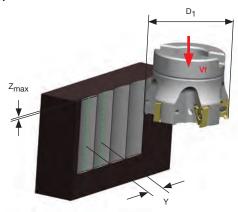

| Bearbeitung Anwendung bearbeitung |  | Leichte<br>Bearbeitung | Allgemeine<br>Anwendung | Schrupp-<br>bearbeitung |
|-----------------------------------|--|------------------------|-------------------------|-------------------------|
|-----------------------------------|--|------------------------|-------------------------|-------------------------|

| Wendeschneid-<br>platten- |      |      |      |      |      |      | nmierte<br>der rad |      |      |      |      |      |      |         |          | Wendeschneid-<br>platten- |
|---------------------------|------|------|------|------|------|------|--------------------|------|------|------|------|------|------|---------|----------|---------------------------|
| Geometrie                 |      | 5%   |      |      | 10%  |      |                    | 20%  |      |      | 30%  |      | 4    | 40–100% | <b>.</b> | Geometrie                 |
| .EALP                     | 0,12 | 0,23 | 0,32 | 0,08 | 0,17 | 0,23 | 0,06               | 0,13 | 0,18 | 0,06 | 0,11 | 0,15 | 0,05 | 0,10    | 0,14     | .EALP                     |
| .EML                      | 0,18 | 0,28 | 0,37 | 0,13 | 0,20 | 0,27 | 0,10               | 0,15 | 0,20 | 0,09 | 0,13 | 0,17 | 0,08 | 0,12    | 0,16     | .EML                      |
| .SMM                      | 0,23 | 0,35 | 0,46 | 0,17 | 0,25 | 0,33 | 0,13               | 0,19 | 0,25 | 0,11 | 0,17 | 0,22 | 0,10 | 0,15    | 0,20     | .SMM                      |
| .SMH                      | 0,23 | 0,43 | 0,58 | 0,17 | 0,31 | 0,42 | 0,13               | 0,23 | 0,31 | 0,11 | 0,20 | 0,27 | 0,10 | 0,18    | 0,25     | .SMH                      |

HINWEIS: Verwenden Sie die Werte für "Leichte Bearbeitung" als Start-Vorschub.

# **Bewährte Verfahren**

Herausragende Oberflächengüte mit VSM490-10 beim zeilenförmigen Fräsen von hohen Schultern. Bei vielen Bearbeitungen ist kein zusätzliches Schlichten notwendig, was die Bearbeitungszeit verkürzt und die Werkzeugkosten senkt.




Hervorragende Oberflächengüte mit VSM490-10

11

### ■ VSM490-10 Z-Achsen-Eintauchfräsen

| Werkzeug-<br>durchmesser<br>(D1) | Z max | Y     |
|----------------------------------|-------|-------|
| 16                               | 1,5   | 9,33  |
| 18                               | 1,5   | 9,95  |
| 20                               | 1,5   | 10,54 |
| 22                               | 1,5   | 11,09 |
| 25                               | 1,5   | 11,87 |
| 28                               | 1,5   | 12,61 |
| 32                               | 1,5   | 13,53 |
| 40                               | 1,5   | 15,20 |
| 50                               | 1,5   | 17,06 |
| 63                               | 1,5   | 19,21 |
| 80                               | 1,5   | 21,70 |
| 100                              | 1,5   | 24,31 |
| 125                              | 1,5   | 27,22 |



# VSM490<sup>™</sup>-15

90° Victory™ Eckfräser (VSM) mit doppelseitigen 4-schneidigen Wendeschneidplatten

Same of the same o

- Schruppwerkzeug f
  ür echte 90° mit integrierter Schlichtf
  ähigkeit in einem Werkzeug.
- Bis zu Ap1 max = 15 mm.
- Herausragende Oberflächengüte beim zeilenförmigen Fräsen von hohen Schultern.
- · Geringere Schnittkräfte und weicher Schnitt.
- · Perfekte Wahl für Maschinenspindeln mit ISO 50 Steilkegel.
- · Aufsteckfräser mit weiter, normaler und enger Teilung erhältlich.





### Vier Geometrien für das Schulterfräsen in allen Werkstoffen.









Erste Wahl für rostfreie Stähle.





Erste Wahl, insbesondere bei der Bearbeitung von Stählen.





Erste Wahl für Gusseisen, wird auch für Schruppbearbeitungen empfohlen.

Schlichtfähigkeit/Geringere Schnittkräfte

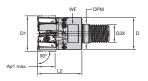
Geometrie-Stabilität

# Qualität der Schulterfläche

WIDIA™ KUNDEN-VORTEIL

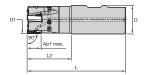
### **Verwendetes Werkzeug eines Wettbewerbers**

Herkömmliche Werkzeuge sind darauf ausgelegt, eine 90° Schulter zu erzielen, zeigen aber keine gute Leistung bei der zeilenförmigen Bearbeitung von hohen Schultern.




### VSM490-15

VSM490-15 beseitigt diese Ungleichheit und minimiert die Markierungen, die beim zeilenförmigen Fräsen entstehen. Durch die Verbesserung der Oberflächenqualität der Schulter und die Vermeidung eines zweiten Werkzeugs steigt die Produktivität erheblich.




# Victory™ Eckfräser • VSM490™-15



### ■ Aufschraubbare Schaftfräser

| Bestellnr. | Katalognummer        | D1 | D  | DPM  | G3X | L2 | WF | Ap1 max | Z | max.<br>Drehzahl | Innere<br>Kühlmittel-<br>zuführung | kg   |
|------------|----------------------|----|----|------|-----|----|----|---------|---|------------------|------------------------------------|------|
| 5873211    | VSM490D025Z02M12XN15 | 25 | 21 | 12,5 | M12 | 32 | 17 | 15,0    | 2 | 26700            | Yes                                | 0,18 |
| 5873212    | VSM490D032Z03M16XN15 | 32 | 29 | 17,0 | M16 | 40 | 24 | 15,0    | 3 | 22000            | Yes                                | 0,18 |
| 5873213    | VSM490D032Z04M16XN15 | 32 | 29 | 17,0 | M16 | 40 | 24 | 15,0    | 4 | 22000            | Yes                                | 0,18 |
| 5873214    | VSM490D035Z04M16XN15 | 35 | 29 | 17,0 | M16 | 40 | 24 | 15,0    | 4 | 20600            | Yes                                | 0,19 |



### ■ Schaftfräser mit Weldon® Schaft

| Bestellnr. | Katalognummer        | D1 | D  | L   | L2 | Ap1 max | Z | max.<br>Drehzahl | Innere<br>Kühlmittel-<br>zuführung | kg   |
|------------|----------------------|----|----|-----|----|---------|---|------------------|------------------------------------|------|
| 5710285    | VSM490D025Z02B25XN15 | 25 | 25 | 89  | 32 | 15,0    | 2 | 26700            | Yes                                | 0,28 |
| 5710286    | VSM490D032Z03B32XN15 | 32 | 32 | 111 | 50 | 15,0    | 3 | 22000            | Yes                                | 0,58 |
| 5873215    | VSM490D040Z03B32XN15 | 40 | 32 | 111 | 50 | 15,0    | 3 | 18800            | Yes                                | 0,65 |

HINWEIS: Ausführung mit Weldon Schaft nicht für Schlichtbearbeitungen empfohlen.



### ■ Schaftfräser mit Zylinderschaft

| Bestellnr. | Katalognummer            | D1 | D  | L   | L2 | Ap1 max | Z | max.<br>Drehzahl | Innere<br>Kühlmittel-<br>zuführung | kg   |
|------------|--------------------------|----|----|-----|----|---------|---|------------------|------------------------------------|------|
| 5873216    | VSM490D025Z02A25XN15L100 | 25 | 25 | 100 | 43 | 15,0    | 2 | 26700            | Yes                                | 0,32 |
| 5710287    | VSM490D025Z02A25XN15L170 | 25 | 25 | 170 | 43 | 15,0    | 2 | 26700            | Yes                                | 0,59 |
| 5873217    | VSM490D032Z03A32XN15L110 | 32 | 32 | 110 | 49 | 15,0    | 3 | 22000            | Yes                                | 0,59 |
| 5710288    | VSM490D032Z03A32XN15L200 | 32 | 32 | 200 | 50 | 15,0    | 3 | 22000            | Yes                                | 1,14 |
| 5873218    | VSM490D032Z04A32XN15L110 | 32 | 32 | 110 | 49 | 15,0    | 4 | 22000            | Yes                                | 0,58 |
| 5873219    | VSM490D032Z04A32XN15L200 | 32 | 32 | 200 | 50 | 15,0    | 4 | 22000            | Yes                                | 1,14 |

# VSM490<sup>™</sup>-15

Victory™ Eckfräser • VSM490-15





### Aufsteckfräser

| Bestellnr. | Katalognummer        | D1  | D  | D6  | L  | Ap1 max | z  | max.<br>Drehzahl | Innere<br>Kühlmittel-<br>zuführung | kg   |
|------------|----------------------|-----|----|-----|----|---------|----|------------------|------------------------------------|------|
| 5710289    | VSM490D040Z04S16XN15 | 40  | 16 | 37  | 40 | 15,0    | 4  | 18800            | Yes                                | 0,20 |
| 5710520    | VSM490D040Z05S16XN15 | 40  | 16 | 37  | 40 | 15,0    | 5  | 18800            | Yes                                | 0,19 |
| 5873221    | VSM490D050Z04S22XN15 | 50  | 22 | 42  | 40 | 15,0    | 4  | 16300            | Yes                                | 0,28 |
| 5710521    | VSM490D050Z05S22XN15 | 50  | 22 | 42  | 40 | 15,0    | 5  | 16300            | Yes                                | 0,28 |
| 5710522    | VSM490D050Z06S22XN15 | 50  | 22 | 42  | 40 | 15,0    | 6  | 16300            | Yes                                | 0,28 |
| 5873222    | VSM490D063Z05S22XN15 | 63  | 22 | 50  | 40 | 15,0    | 5  | 14200            | Yes                                | 0,50 |
| 5710523    | VSM490D063Z06S22XN15 | 63  | 22 | 50  | 40 | 15,0    | 6  | 14200            | Yes                                | 0,49 |
| 5710524    | VSM490D063Z07S22XN15 | 63  | 22 | 50  | 40 | 15,0    | 7  | 14200            | Yes                                | 0,48 |
| 5873223    | VSM490D080Z05S27XN15 | 80  | 27 | 60  | 50 | 15,0    | 5  | 12300            | Yes                                | 1,03 |
| 5710525    | VSM490D080Z07S27XN15 | 80  | 27 | 60  | 50 | 15,0    | 7  | 12300            | Yes                                | 1,03 |
| 5873224    | VSM490D080Z09S27XN15 | 80  | 27 | 60  | 50 | 15,0    | 9  | 12300            | Yes                                | 1,04 |
| 5710526    | VSM490D100Z08S32XN15 | 100 | 32 | 80  | 50 | 15,0    | 8  | 10900            | Yes                                | 1,61 |
| 5873225    | VSM490D100Z11S32XN15 | 100 | 32 | 80  | 50 | 15,0    | 11 | 10900            | Yes                                | 1,64 |
| 5873226    | VSM490D125Z09S40XN15 | 125 | 40 | 90  | 63 | 15,0    | 9  | 9600             | Yes                                | 2,96 |
| 5873227    | VSM490D125Z12S40XN15 | 125 | 40 | 90  | 63 | 15,0    | 12 | 9600             | Yes                                | 3,11 |
| 5873228    | VSM490D160Z12S40XN15 | 160 | 40 | 110 | 63 | 15,0    | 12 | 8400             | Yes                                | 4,80 |

# ■ Aufsteckfräser • Japanischer Industriestandard (JIS)

| Bestellnr. | Katalognummer             | D1  | D     | D6  | L  | Ap1 max | z  | max.<br>Drehzahl | Innere<br>Kühlmittel-<br>zuführung | kg   |
|------------|---------------------------|-----|-------|-----|----|---------|----|------------------|------------------------------------|------|
| 6342806    | VSM490D080Z05S254XN15JIS  | 80  | 25,40 | 50  | 50 | 15,0    | 5  | 12300            | Yes                                | 0,89 |
| 6342807    | VSM490D080Z07S254XN15JIS  | 80  | 25,40 | 50  | 50 | 15,0    | 7  | 12300            | Yes                                | 0,87 |
| 6342808    | VSM490D100Z08S3175XN15JIS | 100 | 31,76 | 60  | 50 | 15,0    | 8  | 10900            | Yes                                | 1,23 |
| 6342809    | VSM490D125Z09S381XN15JIS  | 125 | 38,10 | 80  | 63 | 15,0    | 9  | 9600             | Yes                                | 2,81 |
| 6342810    | VSM490D160Z12S508XN15JIS  | 160 | 50,80 | 100 | 63 | 15,0    | 12 | 8400             | Yes                                | 4,88 |

### ■ Ersatzteile

| D1       | Wendeschneidplatten-<br>Spannschraube | Anzugsmoment (Nm) für Spannschraube | Spann-<br>schlüssel |
|----------|---------------------------------------|-------------------------------------|---------------------|
| 25 - 160 | MS-2071                               | 3,5                                 | DT15IP              |

# Für das M4000 Kassetten-Frässystem siehe Seite 35.



# Victory™ Eckfräser • VSM490™-15

15

| ■ Wendeschneidplat | ten für VSM <sup>4</sup> | 490-15 | W POOR | BS<br> | ● Erste \<br>○ Alterna |      | P<br>M<br>K<br>N<br>S | • 1     |                  | 0       | 0       | 0           |         |
|--------------------|--------------------------|--------|--------|--------|------------------------|------|-----------------------|---------|------------------|---------|---------|-------------|---------|
|                    |                          |        |        |        |                        |      |                       | WK15CM  | WK15PM<br>WN25PM | WP25PM  | WP35CM  | WP40PM      | WU35PM  |
| Katalognummer      | Schneidkanten            | LI     | S      | W      | BS                     | Rε   |                       |         |                  |         |         | <b>&gt;</b> | >       |
| XNGU15T604ERALP    | 4                        | 16,20  | 6,88   | 10,00  | 2,20                   | 0,40 | 0,03                  | 1       | 6082644          | 1       | 1       |             |         |
| XNGU15T608ERALP    | 4                        | 16,20  | 6,88   | 10,00  | 1,80                   | 0,80 | 0,03                  | 1       | 6082645          | 1       | 1       | -           |         |
| XNGU15T604ERML     | 4                        | 16,20  | 6,88   | 10,00  | 2,20                   | 0,40 | 0,08                  | ı       | 1 1              | 5890821 | ı       | 5890822     | 5890823 |
| XNGU15T608ERML     | 4                        | 16,20  | 6,88   | 10,00  | 1,80                   | 0,80 | 0,08                  | 1 00    | 6242523          | 5873481 | 1       | 5873482     | 5873483 |
| XNGU15T604SRMM     | 4                        | 16,20  | 6,88   | 10,00  | 2,20                   | 0,40 | 0,10                  | 1 00    | 1262420          | 5949204 | 1       | 5949205     | 5949206 |
| XNGU15T608SRMM     | 4                        | 16,20  | 6,88   | 10,00  | 1,90                   | 0,80 | 0,10                  | 1 00    | 024252           | 5710527 | 1 1     | 5710528     | 5710529 |
| XNGU15T612SRMM     | 4                        | 16,20  | 6,88   | 10,00  | 1,50                   | 1,20 | 0,08                  | 6234707 |                  |         | ,       |             |         |
| XNGU15T608SRMH     | 4                        | 16,20  | 6,88   | 10,00  | 1,80                   | 0,80 | 0,10                  | 6003725 | 0003/24          | 6003570 | 6003723 | 6003721     | 6003722 |
| XNGU15T616SRMH     | 4                        | 16,20  | 6,88   | 10,00  | 1,00                   | 1,60 | 0,10                  | 6030380 |                  | 6030376 | 6030377 | 1 1         |         |
| XNPU15T608ERML     | 4                        | 16,10  | 6,88   | 10,00  | 1,90                   | 0,80 | 0,08                  | 1       |                  | 5883097 | 1       | 5883098     | 5883099 |
| XNPU15T608SRMM     | 4                        | 16,10  | 6,88   | 10,00  | 1,90                   | 0,80 | 0,10                  | 5873420 | 18/3419          | 5873415 | 5873418 | 5873416     | 5873417 |
| XNPU15T612SRMM     | 4                        | 16,10  | 6,88   | 10,00  | 1,50                   | 1,20 | 0,10                  | 5890763 | 29/0890          | 5890728 | 5890761 | 5890729     | 5890730 |
| XNPU15T616SRMM     | 4                        | 16,10  | 6,88   | 10,00  | 1,10                   | 1,60 | 0,10                  | 5883522 | - 2883221        | 5883447 | 5883450 | 5883448     | 5883449 |
| XNPU15T620SRMM     | 4                        | 16,10  | 6,88   | 10,00  | 0,70                   | 2,00 | 0,10                  | 6030375 | 1 1              | 6030372 | 6030374 | 6030373     |         |

HINWEIS: XNGU: Hochpräzise umfangseitig geschliffene Wendeschneidplatten. XNPU: Präzisionsgepresste und auf Maß gesinterte Wendeschneidplatten.

# VSM490<sup>™</sup>-15

Victory™ Eckfräser • VSM490-15

### Auswahlhilfe für Wendeschneidplatten

| Werkstoff- | Leic<br>Bearb | chte<br>eitung | Allgei<br>Anwei | neine<br>ndung | Schr<br>bearb |        |
|------------|---------------|----------------|-----------------|----------------|---------------|--------|
| gruppe     | Geometrie     | Sorte          | Geometrie       | Sorte          | Geometrie     | Sorte  |
| P1-P2      | XNGU-ML       | WP40PM         | XNPU-MM         | WP40PM         | XNPU-MM       | WP40PM |
| P3-P4      | XNGU-ML       | WP40PM         | XNPU-MM         | WP40PM         | XNPU-MM       | WP40PM |
| P5-P6      | XNGU-MM       | WP25PM         | XNPU-MM         | WP35CM         | XNPU-MM       | WP40PM |
| M1-M2      | XNGU-ML       | WS40PM         | XNGU-ML         | WS40PM         | XNPU-MM       | WS40PM |
| M3         | XNGU-ML       | WS40PM         | XNGU-ML         | WS40PM         | XNPU-MM       | WS40PM |
| K1-K2      | XNPU-MM       | WK15PM         | XNGU-MH         | WK15CM         | XNGU-MH       | WK15CM |
| K3         | XNPU-MM       | WK15PM         | XNGU-MH         | WP35CM         | XNGU-MH       | WP35CM |
| N1-N2      | XNGU-ALP      | WN25PM         | XNGU-ALP        | WN25PM         | XNGU-ALP      | WN25PM |
| N3         | XNGU-ALP      | WN25PM         | XNGU-ALP        | WN25PM         | XNGU-ALP      | WN25PM |
| S1-S2      | XNGU-ML       | WP25PM         | XNGU-ML         | WS40PM         | XNPU-MM       | WS40PM |
| <b>S</b> 3 | XNGU-ML       | WS40PM         | XNGU-ML         | WS40PM         | XNPU-MM       | WS40PM |
| <b>S</b> 4 | XNGU-ML       | WS40PM         | XNGU-ML         | WS40PM         | XNPU-MM       | WS40PM |
| H1         | _             | _              | -               | -              | -             | -      |

### ■ Empfohlene Startwerte für Schnittgeschwindigkeiten und Vorschübe [m/min]\*

| 1  | kstoff- |     | 'K15C | м   | 14  | /K15P | м   | 14/  | N25PI |     | ١,   | /P25P | M   | 14  | /P35C | N/I | \ \ \ | /P40P | м   | 14   | /S40P | м   | 14  | /U35P | M   |
|----|---------|-----|-------|-----|-----|-------|-----|------|-------|-----|------|-------|-----|-----|-------|-----|-------|-------|-----|------|-------|-----|-----|-------|-----|
| gı | uppe    | VV  | KIJU  | IVI | VV  | KISP  | IVI | VV   | NZJFI | VI  |      |       |     |     |       |     |       |       |     | V    | 340F  | IVI |     |       |     |
|    | 1       | _   | -     | -   | _   | -     | -   | -    | -     | -   | 330  | 285   | 270 | 455 | 395   | 370 | 295   | 260   | 245 | _    | -     | -   | 260 | 230   | 215 |
|    | 2       | -   | -     | _   | _   | -     | _   | _    | -     | _   | 275  | 240   | 200 | 280 | 255   | 230 | 250   | 215   | 180 | _    | -     | _   | 220 | 190   | 160 |
| ь  | 3       | -   | -     | -   | _   | -     | _   | _    | -     | _   | 255  | 215   | 175 | 255 | 230   | 205 | 230   | 195   | 160 | _    | -     | _   | 200 | 170   | 140 |
| Р. | 4       | _   | _     | _   | _   | _     | _   | _    | _     | _   | 225  | 185   | 150 | 190 | 175   | 160 | 205   | 170   | 135 | _    | -     | _   | 180 | 150   | 120 |
|    | 5       | _   | -     | _   | _   | _     | _   | _    | _     | _   | 185  | 170   | 150 | 260 | 230   | 210 | 170   | 155   | 135 | 170  | 145   | 120 | 150 | 135   | 120 |
|    | 6       | _   | -     | -   | _   | -     | _   | _    | -     | _   | 165  | 125   | 100 | 160 | 135   | 110 | 150   | 115   | 90  | 150  | 110   | 80  | 130 | 100   | 80  |
|    | 1       | _   | _     | _   | _   |       |     | _    |       |     | 205  | 180   | 165 | 205 | 185   | 155 | 195   | 170   | 155 | 210  | 170   | 140 | 170 | 150   | 135 |
| М  | 2       | _   | _     | _   | _   | _     | _   | _    | _     | _   | 185  | 160   | 130 | 185 | 160   | 140 | 175   | 150   | 125 | 180  | 145   | 120 | 155 | 130   | 110 |
|    | 3       | _   | _     | _   | _   | _     | _   | _    | _     | _   | 140  | 120   | 95  | 145 | 130   | 115 | 130   | 115   | 90  | 145  | 110   | 85  | 115 | 100   | 80  |
|    | 1       | 420 | 385   | 340 | 270 | 245   | 215 | _    |       |     | 230  | 205   | 185 | 295 | 265   | 240 | _     |       | _   | _    |       |     | _   |       |     |
| K  | 2       | 335 | 295   | 275 | 210 | 190   | 175 | _    | _     | _   | 180  | 160   | 150 | 235 | 210   | 190 | _     | _     | _   | _    | _     | _   | _   | _     |     |
| 18 | 3       | 280 | 250   | 230 | 175 | 160   | 145 | _    |       | _   | 150  | 135   | 120 | 195 | 175   | 160 | _     |       | _   | _    |       | _   | _   |       |     |
|    | 1       | 200 |       | 200 | 173 | -     | 140 | 1075 | 945   | 875 | 100  | 100   | 120 | 100 | - 175 | 100 |       |       |     |      |       |     |     |       |     |
| N  | 2       | _   | _     | _   | _   | _     | _   | 945  | 875   | 760 | _    | _     | _   | _   | _     | _   | _     | _     | _   | _    | _     | _   | _   | _     | _   |
| IN | _       | _   |       | _   | _   |       | _   |      |       |     | _    |       | _   | _   |       | _   | _     |       | _   | _    |       | _   | _   |       |     |
|    | 3       |     |       |     |     |       |     | 945  | 875   | 760 | - 40 |       |     | _   |       |     |       |       |     | - 40 |       |     | -   |       |     |
|    | 1       | _   | -     | -   | -   | -     | -   | -    | -     | -   | 40   | 35    | 25  | _   | -     | -   | _     | -     | -   | 40   | 35    | 25  | 35  | 30    | 25  |
| S  | 2       | _   | -     | -   | -   | -     | -   | -    | _     | -   | 40   | 35    | 25  | _   | -     | -   | _     | -     | -   | 40   | 35    | 25  | 35  | 30    | 25  |
|    | 3       | -   | -     | -   | -   | -     | -   | -    | -     | -   | 50   | 40    | 25  | -   | -     | -   | -     | -     | -   | 50   | 40    | 25  | 45  | 35    | 25  |
|    | 4       |     |       |     | _   |       |     |      |       |     | 70   | 50    | 35  | _   |       |     |       |       |     | 60   | _50   | 30  | 60  | 45    | 30  |
| H  | 1       | _   | -     | -   | -   | -     | -   | -    | -     | -   | 120  | 90    | 70  | -   | -     | -   | -     | -     | -   | -    | -     | _   | -   | -     | _   |

HINWEIS: Die Startwerte für Schnittgeschwindigkeit der ERSTEN Wahl sind **fett** gedruckt. Wenn die mittlere Spandicke zunimmt, sollte die Schnittgeschwindigkeit reduziert werden.

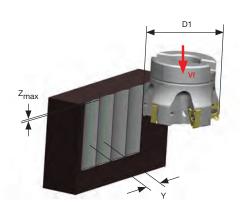
\* Die Werkstoffgruppen P, M, K und H zeigen die empfohlenen Anfangsschnittgeschwindigkeiten zur Trockenbearbeitung. Bei der Nassbearbeitung die Schnittgeschwindigkeit um 20 % reduzieren.

\* Die Werkstoffgruppen N und S zeigen die empfohlenen Anfangsschnittgeschwindigkeiten zur Nassbearbeitung. Zur Trockenbearbeitung nicht empfohlen.

# ■ Empfohlene Startwerte für Vorschübe [mm]

| Leichte     | Allgemeine | Schrupp-    |
|-------------|------------|-------------|
| Bearbeitung | Anwendung  | bearbeitung |
| _           | _          |             |

| Wendeschneid-<br>platten- |      |                        |      |      |      |      |      |      | ub pro Z<br>hnitttief |      |      |      |      |      |      | Wendeschneid-<br>platten- |
|---------------------------|------|------------------------|------|------|------|------|------|------|-----------------------|------|------|------|------|------|------|---------------------------|
| Geometrie                 |      | 5% 10% 20% 30% 40–100% |      |      |      |      |      |      |                       |      |      |      |      |      |      | Geometrie                 |
| .EALP                     | 0,11 | 0,23                   | 0,35 | 0,08 | 0,17 | 0,25 | 0,06 | 0,13 | 0,19                  | 0,05 | 0,11 | 0,16 | 0,05 | 0,10 | 0,15 | .EALP                     |
| .EML                      | 0,17 | 0,31                   | 0,46 | 0,13 | 0,23 | 0,33 | 0,09 | 0,17 | 0,25                  | 0,08 | 0,15 | 0,22 | 0,08 | 0,14 | 0,20 | .EML                      |
| .SMM                      | 0,22 | 0,40                   | 0,64 | 0,16 | 0,29 | 0,46 | 0,12 | 0,22 | 0,34                  | 0,10 | 0,19 | 0,30 | 0,10 | 0,18 | 0,28 | .SMM                      |
| .SMH                      | 0,23 | 0,45                   | 0,74 | 0,17 | 0,33 | 0,54 | 0,13 | 0,24 | 0,40                  | 0,11 | 0,21 | 0,35 | 0,10 | 0,20 | 0,32 | .SMH                      |

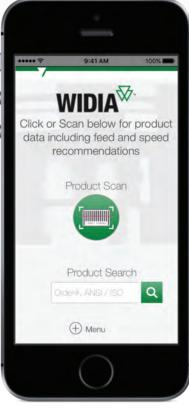

HINWEIS: Verwenden Sie die Werte für "Leichte Bearbeitung" als Start-Vorschub.

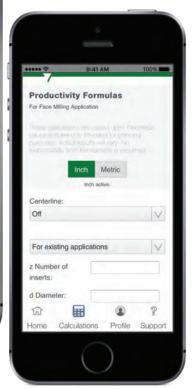
### **Bewährte Verfahren**

### ■ VSM490-15 Z-Achsen-Eintauchfräsen

| Werkzeug-<br>durchmesser<br>(D1) | Z max | Y     |
|----------------------------------|-------|-------|
| 25                               | 2,4   | 14,73 |
| 32                               | 2,4   | 16,86 |
| 35                               | 2,4   | 17,69 |
| 40                               | 2,4   | 19,00 |

| Werkzeug-<br>durchmesser<br>(D1) | Z max | Υ     |
|----------------------------------|-------|-------|
| 50                               | 2,4   | 21,38 |
| 63                               | 2,4   | 24,12 |
| 80                               | 2,4   | 27,29 |
| 100                              | 2,4   | 30,61 |
| 125                              | 2,4   | 34,31 |
| 160                              | 2,4   | 38,90 |
|                                  |       |       |




# Machining Central App von WIDIA™

Die schnellste und einfachste Methode zum Abrufen von Vorschub- und Schnittgeschwindigkeiten









# **SCANNEN**

Mit der neuen WIDIA App können Produktdaten mit einem einfachen Barcode-Scan abgerufen werden. Wenn Sie sich im Fertigungsbereich befinden und die Vorschub- und Schnittgeschwindigkeiten Ihres bevorzugten WIDIA Werkzeugs schnell abrufen müssen, erhalten Sie mit der WIDIA App in wenigen Sekunden zuverlässige Informationen.



# **SUCHEN**

Sie haben keinen Barcode? Die neue WIDIA App enthält eine weitere einfache Suchmethode: Geben Sie einfach die zugehörige Auftragsnummer des Werkzeugs oder die ANSI- oder ISO-Katalognummer in die Suchleiste ein. Sie erhalten dieselben zuverlässigen Daten wie bei einem Scan des Barcodes des Werkzeugs. Das geht schnell und einfach und die Produktion wird nicht unterbrochen!



# **BERECHNEN**

Sie benötigen eine bestimmte Bearbeitung, die mit den empfohlenen Vorschub- und Schnittgeschwindigkeiten nicht möglich ist? Dann testen Sie unsere drei NOVO™ basierten Rechner. Es stehen Rechner für das Schaft- und Planfräsen zur Verfügung. Geben Sie einfach die nötigen Informationen ein und unsere Rechner liefern Ihnen schnell die nötigen Daten.

LADEN SIE DIE MOBILE MACHINING CENTRAL APP VON WIDIA HERUNTER











# VSM11<sup>™</sup>

Ap-Leistung: Bis zu 11 mm

Aufschraubbare Schaftfräser: 16–40 mm

Schaftfräser mit Weldon® Schaft: 12-32 mm

Schaftfräser mit Zylinderschaft: 12-32 mm

Aufsteckfräser: 40-125 mm

M4000 Kassetten-Frässystem: 125-315 mm





# VSM17<sup>™</sup>

Ap-Leistung: Bis zu 16,4 mm

Aufschraubbare Schaftfräser: 25-40 mm

Schaftfräser mit Weldon-Schaft: 25-40 mm

Schaftfräser mit Zylinderschaft: 25-40 mm

Aufsteckfräser: 40-160 mm

M4000 Kassetten-Frässystem: 125–315 mm



# 90° Victory™ Eckfräser (VSM) mit 2-schneidigen Wendeschneidplatten

Leistungsstarke, robuste, hochpositive Plattform für das Fräsen von 90° Schultern mit verbesserter Eintauchfähigkeit.

Geringe Leistungsaufnahme hohe Universalität und ein weicher Schnitt.

Mit den aktuellen WIDIA<sup>™</sup> Victory Sorten, vier Geometrien und einem vielseitigen Werkzeugkörper-Programm deckt dieses Programm verschiedene Werkstoff- und Anwendungsbereiche ab, von der leichten Schlichtbearbeitung bis hin zum mittleren Schruppen.



# VSM11™

90° Victory™ Eckfräser (VSM) mit 2-schneidigen Wendeschneidplatten

- Eckfräserprogramm für die Bearbeitung von korrekten 90° Schultern bis zu Ap1 max = 11 mm.
- Großer Eintauchwinkel von bis zu 10° mit Schaftfräsern mit einem Durchmesser von 16 mm.
- Optimierter Spanraum für verbesserte Fräserstabilität und Spanabfuhr.
- Gut geschützte innere Kühlmittelzuführung zur Schneidkante.
- Die hervorragende Frässorte WS40PM steigert die Produktivität bei der Bearbeitung von rostfreien Stählen und hochwarmfesten Legierungen.

Zusätzliche Führungsfase auf der Freifläche zur Stabilisierung der Schneidkante.

Extrem positiver Spanwinkel für einen weichen Schnitt und eine geringe Leistungsaufnahme.

Innovative Schneidkantenausführung

Eingebettete Planfase für eine hohe Oberflächengüte.

Verschiedene Schneideckenausführungen erhältlich (R0,2 bis R3,1); auch für die Luft- und Raumfahrtindustrie geeignet.



### Geometrien zum Eckfräsen in fast allen Werkstoffgruppen.



Schruppen und Schlichten von Aluminiumlegierungen. Hochpräzise. Umfang geschliffen.

20



Schruppen und Schlichten von Aluminiumlegierungen. Abrasive NE-Metalle. Hochpräzise. Umfang geschliffen.

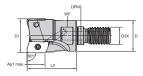


Leichte Bearbeitung und leichtes Schlichten. Erste Wahl zur Bearbeitung von rostfreien Stählen und Titan. Umfang geschliffen.



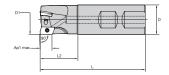
für eine längere Standzeit.

Mittlere Bearbeitung. Erste Wahl für universelle Bearbeitungen. Auf Maß präzisionsgepresst.




Erste Wahl für die Schwerzerspanung. Stahl- und Gusseisenwerkstoffe. Auf Maß präzisionsgepresst.

Schlichtfähigkeit/Geringere Schnittkräfte


Geometrie-Stabilität

# Victory™ Eckfräser • VSM11™

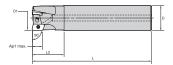


### ■ Aufschraubbare Schaftfräser

| Ве | estellnr. | Katalognummer       | D1 | D  | DPM  | G3X | L2 | WF | Ap1 max | z | Max.<br>Tauchwinkel | max.<br>Drehzahl | Innere<br>Kühlmittel-<br>zuführung | kg   |
|----|-----------|---------------------|----|----|------|-----|----|----|---------|---|---------------------|------------------|------------------------------------|------|
| 54 | 117011    | VSM11D016Z02M08XD11 | 16 | 13 | 8,5  | M8  | 25 | 10 | 11,5    | 2 | 10.0°               | 41400            | Yes                                | 0,02 |
| 54 | 117013    | VSM11D020Z03M10XD11 | 20 | 18 | 10,5 | M10 | 28 | 15 | 11,6    | 3 | 7.8°                | 35100            | Yes                                | 0,05 |
| 54 | 117015    | VSM11D025Z04M12XD11 | 25 | 21 | 12,5 | M12 | 32 | 17 | 11,5    | 4 | 5.3°                | 30200            | Yes                                | 0,08 |
| 54 | 117017    | VSM11D032Z04M16XD11 | 32 | 29 | 17,0 | M16 | 40 | 24 | 11,4    | 4 | 3.6°                | 25800            | Yes                                | 0,18 |
| 54 | 117019    | VSM11D040Z06M16XD11 | 40 | 29 | 17,0 | M16 | 40 | 24 | 11,4    | 6 | 2.6°                | 22600            | Yes                                | 0,24 |



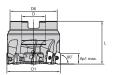
# ■ Schaftfräser mit Weldon® Schaft


| Bestellnr. | Katalognummer       | D1 | D  | L   | L2 | Ap1 max | z | Max.<br>Tauchwinkel | max.<br>Drehzahl | Innere<br>Kühlmittel-<br>zuführung | kg   |
|------------|---------------------|----|----|-----|----|---------|---|---------------------|------------------|------------------------------------|------|
| 5416454    | VSM11D012Z01B16XD11 | 12 | 16 | 70  | 21 | 11,7    | 1 | 3.7°                | 53100            | Yes                                | 0,08 |
| 5416455    | VSM11D016Z02B16XD11 | 16 | 16 | 70  | 21 | 11,5    | 2 | 10.0°               | 41400            | Yes                                | 0,09 |
| 5416457    | VSM11D020Z02B20XD11 | 20 | 20 | 81  | 30 | 11,6    | 2 | 7.8°                | 35100            | Yes                                | 0,15 |
| 5416458    | VSM11D020Z03B20XD11 | 20 | 20 | 81  | 30 | 11,6    | 3 | 7.8°                | 35100            | Yes                                | 0,16 |
| 5416459    | VSM11D025Z03B25XD11 | 25 | 25 | 88  | 31 | 11,5    | 3 | 5.3°                | 30200            | Yes                                | 0,27 |
| 5416480    | VSM11D025Z04B25XD11 | 25 | 25 | 88  | 31 | 11,5    | 4 | 5.3°                | 30200            | Yes                                | 0,28 |
| 5416481    | VSM11D030Z04B25XD11 | 30 | 25 | 88  | 31 | 11,5    | 4 | 3.2°                | 26900            | Yes                                | 0,30 |
| 5416482    | VSM11D032Z04B32XD11 | 32 | 32 | 100 | 39 | 11,4    | 4 | 3.6°                | 25800            | Yes                                | 0,51 |
| 5416483    | VSM11D032Z05B32XD11 | 32 | 32 | 100 | 39 | 11,4    | 5 | 3.6°                | 25800            | Yes                                | 0,52 |

HINWEIS: Ausführung mit Weldon Schaft nicht für Schlichtbearbeitungen empfohlen.

# VSM11™

Victory™ Eckfräser • VSM11






# ■ Schaftfräser mit Zylinderschaft (normale und lange Ausführung)

|            |                         |    |    |     |    |         |   | Max.        | max.     | Innere<br>Kühlmittel- |      |
|------------|-------------------------|----|----|-----|----|---------|---|-------------|----------|-----------------------|------|
| Bestellnr. | Katalognummer           | D1 | D  | L   | L2 | Ap1 max | Z | Tauchwinkel | Drehzahl | zuführung             | kg   |
| 5416632    | VSM11D012Z01A16XD11L100 | 12 | 16 | 100 | 25 | 11,7    | 1 | 3.7°        | 53100    | Yes                   | 0,13 |
| 5416633    | VSM11D016Z02A16XD11L100 | 16 | 16 | 100 | 31 | 11,5    | 2 | 10.0°       | 41400    | Yes                   | 0,12 |
| 5416700    | VSM11D016Z02A16XD11L170 | 16 | 16 | 170 | 25 | 11,5    | 2 | 10.0°       | 41400    | Yes                   | 0,23 |
| 5416701    | VSM11D018Z02A16XD11L170 | 18 | 16 | 170 | 25 | 11,6    | 2 | 9.7°        | 37900    | Yes                   | 0,23 |
| 5416634    | VSM11D020Z02A20XD11L110 | 20 | 20 | 110 | 31 | 11,6    | 2 | 7.8°        | 35100    | Yes                   | 0,22 |
| 5416702    | VSM11D020Z02A20XD11L170 | 20 | 20 | 170 | 41 | 11,6    | 2 | 7.8°        | 35100    | Yes                   | 0,35 |
| 5416635    | VSM11D020Z03A20XD11L110 | 20 | 20 | 110 | 31 | 11,6    | 3 | 7.8°        | 35100    | Yes                   | 0,23 |
| 5416703    | VSM11D020Z03A20XD11L170 | 20 | 20 | 170 | 41 | 11,6    | 3 | 7.8°        | 35100    | Yes                   | 0,36 |
| 5416704    | VSM11D022Z03A20XD11L170 | 22 | 20 | 170 | 30 | 11,5    | 3 | 6.6°        | 32900    | Yes                   | 0,37 |
| 5416636    | VSM11D025Z03A25XD11L120 | 25 | 25 | 120 | 33 | 11,5    | 3 | 5.3°        | 30200    | Yes                   | 0,39 |
| 5416705    | VSM11D025Z03A25XD11L210 | 25 | 25 | 210 | 50 | 11,5    | 3 | 5.3°        | 30200    | Yes                   | 0,70 |
| 5416637    | VSM11D025Z04A25XD11L120 | 25 | 25 | 120 | 33 | 11,5    | 4 | 5.3°        | 30200    | Yes                   | 0,40 |
| 5416706    | VSM11D025Z04A25XD11L210 | 25 | 25 | 210 | 50 | 11,5    | 4 | 5.3°        | 30200    | Yes                   | 0,72 |
| 5416638    | VSM11D032Z03A32XD11L130 | 32 | 32 | 130 | 41 | 11,4    | 3 | 3.6°        | 25800    | Yes                   | 0,70 |
| 5416707    | VSM11D032Z03A32XD11L250 | 32 | 32 | 250 | 65 | 11,4    | 3 | 3.6°        | 25800    | Yes                   | 1,39 |
| 5416639    | VSM11D032Z05A32XD11L130 | 32 | 32 | 130 | 41 | 11,4    | 5 | 3.6°        | 25800    | Yes                   | 0,71 |

HINWEIS: Standardfräser eignen sich für Wendeschneidplatten-Eckradien von max. 1,6 mm, ohne modifiziert werden zu müssen. Für Anweisungen zur Modifikation des Werzeugkörpers siehe Seite 26.

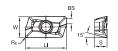


### ■ Aufsteckfräser

| Bestellnr. | Katalognummer         | D1  | D  | D6 | L  | Ap1 max | z  | Max.<br>Tauchwinkel | max.<br>Drehzahl | Innere<br>Kühlmittel-<br>zuführung |      |
|------------|-----------------------|-----|----|----|----|---------|----|---------------------|------------------|------------------------------------|------|
| 5416316    | VSM11D040Z04S016XD11  | 40  | 16 | 37 | 40 | 11,4    | 4  | 2.6°                | 22600            | Yes                                | 0,22 |
| 5416317    | VSM11D040Z06S016XD11  | 40  | 16 | 37 | 40 | 11,4    | 6  | 2.6°                | 22600            | Yes                                | 0,22 |
| 5416318    | VSM11D050Z05S022XD11  | 50  | 22 | 44 | 40 | 11,3    | 5  | 1.9°                | 19900            | Yes                                | 0,33 |
| 5416319    | VSM11D050Z08S022XD11  | 50  | 22 | 44 | 40 | 11,3    | 8  | 1.9°                | 19900            | Yes                                | 0,33 |
| 5416340    | VSM11D063Z06S022XD11  | 63  | 22 | 44 | 40 | 11,3    | 6  | 1.5°                | 17500            | Yes                                | 0,50 |
| 5416341    | VSM11D063Z09S022XD11  | 63  | 22 | 44 | 40 | 11,3    | 9  | 1.5°                | 17500            | Yes                                | 0,52 |
| 5416342    | VSM11D080Z08S027XD11  | 80  | 27 | 60 | 50 | 11,3    | 8  | 1.1°                | 15300            | Yes                                | 1,14 |
| 5416345    | VSM11D100Z09S032XD11  | 100 | 32 | 80 | 50 | 11,3    | 9  | .9°                 | 13600            | Yes                                | 1,79 |
| 5416347    | VSM11D125Z011S040XD11 | 125 | 40 | 80 | 63 | 11,3    | 11 | .7°                 | 12100            | Yes                                | 3,01 |

### ■ Ersatzteile

|          |                                       | Empfohlenes maximales               |                     |
|----------|---------------------------------------|-------------------------------------|---------------------|
| D1       | Wendeschneidplatten-<br>Spannschraube | Anzugsmoment (Nm) für Spannschraube | Spann-<br>schlüssel |
| 12 - 125 | 192,432                               | 1,0                                 | 170,028             |


Für das M4000 Kassetten-Frässystem siehe Seite 35.



# Victory™ Eckfräser • VSM11™



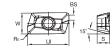
■ Wendeschneidplatten für VSM11



|             | M |   |   |   |   |   | • |
|-------------|---|---|---|---|---|---|---|
| Erste Wahl  | K |   | • | • |   |   | ( |
| Alternative | N | • |   |   | • | • | Γ |
|             | S |   |   |   |   |   | • |
|             | Н |   |   |   |   |   |   |
|             |   |   |   |   |   |   |   |

| •                 |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | $\dashv$          | -                 |                   | +                 |                   |                   | _//               |               | Н                 |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------|-------------------|
| Katalognummer     | Schneidkanten                                                                                                                                                                                                                                                     | Ц                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rε                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | hm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WDN10U            | WK15CM            | WK15PM            | WN10HM            | WP25PM            | WP35CM            | WP40PM            |                   | $\overline{}$ | WU35PM            |
| XDCW110404PDFRPCD | 1                                                                                                                                                                                                                                                                 | 13,43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5415420           | 1                 | 1                 |                   | ı                 | 1                 | 1                 | ı                 |               | ı                 |
| XDCW110408PDFRPCD | 1                                                                                                                                                                                                                                                                 | 13,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5415421           | ı                 |                   | . .               | ı                 | 1                 |                   | 1                 | 1             |                   |
| XDCT110402PDFRALP | 2                                                                                                                                                                                                                                                                 | 13,42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                 | 1                 | 1                 | 6407444           | 1                 | 1                 | ı                 | ı                 | 1             | 1                 |
| XDCT110404PDFRALP | 2                                                                                                                                                                                                                                                                 | 13,43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ı                 | ı                 | ı                 | 5933940           | 1                 | ı                 | ı                 | ı                 | ı             | ı                 |
| XDCT110408PDFRALP | 2                                                                                                                                                                                                                                                                 | 13,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                 | ı                 | 1                 | 5936171           | -                 | ı                 | 1                 | ı                 | ı             | ı                 |
| XDCT110412PDFRALP | 2                                                                                                                                                                                                                                                                 | 13,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                 | ı                 | 1                 | 6055634           | 1                 | 1                 | 1                 | 1                 | ı             | ı                 |
| XDCT110416PDFRALP | 2                                                                                                                                                                                                                                                                 | 13,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ı                 |                   | ı                 | 6055598           | 1                 | 1                 | ı                 | ı                 | ı             |                   |
| XDCT110420PDFRALP | 2                                                                                                                                                                                                                                                                 | 13,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ı                 | ı                 | 1                 | _                 | _                 | 1                 | ı                 | ı                 | 1             |                   |
| XDCT110424PDFRALP | 2                                                                                                                                                                                                                                                                 | 13,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                 |                   | 1                 |                   |                   | 1                 | 1                 | 1                 | 1             | 1                 |
| XDCT110432PDFRALP | 2                                                                                                                                                                                                                                                                 | 12,86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                 | ı                 | 1                 | 6055632           | 1                 | ı                 | ı                 | ı                 | ı             | ı                 |
| XDCT110404PDERML  | 2                                                                                                                                                                                                                                                                 | 13,43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ı                 |                   | 6242456           | . .               | 5536671           | 5536670           | 5642230           | 1                 | 6180174       |                   |
| XDCT110408PDERML  | 2                                                                                                                                                                                                                                                                 | 13,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ٠                 | 5415549           | 6242457           |                   | 5415548           | 5415547           | 5545065           | _                 | _             | 5415546           |
| XDCT110412PDERML  | 2                                                                                                                                                                                                                                                                 | 13,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                 | ı                 | 1                 | .   .             | 6408003           |                   | 1                 |                   |               | 1                 |
| XDCT110416PDERML  | 2                                                                                                                                                                                                                                                                 | 13,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                 | 1                 | 1                 | 1 1               | 5964861           | 1                 | 5964810           | _                 | _             | 1                 |
| XDCT110420PDERML  | 2                                                                                                                                                                                                                                                                 | 13,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                 |                   |                   | . .               | ı                 | 1                 | ı                 |                   |               |                   |
| XDCT110424PDERML  | 2                                                                                                                                                                                                                                                                 | 13,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                 |                   | 1                 |                   | ı                 | 1                 | 1                 | 1                 | 6408006       |                   |
|                   | XDCW110408PDFRPCD  XDCT110402PDFRALP  XDCT110408PDFRALP  XDCT110412PDFRALP  XDCT110416PDFRALP  XDCT110420PDFRALP  XDCT110432PDFRALP  XDCT110404PDERML  XDCT110408PDERML  XDCT110416PDERML  XDCT110416PDERML  XDCT110416PDERML  XDCT110416PDERML  XDCT110416PDERML | XDCW110404PDFRPCD       1         XDCW110408PDFRPCD       1         XDCT110402PDFRALP       2         XDCT110404PDFRALP       2         XDCT110412PDFRALP       2         XDCT110416PDFRALP       2         XDCT110420PDFRALP       2         XDCT110424PDFRALP       2         XDCT110432PDFRALP       2         XDCT110404PDERML       2         XDCT110408PDERML       2         XDCT110412PDERML       2         XDCT110416PDERML       2         XDCT110420PDERML       2         XDCT110410PDERML       2 | XDCW110404PDFRPCD       1       13,43         XDCW110408PDFRPCD       1       13,44         XDCT110402PDFRALP       2       13,42         XDCT110404PDFRALP       2       13,43         XDCT110408PDFRALP       2       13,44         XDCT110412PDFRALP       2       13,44         XDCT110420PDFRALP       2       13,44         XDCT110424PDFRALP       2       13,44         XDCT110432PDFRALP       2       13,43         XDCT110404PDERML       2       13,44         XDCT110408PDERML       2       13,44         XDCT110412PDERML       2       13,44         XDCT110416PDERML       2       13,44         XDCT110420PDERML       2       13,44         XDCT110420PDERML       2       13,44         XDCT110420PDERML       2       13,44 | XDCW110404PDFRPCD         1         13,43         2,10           XDCW110408PDFRPCD         1         13,44         1,70           XDCT110402PDFRALP         2         13,42         2,29           XDCT110404PDFRALP         2         13,43         2,09           XDCT110408PDFRALP         2         13,44         1,69           XDCT110412PDFRALP         2         13,44         1,29           XDCT110420PDFRALP         2         13,44         0,49           XDCT110424PDFRALP         2         13,44         0,16           XDCT110432PDFRALP         2         13,43         2,09           XDCT110404PDERML         2         13,43         2,09           XDCT110408PDERML         2         13,44         1,69           XDCT110412PDERML         2         13,44         1,29           XDCT110416PDERML         2         13,44         0,88           XDCT110416PDERML         2         13,44         0,88 | XDCW110404PDFRPCD         1         13,43         2,10         4,00           XDCW110408PDFRPCD         1         13,44         1,70         4,00           XDCT110402PDFRALP         2         13,42         2,29         4,00           XDCT110404PDFRALP         2         13,43         2,09         4,00           XDCT110408PDFRALP         2         13,44         1,69         4,00           XDCT110412PDFRALP         2         13,44         0,88         4,00           XDCT110420PDFRALP         2         13,44         0,49         4,00           XDCT110424PDFRALP         2         13,44         0,16         4,00           XDCT110432PDFRALP         2         13,44         0,16         4,00           XDCT110432PDFRALP         2         13,43         2,09         4,00           XDCT110404PDERML         2         13,44         1,69         4,00           XDCT110412PDERML         2         13,44         1,29         4,00           XDCT110416PDERML         2         13,44         0,88         4,00           XDCT110416PDERML         2         13,44         0,88         4,00 | XDCW110404PDFRPCD         1         13,43         2,10         4,00         6,90           XDCW110408PDFRPCD         1         13,44         1,70         4,00         6,90           XDCT110402PDFRALP         2         13,42         2,29         4,00         6,90           XDCT110404PDFRALP         2         13,43         2,09         4,00         6,90           XDCT110412PDFRALP         2         13,44         1,69         4,00         6,90           XDCT110416PDFRALP         2         13,44         1,29         4,00         6,89           XDCT11042PDFRALP         2         13,44         0,49         4,00         6,89           XDCT110424PDFRALP         2         13,44         0,16         4,00         6,89           XDCT110432PDFRALP         2         13,44         0,16         4,00         6,89           XDCT110404PDERML         2         13,43         2,09         4,00         6,90           XDCT110412PDERML         2         13,44         1,69         4,00         6,90           XDCT110416PDERML         2         13,44         1,29         4,00         6,90           XDCT110420PDERML         2         13,44         0,49 <th>XDCW110404PDFRPCD         1         13,43         2,10         4,00         6,90         0,40           XDCW110408PDFRPCD         1         13,44         1,70         4,00         6,90         0,80           XDCT110402PDFRALP         2         13,42         2,29         4,00         6,90         0,40           XDCT110408PDFRALP         2         13,43         2,09         4,00         6,90         0,80           XDCT110412PDFRALP         2         13,44         1,69         4,00         6,90         1,20           XDCT110416PDFRALP         2         13,44         1,29         4,00         6,90         1,20           XDCT110420PDFRALP         2         13,44         0,88         4,00         6,89         1,60           XDCT110424PDFRALP         2         13,44         0,16         4,00         6,89         2,40           XDCT110432PDFRALP         2         13,44         0,16         4,00         6,89         3,20           XDCT110403PDERML         2         13,43         2,09         4,00         6,90         0,40           XDCT110408PDERML         2         13,44         1,69         4,00         6,90         0,20           X</th> <th>  XDCW110404PDFRPCD</th> <th>  Katalognummer</th> <th>  XDCW110404PDFRPCD</th> | XDCW110404PDFRPCD         1         13,43         2,10         4,00         6,90         0,40           XDCW110408PDFRPCD         1         13,44         1,70         4,00         6,90         0,80           XDCT110402PDFRALP         2         13,42         2,29         4,00         6,90         0,40           XDCT110408PDFRALP         2         13,43         2,09         4,00         6,90         0,80           XDCT110412PDFRALP         2         13,44         1,69         4,00         6,90         1,20           XDCT110416PDFRALP         2         13,44         1,29         4,00         6,90         1,20           XDCT110420PDFRALP         2         13,44         0,88         4,00         6,89         1,60           XDCT110424PDFRALP         2         13,44         0,16         4,00         6,89         2,40           XDCT110432PDFRALP         2         13,44         0,16         4,00         6,89         3,20           XDCT110403PDERML         2         13,43         2,09         4,00         6,90         0,40           XDCT110408PDERML         2         13,44         1,69         4,00         6,90         0,20           X | XDCW110404PDFRPCD | Katalognummer | XDCW110404PDFRPCD |

(Fortsetzung)


# VSM11™

# Victory™ Eckfräser • VSM11

■ Wendeschneidplatten für VSM11

(Wendeschneidplatten für VSM11 - Fortsetzung)





| Erste Wahl  | K |   |
|-------------|---|---|
| Alternative | N | ĺ |
|             | ~ |   |

|                  |               |       |      |      |      |      |      |        |         | Т      |        |         | П       | 1                  | TEU     | $\Box$  |
|------------------|---------------|-------|------|------|------|------|------|--------|---------|--------|--------|---------|---------|--------------------|---------|---------|
| Katalognummer    | Schneidkanten | LI    | BS   | s    | w    | Rε   | hm   | WDN10U | WK15CM  | WN10HM | WN25PM | WP25PM  | WP35CM  | WP40PM<br>WS30PM ▶ | WS40PM  | WU35PM  |
| XDCT110432PDERML | 2             | 12,86 | -    | 4,00 | 6,89 | 3,20 | -    | 1      | 1       |        | 1      | 1       | 1       | 1 1                | 6408007 | 1       |
| XDPT110404PDSRMM | 2             | 13,49 | 2,06 | 4,13 | 6,94 | 0,39 | 0,06 | 1      | 5415428 | -      | 1      | 5642237 | 5415450 | 5642231            | 6180149 | 1       |
| XDPT110408PDSRMM | 2             | 13,50 | 1,66 | 4,13 | 6,94 | 0,78 | 0,06 |        | 5415315 | 1      |        | 5415319 | 5415318 | 5545063<br>5519921 | 6180148 | 5415317 |
| XDPT110412PDSRMM | 2             | 13,44 | 1,29 | 4,00 | 6,90 | 1,20 | 0,06 | ı      | 5415310 | ı      | ı      | 5415314 | 5415313 | 5642232            | 6180150 | 5415312 |
| XDPT110416PDSRMM | 2             | 13,51 | 0,85 | 4,13 | 6,95 | 1,60 | 0,06 | 1      | 5415250 | 1      | ı      | 5415254 | 5415253 | 5642233            | 6180172 | 1       |
| XDPT110420PDSRMM | 2             | 13,51 | 0,45 | 4,13 | 6,95 | 2,00 | 0,06 | 1      | 1       | 1      | 1      | 5980399 | 5980400 | - 2980398          | 6408095 | 1       |
| XDPT110424PDSRMM | 2             | 13,37 | -    | 4,01 | 6,94 | 2,40 | 0,06 | ı      |         | ı      | ı      | 5901355 | 1       | 5901354            | 6408096 | ı       |
| XDPT110431PDSRMM | 2             | 12,94 | _    | 4,01 | 6,94 | 3,10 | 0,06 | ı      | 5415422 | ı      |        | 5415426 | 5415425 | 5642234            | 6279204 | ı       |
| XDPT110408PDSRMH | 2             | 13,44 | 1,68 | 4,00 | 6,90 | 0,79 | 0,13 | 1      | 5415255 | ı      | 1      |         | 5415257 | 5545064            | 6408098 | 5415256 |
| XDPT110412PDSRMH | 2             | 13,44 | 1,29 | 4,00 | 6,90 | 1,20 | 0,13 | ı      | 5415360 | 1      | ı      | ı       | 5415362 | 5642235            | 6408099 | 1       |
| XDPT110416PDSRMH | 2             | 13,44 | 0,90 | 4,00 | 6,90 | 1,59 | 0,13 | ı      | 5415364 | ı      | ı      | ı       | 5415366 | 5642236            | 6408100 | 1       |

HINWEIS: XDCT11: Hochpräzise umfangseitig geschliffene Wendeschneidplatten.
XDPT11: Präzisionsgepresste und auf Maß gesinterte Wendeschneidplatten.

# ■ Auswahlhilfe für Wendeschneidplatten

| Werkstoff- | Leid<br>Bearb |        |           | meine<br>ndung |           | upp-<br>eitung |
|------------|---------------|--------|-----------|----------------|-----------|----------------|
| gruppe     | Geometrie     | Sorte  | Geometrie | Sorte          | Geometrie | Sorte          |
| P1-P2      | XDCT-ML       | WP40PM | XDPT-MM   | WP40PM         | XDPT-MH   | WP40PM         |
| P3-P4      | XDCT-ML       | WP40PM | XDPT-MM   | WP40PM         | XDPT-MH   | WP40PM         |
| P5-P6      | XDPT-MM       | WP25PM | XDPT-MM   | WP35CM         | XDPT-MH   | WP40PM         |
| M1-M2      | XDCT-ML       | WS40PM | XDPT-MM   | WS40PM         | XDPT-MH   | WS40PM         |
| M3         | XDCT-ML       | WS40PM | XDPT-MM   | WS40PM         | XDPT-MH   | WS40PM         |
| K1-K2      | XDCT-ML       | WK15CM | XDPT-MM   | WK15CM         | XDPT-MH   | WK15CM         |
| K3         | XDCT-ML       | WP35CM | XDPT-MM   | WP35CM         | XDPT-MH   | WP35CM         |
| N1-N2      | XDCT-ALP      | WN10HM | XDCT-ALP  | WN25PM         | XDCT-ALP  | WN25PM         |
| N3         | XDCW-PCD      | WDN10U | XDCW-PCD  | WDN10U         | XDCW-PCD  | WDN10U         |
| S1-S2      | XDCT-ML       | WP25PM | XDPT-MM   | WS40PM         | XDPT-MH   | WS40PM         |
| S3         | XDCT-ML       | WS40PM | XDPT-MM   | WS40PM         | XDPT-MH   | WS40PM         |
| <b>S4</b>  | XDCT-ML       | WS40PM | XDPT-MM   | WS40PM         | XDPT-MH   | WS40PM         |
| H1         | XDCT-ML       | WP25PM | XDPT-MM   | WP25PM         | _         | -              |

# Victory™ Eckfräser • VSM11™

### ■ Empfohlene Startwerte für Schnittgeschwindigkeiten und Vorschübe [m/min]\*

|     | kstoff-<br>uppe | ,    | WDN10L  |      | ,   | VK15CN  | 4   | ,   | WK15PN | л   |     | WN10HN    | 4   | ,    | WN25PN   |     | ١,  | WP25PN | <b>A</b> |
|-----|-----------------|------|---------|------|-----|---------|-----|-----|--------|-----|-----|-----------|-----|------|----------|-----|-----|--------|----------|
| git | uppe            | '    | WDIVIOC | ,    | ,   | VICIOUN | "   |     | WKIJEN | 1   |     | WIN TOTAL | /1  | ,    | VINZJEIV | 1   |     |        |          |
|     | 1               | _    | _       | _    | _   | _       | _   | _   | _      | _   | _   | _         | _   | _    | _        | _   | 330 | 285    | 270      |
|     | 2               | _    | _       | _    | _   | _       | _   | _   | _      | _   | _   | _         | _   | _    | _        | _   | 275 | 240    | 200      |
| В   | 3               | _    | _       | _    | _   | _       | _   | _   | _      | _   | _   | _         | _   | _    | _        | _   | 255 | 215    | 175      |
| Р.  | 4               | _    | _       | _    | _   | _       | _   | _   | _      | _   | _   | _         | _   | _    | _        | _   | 225 | 185    | 150      |
|     | 5               | _    | _       | _    | _   | _       | _   | _   | _      | _   | _   | _         | _   | _    | _        | _   | 185 | 170    | 150      |
|     | 6               | _    | _       | _    | _   | _       | _   | _   | _      | _   | _   | _         | _   | _    | _        | _   | 165 | 125    | 100      |
|     | 1               | _    |         | _    |     |         |     |     |        |     |     |           |     |      |          |     | 205 | 180    | 165      |
| М   | 2               |      | _       | _    |     | _       | _   |     | _      |     |     |           |     |      | _        | _   | 185 | 160    | 130      |
| IVI |                 |      |         |      |     |         |     |     |        | _   |     |           |     | _    |          |     |     |        |          |
|     | 3               |      |         |      | _   |         |     | _   |        |     |     |           |     |      |          |     | 140 | 120    | 95       |
|     | 1               | _    | -       | -    | 420 | 385     | 340 | 270 | 245    | 215 | _   | _         | _   | _    | _        | _   | 230 | 205    | 185      |
| K   | 2               | _    | _       | -    | 335 | 295     | 275 | 210 | 190    | 175 | _   | _         | _   | _    | -        | _   | 180 | 160    | 150      |
|     | 3               | _    | _       | _    | 280 | 250     | 230 | 175 | 160    | 145 | _   | _         |     | _    |          |     | 150 | 135    | 120      |
|     | 1               | 4010 | 3505    | 2990 | _   | _       | _   | _   | _      | _   | 795 | 695       | 600 | 1075 | 945      | 875 | _   | _      | _        |
| N   | 2               | 1600 | 1495    | 1400 | _   | _       | _   | _   | _      | _   | 795 | 695       | 600 | 945  | 875      | 760 | _   | _      | _        |
|     | 3               | 1600 | 1495    | 1400 | _   | _       | _   | _   | _      | _   | 560 | 485       | 420 | 945  | 875      | 760 | _   | _      | _        |
|     | 1               | _    | _       | _    | _   |         | _   | _   | _      | _   | _   | _         | _   | _    | _        | _   | 40  | 35     | 25       |
|     | 2               | _    | _       | _    | _   | _       | _   | _   | _      | _   | _   | _         | _   | _    | _        | _   | 40  | 35     | 25       |
| S   | 3               | _    | _       | _    | _   | _       | _   | _   | _      | _   | _   | _         | _   | _    | _        | _   | 50  | 40     | 25       |
|     | 4               | _    | _       | _    |     | _       | _   | _   | _      | _   | _   | _         | _   | _    | _        | _   | 70  | 50     | 35       |
| Н   | 1               | _    | _       | _    | _   | _       | _   | _   | _      | _   | _   | _         |     | _    |          |     | 120 | 90     | 70       |

|    | kstoff- |     |        |     |     |        |     |     |        |     |     |        |     |     |        |     |
|----|---------|-----|--------|-----|-----|--------|-----|-----|--------|-----|-----|--------|-----|-----|--------|-----|
| gr | uppe    |     | WP35CM |     |     | WP40PM |     |     | WS30PM |     |     | WS40PM |     |     | WU35PM |     |
|    | 1       | 455 | 395    | 370 | 295 | 260    | 245 | _   | _      | _   | _   | _      | _   | 260 | 230    | 215 |
|    | 2       | 280 | 255    | 230 | 250 | 215    | 180 | _   | _      | _   | _   | _      | _   | 220 | 190    | 160 |
| P  | 3       | 255 | 230    | 205 | 230 | 195    | 160 | _   | _      | _   | _   | _      | _   | 200 | 170    | 140 |
| P  | 4       | 190 | 175    | 160 | 205 | 170    | 135 | _   | _      | _   | _   | _      | _   | 180 | 150    | 120 |
|    | 5       | 260 | 230    | 210 | 170 | 155    | 135 | _   | -      | _   | 170 | 145    | 120 | 150 | 135    | 120 |
|    | 6       | 160 | 135    | 110 | 150 | 115    | 90  | _   | _      | _   | 150 | 110    | 80  | 130 | 100    | 80  |
|    | 1       | 205 | 185    | 155 | 195 | 170    | 155 | 225 | 200    | 185 | 210 | 170    | 140 | 170 | 150    | 135 |
| M  | 2       | 185 | 160    | 140 | 175 | 150    | 125 | 205 | 180    | 145 | 180 | 145    | 120 | 155 | 130    | 110 |
|    | 3       | 145 | 130    | 115 | 130 | 115    | 90  | 155 | 135    | 105 | 145 | 110    | 85  | 115 | 100    | 80  |
|    | 1       | 295 | 265    | 240 | _   | _      | _   | _   | _      | _   | _   | _      | _   | _   | _      | _   |
| K  | 2       | 235 | 210    | 190 | _   | _      | _   | _   | _      | _   | _   | _      | _   | _   | _      | _   |
|    | 3       | 195 | 175    | 160 | _   | _      | _   | _   | _      | _   | _   | _      | _   | _   | -      | _   |
|    | 1       | _   | _      | _   | _   | _      | _   | _   | _      | _   | _   | _      | _   | _   | _      | _   |
| N  | 2       | _   | _      | _   | _   | _      | _   | _   | _      | _   | _   | _      | _   | _   | _      | _   |
|    | 3       | _   |        |     | _   | _      | _   | _   | _      | _   | _   | _      |     | _   |        | _   |
|    | 1       | _   | _      | _   | _   | -      | _   | 45  | 40     | 30  | 40  | 35     | 25  | 35  | 30     | 25  |
| s  | 2       | _   | _      | _   | _   | -      | _   | 45  | 40     | 30  | 40  | 35     | 25  | 35  | 30     | 25  |
| -  | 3       | _   | _      | _   | _   | _      | _   | 55  | 45     | 30  | 50  | 40     | 25  | 45  | 35     | 25  |
|    | 4       | _   | _      | _   | _   | _      | _   | 70  | 60     | 40  | 60  | 50     | 30  | 60  | 45     | 30  |
| Н  | 1       | _   | _      | _   | _   | -      | _   | _   | -      | _   | _   | _      | _   | _   |        | _   |

HINWEIS: Die Startwerte für Schnittgeschwindigkeit der ERSTEN Wahl sind **fett** gedruckt. Wenn die mittlere Spandicke zunimmt, sollte die Schnittgeschwindigkeit reduziert werden.

\* Die Werkstoffgruppen P, M, K und H zeigen die empfohlenen Anfangsschnittgeschwindigkeiten zur Trockenbearbeitung. Bei der Nassbearbeitung die Schnittgeschwindigkeit um 20% reduzieren.

\* Die Werkstoffgruppen N und S zeigen die empfohlenen Anfangsschnittgeschwindigkeiten zur Nassbearbeitung. Zur Trockenbearbeitung nicht empfohlen.

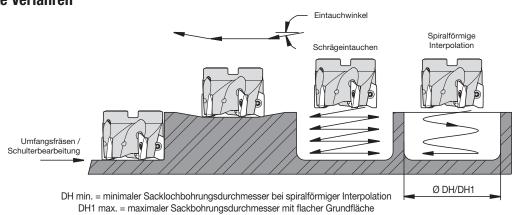
# ■ Empfohlene Startwerte für Vorschübe [mm]

| Bearbeitung | Anwendung | bearbeitung |
|-------------|-----------|-------------|
|             |           |             |
|             |           |             |

Allgemeine

Schrupp-

Leichte

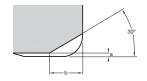

| Wendeschneid-<br>platten- | Programmierter Vorschub pro Zahn (fz) als % der radialen Schnitttiefe (ae) |      |                       |      |                                                                                                               |      |                                                                    |      |      |                       |  | Wendeschneid-<br>platten- |      |           |      |       |
|---------------------------|----------------------------------------------------------------------------|------|-----------------------|------|---------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------|------|------|-----------------------|--|---------------------------|------|-----------|------|-------|
| Geometrie                 |                                                                            | 5%   | 0 10% 20% 30% 40–100% |      |                                                                                                               |      |                                                                    |      |      |                       |  |                           |      | Geometrie |      |       |
| .FPCD                     | 0,12                                                                       | 0,18 | 0,29                  | 0,08 | 0,13   0,21   0,06   0,10   0,16   0,06   0,09   0,14   0,05   0,08                                           |      |                                                                    |      |      |                       |  |                           | 0,12 | .FPCD     |      |       |
| .FALP                     | 0,12                                                                       | 0,22 | 0,31                  | 0,08 | 0,16                                                                                                          | 0,23 | 0,06                                                               | 0,12 | 0,17 | 0,06 <b>0,10</b> 0,15 |  |                           | 0,05 | 0,10      | 0,14 | .FALP |
| .EML                      | 0,17                                                                       | 0,27 | 0,36                  | 0,13 | 0,20                                                                                                          | 0,26 | 26 0,10 <b>0,15</b> 0,19 0,08 <b>0,13</b> 0,17 0,08 <b>0,12</b> 0, |      |      |                       |  |                           |      | 0,16      | .EML |       |
| .SMM                      | 0,23                                                                       | 0,32 | 0,47                  | 0,17 | 0,23                                                                                                          |      |                                                                    |      |      |                       |  |                           |      | .SMM      |      |       |
| .SMH                      | 0,23                                                                       | 0,37 | 0,56                  | 0,17 | 0,17   <b>0,27</b>   0,40   0,13   <b>0,20</b>   0,30   0,11   <b>0,17</b>   0,26   0,10   <b>0,16</b>   0,24 |      |                                                                    |      |      |                       |  |                           | .SMH |           |      |       |

HINWEIS: Verwenden Sie die Werte für "Leichte Bearbeitung" als Start-Vorschub.

# VSM11™

# Victory™ Eckfräser • VSM11

# Bewährte Verfahren

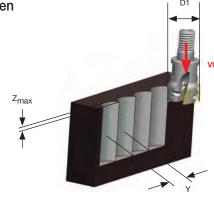


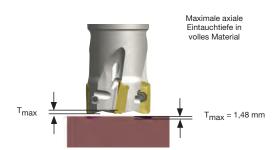

| Werkzeug-<br>durchmesser<br>(D1) | max<br>RPM | max.<br>Eintauchwinkel<br>bis Stahl-<br>Körper-Kontakt | Sackloch-<br>bohrungs-<br>durchmesser<br>mit Flachboden<br>(DH1 max) | min.<br>Sackloch-<br>bohrungs-<br>durchmesser<br>(DH min) |
|----------------------------------|------------|--------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------|
| 16                               | 41400      | 10,00°                                                 | 32,00                                                                | 19,00                                                     |
| 20                               | 35100      | 7,80°                                                  | 40,00                                                                | 27,00                                                     |
| 25                               | 30200      | 5,30°                                                  | 50,00                                                                | 37,00                                                     |
| 32                               | 25800      | 3,60°                                                  | 64,00                                                                | 51,00                                                     |
| 40                               | 22600      | 2,60°                                                  | 80,00                                                                | 67,00                                                     |
| 50                               | 19900      | 2,00°                                                  | 100,00                                                               | 87,00                                                     |
| 63                               | 17500      | 2,00°                                                  | 126,00                                                               | 113,00                                                    |
| 80                               | 15300      | 1,00°                                                  | 160,00                                                               | 147,00                                                    |
| 100                              | 13600      | 0,90°                                                  | 200,00                                                               | 187,00                                                    |
| 125                              | 12100      | 0,70°                                                  | 250,00                                                               | 237,00                                                    |

HINWEIS: Ziehen Sie den Eckenradius der Wendeschneidplatte vom max. Bohrungsdurchmesser ab, um DH1 max zu erhalten.

# Modifizierungshinweise für den Einsatz von Wendeschneidplatten mit größeren Radien

(Eckfräser und Walzenstirnfräser)





|                                       | Aufi   | maß    |
|---------------------------------------|--------|--------|
| Eckenradius der<br>Wendeschneidplatte | а      | b      |
| 2.0-3.2 mm                            | 0.2 mm | 1.8 mm |

HINWEIS: Standardfräser eignen sich für Wendeschneidplatten-Eckradien von max. 1,6 mm, ohne modifiziert werden zu müssen.

### ■ VSM11 Z-Achsen Tauchfräsen

| Werkzeug-<br>durchmesser<br>(D1) | Z max | Y     |
|----------------------------------|-------|-------|
| 16                               | 6,4   | 15,68 |
| 18                               | 6,4   | 17,23 |
| 20                               | 6,4   | 18,66 |
| 22                               | 6,4   | 19,98 |
| 25                               | 6,4   | 21,82 |
| 32                               | 6,4   | 25,60 |
| 40                               | 6,4   | 29,33 |
| 50                               | 6,4   | 33,41 |
| 63                               | 6,4   | 38,07 |
| 80                               | 6,4   | 43,41 |
| 100                              | 6,4   | 48,95 |
| 125                              | 6,4   | 55,10 |
| 160                              | 6,4   | 62,71 |





# WIDIA™ Victory™



# WS40PM

Ein Durchbruch in der neuesten Substrat- und Beschichtungstechnologie zur Steigerung der Produktivität bei der Bearbeitung von rostfreien Stählen und hochwarmfesten Legierungen



Fortschrittliche Schneidstoffsorte zur Bearbeitung von Titan

# PVD-AITIN-TiN-Mehrfachbeschichtung

- Verbesserte chemische und abrasive Verschleißfestigkeit.
- Konstante Standzeit.
- Primär für Nassbearbeitung. Auch gute Ergebnisse bei Trockenbearbeitung.

# Neues Substrat mit einer mittleren Körnung

- Geringeres Risiko von Kammrissen.
- Hervorragende Kammrissbeständigkeit und Schneidkantenstabilität.
- Hoher Kobaltgehalt für eine höhere Zähigkeit.

**WIDIA** 

# VSM17™

# 90° Victory™ Eckfräser (VSM) mit 2-schneidigen Wendeschneidplatten

- Eckfräserprogramm für die Bearbeitung von korrekten 90° Schultern; bis zu Ap1 max = 16 mm.
- Großer Eintauchwinkel von bis zu 8,8° mit Schaftfräsern mit einem Durchmesser von 25 mm.
- Optimierter Spanraum für verbesserte Fräserstabilität und Spanabfuhr.
- Gut geschützte innere Kühlmittelzuführung zur Schneidkante.
- Die hervorragende Frässorte WS40PM steigert die Produktivität bei der Bearbeitung von rostfreien Stählen und hochwarmfesten Legierungen.

Integrierte Planfase für eine hohe Oberflächengüte.



Zusätzliche Führungsfase auf der Freifläche zur Stabilisierung der Schneidkante.

Extrem positiver Spanwinkel für weiche Schnitte und eine geringe Leistungsaufnahme.

Verschiedene Schneideckenausführungen erhältlich (R0,4 bis R6,0); auch für die Luft- und Raumfahrtindustrie geeignet.

### Geometrien zum Eckfräsen in fast allen Werkstoffgruppen.



Schruppen und Schlichten von Aluminiumlegierungen. Hochpräzise. Umfang geschliffen.



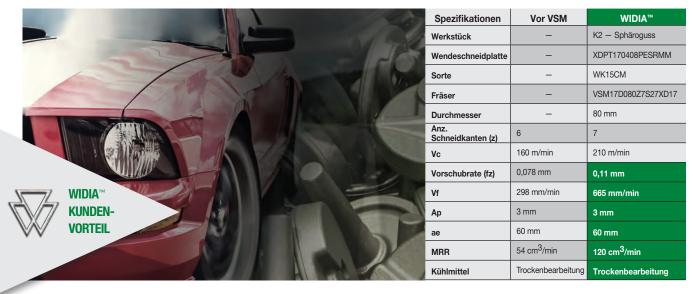
Leichte Bearbeitung und Schlichten. Erste Wahl zur Bearbeitung von rostfreien Stählen und Titan. Umfang geschliffen.

P M S

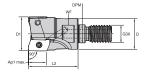


Mittlere Bearbeitung. Erste Wahl für universelle Bearbeitungen. Auf Maß präzisionsgepresst.



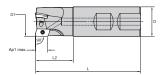

P M K S

Erste Wahl für die Schwerzerspanung. Stahl- und Gusseisenwerkstoffe. Auf Maß präzisionsgepresst.


Schlichtfähigkeit/Geringere Schnittkräfte

Geometrie-Stabilität

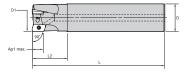
# Verdoppelung der Zeitspanungsvolumen!




# Victory™ Eckfräser • VSM17™



### Aufschraubbare Schaftfräser


| Bestellnr. | Katalognummer       | D1 | D  | DPM  | G3X | L2 | WF | Ap1 max | z | Max.<br>Tauchwinkel | max.<br>Drehzahl | Innere<br>Kühlmittel-<br>zuführung | kg   |
|------------|---------------------|----|----|------|-----|----|----|---------|---|---------------------|------------------|------------------------------------|------|
| 5988091    | VSM17D025Z02M12XD17 | 25 | 21 | 12,5 | M12 | 35 | 17 | 16,4    | 2 | 8.8°                | 41800            | Yes                                | 0,08 |
| 5988092    | VSM17D032Z03M16XD17 | 32 | 29 | 17,0 | M16 | 40 | 24 | 16,3    | 3 | 5.7°                | 34700            | Yes                                | 0,17 |
| 5988131    | VSM17D40Z03M016XD17 | 40 | 29 | 17,0 | M16 | 40 | 24 | 16,2    | 3 | 4.0°                | 29800            | Yes                                | 0,20 |
| 5988093    | VSM17D040Z04M16XD17 | 40 | 29 | 17,0 | M16 | 40 | 24 | 16,2    | 4 | 4.0°                | 29800            | Yes                                | 0,20 |

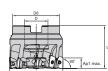


### ■ Schaftfräser mit Weldon® Schaft

| Bestellnr. | Katalognummer       | D1 | D  | L   | L2 | Ap1 max | z | Max.<br>Tauchwinkel | max.<br>Drehzahl | Innere<br>Kühlmittel-<br>zuführung | kg   |
|------------|---------------------|----|----|-----|----|---------|---|---------------------|------------------|------------------------------------|------|
| 5988102    | VSM17D025Z02B25XD17 | 25 | 25 | 90  | 33 | 16,4    | 2 | 8.8°                | 41800            | Yes                                | 0,26 |
| 5988103    | VSM17D032Z03B32XD17 | 32 | 32 | 100 | 39 | 16,3    | 3 | 5.7°                | 34700            | Yes                                | 0,48 |
| 5988104    | VSM17D040Z04B40XD17 | 40 | 40 | 110 | 39 | 16,2    | 4 | 4.0°                | 29800            | Yes                                | 0,87 |

HINWEIS: Ausführung mit Weldon Schaft nicht für Schlichtbearbeitungen empfohlen.




### ■ Schaftfräser mit Zylinderschaft (normale und lange Ausführung)

| Bestellnr. | Katalognummer           | D1 | D  | L   | L2 | Ap1 max | z | Max.<br>Tauchwinkel | max.<br>Drehzahl | Innere<br>Kühlmittel-<br>zuführung | kg   |
|------------|-------------------------|----|----|-----|----|---------|---|---------------------|------------------|------------------------------------|------|
| 5988055    | VSM17D025Z02A25XD17L110 | 25 | 25 | 110 | 44 | 16,4    | 2 | 8.8°                | 41800            | Yes                                | 0,32 |
| 5988056    | VSM17D025Z02A25XD17L170 | 25 | 25 | 170 | 44 | 16,4    | 2 | 8.8°                | 41800            | Yes                                | 0,54 |
| 5988107    | VSM17D032Z02A32XD17L120 | 32 | 32 | 120 | 50 | 16,3    | 2 | 5.7°                | 34700            | Yes                                | 0,60 |
| 5988108    | VSM17D032Z02A32XD17L210 | 32 | 32 | 210 | 50 | 16,3    | 2 | 5.7°                | 34700            | Yes                                | 1,14 |
| 5988057    | VSM17D032Z03A32XD17L120 | 32 | 32 | 120 | 50 | 16,3    | 3 | 5.7°                | 34700            | Yes                                | 0,60 |
| 5988058    | VSM17D032Z03A32XD17L210 | 32 | 32 | 210 | 50 | 16,3    | 3 | 5.7°                | 34700            | Yes                                | 1,13 |
| 5988109    | VSM17D040Z03A32XD17L130 | 40 | 32 | 130 | 50 | 16,2    | 3 | 4.0°                | 29800            | Yes                                | 0,77 |
| 5988110    | VSM17D040Z03A32XD17L250 | 40 | 32 | 250 | 50 | 16,2    | 3 | 4.0°                | 29800            | Yes                                | 1,49 |
| 5988059    | VSM17D040Z04A32XD17L130 | 40 | 32 | 130 | 50 | 16,2    | 4 | 4.0°                | 29800            | Yes                                | 0,77 |
| 5988060    | VSM17D040Z04A32XD17L250 | 40 | 32 | 250 | 50 | 16,2    | 4 | 4.0°                | 29800            | Yes                                | 1,49 |

HINWEIS: Standardfräser eignen sich für Wendeschneidplatten-Eckradien von max. 2,0 mm, ohne modifiziert werden zu müssen. Für Anweisungen zur Modifikation des Grundkörpers siehe Seite 34.

# VSM17<sup>™</sup>

Victory™ Eckfräser • VSM17

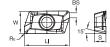


### Aufsteckfräser

| Bestellnr. | Katalognummer       | D1  | D  | D6  | L  | Ap1 max | z  | Max.<br>Tauchwinkel | max.<br>Drehzahl | Innere<br>Kühlmittel-<br>zuführung | kg   |
|------------|---------------------|-----|----|-----|----|---------|----|---------------------|------------------|------------------------------------|------|
| 5988094    | VSM17D040Z04S16XD17 | 40  | 16 | 37  | 40 | 16,2    | 4  | 4.0°                | 29800            | Yes                                | 0,19 |
| 5988095    | VSM17D050Z04S22XD17 | 50  | 22 | 45  | 40 | 16,1    | 4  | 3.0°                | 25800            | Yes                                | 0,28 |
| 5988096    | VSM17D050Z05S22XD17 | 50  | 22 | 45  | 40 | 16,1    | 5  | 3.0°                | 25800            | Yes                                | 0,29 |
| 5988134    | VSM17D050Z06S22XD17 | 50  | 22 | 45  | 40 | 16,1    | 6  | 3.0°                | 25800            | Yes                                | 0,28 |
| 5988097    | VSM17D063Z05S22XD17 | 63  | 22 | 50  | 40 | 16,0    | 5  | 2.1°                | 22400            | Yes                                | 0,45 |
| 5988135    | VSM17D063Z06S22XD17 | 63  | 22 | 50  | 40 | 16,0    | 6  | 2.1°                | 22400            | Yes                                | 0,45 |
| 5988098    | VSM17D080Z06S27XD17 | 80  | 27 | 60  | 50 | 15,9    | 6  | 1.6°                | 19500            | Yes                                | 0,98 |
| 5988133    | VSM17D080Z07S27XD17 | 80  | 27 | 60  | 50 | 15,9    | 7  | 1.6°                | 19500            | Yes                                | 0,96 |
| 5988099    | VSM17D100Z08S32XD17 | 100 | 32 | 80  | 50 | 15,8    | 8  | 1.2°                | 17200            | Yes                                | 1,63 |
| 5988100    | VSM17D125Z09S40XD17 | 125 | 40 | 90  | 63 | 15,7    | 9  | .9°                 | 15200            | Yes                                | 2,94 |
| 5988101    | VSM17D160Z12S40XD17 | 160 | 40 | 100 | 63 | 15,8    | 12 | .7°                 | 13300            | Yes                                | 3,66 |

HINWEIS: Standardfräser eignen sich für Wendeschneidplatten-Eckradien von max. 2,0 mm, ohne modifiziert werden zu müssen. Für Anweisungen zur Modifikation des Grundkörpers siehe Seite 34.

### **■** Ersatzteile


|          | Wendeschneidplatten- | Empfohlenes maximales Anzugsmoment (Nm) | Spann-    |
|----------|----------------------|-----------------------------------------|-----------|
| D1       | Spannschraube        | für Spannschraube                       | schlüssel |
| 25 - 160 | 191,725              | 3,5                                     | 170,025   |

# Für das M4000 Kassetten-Frässystem siehe Seite 35.



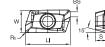
# Victory™ Eckfräser • VSM17™





Erste WahlAlternative

|   | ■ Wendeschneidplatte | en für VSM1   | <sup>Rε</sup> -∕ | - Ц  | ( <u>  s  </u> |      |      | S    |        |               |         | •                |         | 0         | •                | •        |
|---|----------------------|---------------|------------------|------|----------------|------|------|------|--------|---------------|---------|------------------|---------|-----------|------------------|----------|
|   |                      |               |                  |      |                |      | _    |      | WK15CM | WK15PM        | WN10HM  | WN25PM<br>WD25DM | WP35CM  | WP40PM    | WS40PM<br>WI35DM | MUSSON V |
| ı | Katalognummer        | Schneidkanten | LI               | BS   | S              | W    | Rε   | hm   | >      | $\rightarrow$ | _       | _                | >       | >         | 2                | >        |
|   | XDCT170404PEFRALP    | 2             | 19,15            | 2,62 | 4,90           | 9,60 | 0,40 | 0,02 | 1      | 1             |         | 6007220          | 1       | 1         |                  | ı        |
|   | XDCT170408PEFRALP    | 2             | 19,15            | 2,22 | 4,90           | 9,60 | 0,80 | 0,02 | ı      | ı             | 6007345 | 6007344          | ı       | 1         | 1                |          |
|   | XDCT170412PEFRALP    | 2             | 19,16            | 1,82 | 4,90           | 9,60 | 1,20 | 0,02 | ı      | ı             | 6007342 | 6001537          | ı       | ı         |                  | ı        |
|   | XDCT170416PEFRALP    | 2             | 19,17            | 1,42 | 4,90           | 9,60 | 1,60 | 0,02 | ı      | ı             | 1 20    | 6001256          | ı       | 1         | 1                | ı        |
|   | XDCT170420PEFRALP    | 2             | 19,17            | 1,01 | 4,90           | 9,60 | 2,00 | 0,02 | 1      | 1             | 1       | 6001254          | 1       | 1         |                  |          |
|   | XDCT170424PEFRALP    | 2             | 19,17            | 0,63 | 4,90           | 9,60 | 2,40 | 0,02 | ı      | ı             | 1 000   | 6001252          | ı       | ı         |                  | ı        |
|   | XDCT170432PEFRALP    | 2             | 18,85            | -    | 4,88           | 9,59 | 3,20 | 0,02 | ı      | ı             | 1       | 6001240          | ı       | ı         |                  | ı        |
|   | XDCT170440PEFRALP    | 2             | 18,33            | -    | 4,87           | 9,59 | 4,00 | 0,02 | ı      | ı             | 1 200   | 6001238          |         | ı         |                  | ı        |
|   | XDCT170460PEFRALP    | 2             | 17,02            | -    | 4,80           | 9,56 | 6,00 | 0,02 | ı      | 1             | 1 00770 | 6118070          | 1       | ı         |                  |          |
|   | XDCT170404PEERML     | 2             | 19,15            | 2,62 | 4,90           | 9,60 | 0,40 | 0,04 | ı      | ı             |         | 5080010          | ı       | ı         |                  | ı        |
|   | XDCT170408PEERML     | 2             | 19,15            | 2,22 | 4,90           | 9,60 | 0,80 | 0,04 | ı      | ı             |         | - 2088083        |         | 5988981   |                  | ı        |
|   | XDCT170412PEERML     | 2             | 19,16            | 1,82 | 4,90           | 9,60 | 1,20 | 0,04 | ı      | ı             |         | 1088088          | 5988987 | 5988986   | 1120210          |          |
|   | XDCT170416PEERML     | 2             | 19,17            | 1,42 | 4,90           | 9,60 | 1,60 | 0,04 | 1      | 1             |         | 6001957          | 1       |           | P425261          |          |
|   | XDCT170420PEERML     | 2             | 19,17            | 1,01 | 4,90           | 9,60 | 2,00 | 0,04 | 1      | 1             | 1       | -<br>6001955     | 1       | - 6405069 | 6425263          | ı        |
|   | XDCT170424PEERML     | 2             | 19,17            | 0,63 | 4,90           | 9,60 | 2,40 | 0,04 | ı      | ı             |         | 6001253          | 1       |           | 6425264          | ı        |
|   | XDCT170432PEERML     | 2             | 18,85            | -    | 4,89           | 9,59 | 3,20 | 0,04 | ı      | ı             |         | 6001951          | 1       | 1 0405055 | 0425265          |          |


(Fortsetzung)

# VSM17™

# Victory™ Eckfräser • VSM17

(Wendeschneidplatten für VSM17 - Fortsetzung)





| <b>VICTORY</b>       |                |       |         | 15° S | <ul> <li>Alterna</li> </ul> | tive | N    |         |         | •      | •      |         |                    |                    |   |
|----------------------|----------------|-------|---------|-------|-----------------------------|------|------|---------|---------|--------|--------|---------|--------------------|--------------------|---|
|                      | för \/CN41     | 7     | Re-Z LI | 1     |                             |      | S    |         |         |        | •      | •       | 0                  | • •                |   |
| ■ Wendeschneidplatte | en tur võivi i | 1     |         |       |                             |      | н    |         |         | 4      |        | 4       | $\perp \downarrow$ |                    | 4 |
| Katalognummer        | Schneidkanten  | Ш     | BS      | s     | w                           | Rε   | hm   | WK15CM  | WK15PM  | WN10HM | WN25PM | WP25PM  | 4                  | WS40PM<br>WU35PM   |   |
| XDCT170440PEERML     | 2              | 18,33 | -       | 4,87  | 9,59                        | 4,00 | 0,04 | 1       | ı       | 1      | 1      | 6001239 | 1 1                | 6425266            |   |
| XDCT170460PEERML     | 2              | 17,02 | _       | 4,80  | 9,56                        | 6,00 | 0,04 | 1       | ı       | ı      | 1      |         | 6118069            | 6232053            |   |
| XDPT170404PESRMM     | 2              | 19,15 | 2,52    | 4,90  | 9,60                        | 0,40 | 0,10 |         | ı       | ı      |        | .   .   | 5987689            | - 5987690          |   |
| XDPT170408PESRMM     | 2              | 19,15 | 2,15    | 4,90  | 9,60                        | 0,80 | 0,10 |         | 6242460 | ı      | 1 000  | 5987949 | 5987946            | 6180212<br>5987950 |   |
| XDPT170412PESRMM     | 2              | 19,16 | 1,77    | 4,90  | 9,60                        | 1,20 | 0,10 | 5988138 | ı       | 1      | 1 000  | 5988151 |                    | 6180213<br>5988152 |   |
| XDPT170416PESRMM     | 2              | 19,17 | 1,38    | 4,90  | 9,60                        | 1,60 | 0,10 | 5988153 | ı       | 1      | 1 000  | 5988155 | 5988154            | 6180214            |   |
| XDPT170420PESRMM     | 2              | 19,17 | 0,99    | 4,90  | 9,60                        | 2,00 | 0,10 | ı       | ı       | ı      | 1 000  | 5988158 | 5988159            | 6425145            |   |
| XDPT170424PESRMM     | 2              | 19,17 | 0,62    | 4,90  | 9,60                        | 2,40 | 0,10 | 1       | ı       | 1      | 1      | 2988203 | 5988202            | 6425146            |   |
| XDPT170432PESRMM     | 2              | 18,85 | -       | 4,89  | 9,59                        | 3,20 | 0,10 | 1       | ı       | 1      | 1      | 5988200 | 5988205            | 6277261            |   |
| XDPT170440PESRMM     | 2              | 18,33 | -       | 4,87  | 9,59                        | 4,00 | 0,10 | 1       | 1       | 1      | 1      | 0/68860 | 5988969            | 6425147            |   |
| XDPT170408PESRMH     | 2              | 19,15 | 2,10    | 4,91  | 9,60                        | 0,80 | 0,13 | 5989053 | 1       |        |        | 5080054 | 5989052            | 6425148            |   |
| XDPT170412PESRMH     | 2              | 19,16 | 1,73    | 4,91  | 9,60                        | 1,20 | 0,13 | 5991817 | 1       | 1      | ı      | 5001816 | 5991815            | 6425149            |   |

HINWEIS: XDCT17: Hochpräzise umfangseitig geschliffene Wendeschneidplatten. XDPT17: Präzisionsgepresste und auf Maß gesinterte Wendeschneidplatten.

# Victory™ Eckfräser • VSM17™

### ■ Auswahlhilfe für Wendeschneidplatten

| Werkstoff- | Leid<br>Bearb | chte<br>eitung | Allger<br>Anwei |        | Schrupp-<br>bearbeitung |        |  |  |  |
|------------|---------------|----------------|-----------------|--------|-------------------------|--------|--|--|--|
| gruppe     | Geometrie     | Sorte          | Geometrie       | Sorte  | Geometrie               | Sorte  |  |  |  |
| P1-P2      | XDCT-ML       | WP40PM         | XDPT-MM         | WP40PM | XDPT-MH                 | WP40PM |  |  |  |
| P3-P4      | XDCT-ML       | WP40PM         | XDPT-MM         | WP40PM | XDPT-MH                 | WP40PM |  |  |  |
| P5-P6      | XDPT-MM       | WP25PM         | XDPT-MM         | WP35CM | XDPT-MH                 | WP40PM |  |  |  |
| M1-M2      | XDCT-ML       | WS40PM         | XDPT-MM         | WS40PM | XDPT-MM                 | WS40PM |  |  |  |
| M3         | XDCT-ML       | WS40PM         | XDPT-MM         | WS40PM | XDPT-MH                 | WS40PM |  |  |  |
| K1-K2      | XDPT-MM       | WK15CM         | XDPT-MM         | WK15CM | XDPT-MH                 | WK15CM |  |  |  |
| K3         | XDPT-MM       | WP35CM         | XDPT-MM         | WP35CM | XDPT-MH                 | WP35CM |  |  |  |
| N1-N2      | XDCT-ALP      | WN10HM         | XDCT-ALP        | WN25PM | XDCT-ALP                | WN25PM |  |  |  |
| N3         | XDCT-ALP      | WN10HM         | XDCT-ALP        | WN25PM | XDCT-ALP                | WN25PM |  |  |  |
| S1-S2      | XDCT-ML       | WP25PM         | XDPT-MM         | WS40PM | XDPT-MM                 | WS40PM |  |  |  |
| <b>S</b> 3 | XDCT-ML       | WS40PM         | XDPT-MM         | WS40PM | XDPT-MM                 | WS40PM |  |  |  |
| S4         | XDCT-ML       | WS40PM         | XDPT-MM         | WS40PM | XDPT-MM                 | WS40PM |  |  |  |
| H1         | _             | _              | -               | -      | -                       | -      |  |  |  |

## ■ Empfohlene Startwerte für Schnittgeschwindigkeiten und Vorschübe [m/min]\*

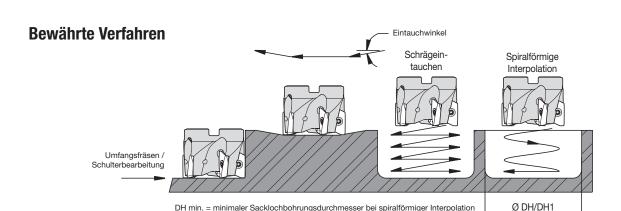
|     | kstoff-<br>uppe | w   | K150 | M   | W   | K15P | М   | W   | N10H | IM  | W    | N25F | PM  | w   | P25P | M   | w   | P35C | M   | w   | 'P40P | M   | W   | S40P | M   | W   | U35P | M   |
|-----|-----------------|-----|------|-----|-----|------|-----|-----|------|-----|------|------|-----|-----|------|-----|-----|------|-----|-----|-------|-----|-----|------|-----|-----|------|-----|
|     | 1               | _   | _    | _   | _   | _    | _   | _   | _    | _   | _    | _    | _   | 330 | 285  | 270 | 455 | 395  | 370 | 295 | 260   | 245 | _   | _    | _   | 260 | 230  | 215 |
|     | 2               | —   | _    | _   | _   | _    | _   | _   | _    | _   | _    | _    | _   | 275 | 240  | 200 | 280 | 255  | 230 | 250 | 215   | 180 | _   | _    | _   | 220 | 190  | 160 |
| P   | 3               | _   | _    | _   | _   | _    | _   | _   | _    | _   | _    | _    | _   | 255 | 215  | 175 | 255 | 230  | 205 | 230 | 195   | 160 | _   | _    | _   | 200 | 170  | 140 |
| - F | 4               | _   | _    | _   | _   | _    | _   | _   | _    | _   | _    | _    | _   | 225 | 185  | 150 | 190 | 175  | 160 | 205 | 170   | 135 | _   | _    | _   | 180 | 150  | 120 |
|     | 5               | _   | _    | _   | _   | _    | _   | _   | _    | _   | _    | _    | _   | 185 | 170  | 150 | 260 | 230  | 210 | 170 | 155   | 135 | 170 | 145  | 120 | 150 | 135  | 120 |
|     | 6               |     | _    |     |     | _    |     | _   | _    |     |      |      |     | 165 | 125  | 100 | 160 | 135  | 110 | 150 | 115   | 90  | 150 | 110  | 80  | 130 | 100  | 80  |
|     | 1               | _   | _    | _   | _   | _    | _   | _   | _    | _   | _    | _    | _   | 205 | 180  | 165 | 205 | 185  | 155 | 195 |       | 155 |     | 170  | 140 | 170 | 150  | 135 |
| M   | 2               | _   | _    | _   | _   | _    | _   | _   | _    | _   | _    | _    | _   | 185 | 160  | 130 | 185 | 160  |     | 175 | 150   | 125 | 180 | 145  | 120 | 155 | 130  | 110 |
|     | 3               |     | _    |     |     | _    |     | _   | _    |     |      | _    |     | 140 | 120  | 95  | 145 | 130  | 115 | 130 | 115   | 90  | 145 | 110  | 85  | 115 | 100  | 80  |
|     | 1               | 420 | 385  | 340 | 270 | 245  | 215 | _   | _    | _   | _    | _    | _   | 230 | 205  | 185 | 295 | 265  | 240 | _   | _     | _   | _   | _    | _   | _   | _    | _   |
| K   | 2               | 335 | 295  | 275 | 210 | 190  | 175 | _   | _    | _   | _    | -    | -   | 180 | 160  |     |     |      | 190 | _   | -     | _   | _   | -    | _   | _   | -    | _   |
|     | 3               | 280 | 250  | 230 | 175 | 160  | 145 | _   | _    | _   | _    | _    | _   | 150 | 135  | 120 | 195 | 175  | 160 | _   | _     | _   | _   |      |     | _   | _    | _   |
|     | 1               | _   | _    | _   | _   | -    | _   | 795 | 695  |     | 1075 |      |     | _   | -    | _   | _   | -    | _   | _   | -     | _   | _   | -    | _   | _   | _    | _   |
| N   | 2               | _   | _    | _   | _   | -    | _   | 795 | 695  |     | 945  |      | 760 | _   | -    | _   | _   | -    | _   | _   | -     | _   | _   | _    | _   | _   | _    | _   |
|     | 3               | _   | _    | _   |     | _    |     | 560 | 485  | 420 | 945  | 875  | 760 |     |      | _   | _   | _    |     | _   | _     | _   | _   |      |     | _   | _    | _   |
|     | 1               | _   | _    | _   | _   | _    | _   | _   | -    | _   | _    | _    | _   | 40  | 35   | 25  | _   | _    | _   | _   | _     | _   | 40  | 35   | 25  | 35  | 30   | 25  |
| s   | 2               | _   | _    | _   | _   | -    | _   | _   | _    | _   | _    | -    | -   | 40  | 35   | 25  | _   | -    | _   | _   | -     | _   | 40  | 35   | 25  | 35  | 30   | 25  |
|     | 3               | _   | _    | _   | _   | _    | _   | _   | -    | _   | _    | _    | _   | 50  | 40   | 25  | _   | _    | _   | _   | _     | _   | 50  | 40   | 25  | 45  | 35   | 25  |
|     | 4               |     | _    |     |     | _    |     | _   | _    |     |      | _    |     | 70  | 50   | 35  | _   |      |     |     | _     |     | 60  | 50   | 30  | 60  | 45   | 30  |
| Н   | 1               | _   | _    | _   | _   | _    | _   | _   | _    | _   | —    | _    | _   | 120 | 90   | 70  | _   | _    | _   | _   | _     | _   | _   |      | _   | _   | _    | _   |

HINWEIS: Die Startwerte für Schnittgeschwindigkeit der ERSTEN Wahl sind **fett** gedruckt. Wenn die mittlere Spandicke zunimmt, sollte die Schnittgeschwindigkeit reduziert werden.

\* Die Werkstoffgruppen P, M, K und H zeigen die empfohlenen Anfangsschnittgeschwindigkeiten zur Trockenbearbeitung. Bei der Nassbearbeitung die Schnittgeschwindigkeit um 20% reduzieren.

\* Die Werkstoffgruppen N und S zeigen die empfohlenen Anfangsschnittgeschwindigkeiten zur Nassbearbeitung. Zur Trockenbearbeitung nicht empfohlen.

### ■ Empfohlene Startwerte für Vorschübe [mm]


| Leichte     | Allgemeine | Schrupp-    |
|-------------|------------|-------------|
| Bearbeitung | Anwendung  | bearbeitung |

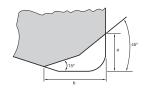
| Wendeschneid-<br>platten-<br>Geometrie |      | 5%   |      |      | Programmierter Vorschub pro Zahn (fz) als % der radialen Schnitttiefe (ae)  10% 20% 30% 40–100% |      |      |      |      |      |      |      |      | Wendeschneid-<br>platten-<br>Geometrie |      |       |
|----------------------------------------|------|------|------|------|-------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|------|----------------------------------------|------|-------|
| .FALP                                  | 0,12 | 0,23 | 0,40 | 0,08 | 0,17                                                                                            | 0,29 | 0,06 | 0,13 | 0,22 | 0,06 | 0,11 | 0,19 | 0,05 | 0,10                                   | 0,18 | .FALP |
| .EML                                   | 0,16 | 0,35 | 0,46 | 0,12 | 0,25                                                                                            | 0,33 | 0,09 | 0,19 | 0,25 | 0,08 | 0,16 | 0,22 | 0,07 | 0,15                                   | 0,20 | .EML  |
| .SMM                                   | 0,16 | 0,40 | 0,64 | 0,12 | 0,29                                                                                            | 0,46 | 0,09 | 0,22 | 0,34 | 0,08 | 0,19 | 0,30 | 0,07 | 0,18                                   | 0,28 | .SMM  |
| .SMH                                   | 0.23 | 0.46 | 0.74 | 0.17 | 0.33                                                                                            | 0.54 | 0.13 | 0.25 | 0.40 | 0.11 | 0.22 | 0.35 | 0.10 | 0.20                                   | 0.32 | .SMH  |

HINWEIS: Verwenden Sie die Werte für "Leichte Bearbeitung" als Start-Vorschub.

# VSM17™

# Victory™ Eckfräser • VSM17



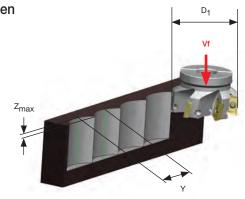

DH1 max. = maximaler Sackbohrungsdurchmesser mit flacher Grundfläche

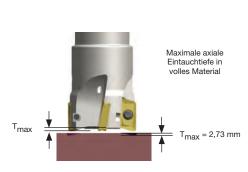
| Werkzeug-<br>durchmesser<br>(D1) | max<br>RPM | max.<br>Eintauchwinkel<br>bis Stahl-<br>Körper-Kontakt | max. Sackloch- bohrungs- durchmesser mit Flachboden (DH1 max) | min.<br>Sackloch-<br>bohrungs-<br>durchmesser<br>(DH min) |
|----------------------------------|------------|--------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------|
| 25                               | 41800      | 8,8°                                                   | 50                                                            | 32                                                        |
| 32                               | 34700      | 5,7°                                                   | 64                                                            | 46                                                        |
| 40                               | 29800      | 4,0°                                                   | 80                                                            | 62                                                        |
| 50                               | 25800      | 3,0°                                                   | 100                                                           | 82                                                        |
| 63                               | 22400      | 2,1°                                                   | 126                                                           | 108                                                       |
| 80                               | 19500      | 1,6°                                                   | 160                                                           | 142                                                       |
| 100                              | 17200      | 1,2°                                                   | 200                                                           | 182                                                       |
| 125                              | 15200      | 0,9°                                                   | 150                                                           | 132                                                       |
| 160                              | 13300      | 0,7°                                                   | 320                                                           | 302                                                       |

HINWEIS: Ziehen Sie den Eckenradius der Wendeschneidplatte vom max. Bohrungsdurchmesser ab, um DH1 max zu erhalten.

# Modifizierungshinweise für den Einsatz von Wendeschneidplatten mit größeren Radien

(Eckfräser und Walzenstirnfräser)





| Eckenradius der    | Auf | тав |
|--------------------|-----|-----|
| Wendeschneidplatte | а   | b   |
| 2,4-4,0 mm         | 2   | 3   |
| 4,0-6,0 mm         | 4   | 5   |

HINWEIS: Standardfräser eignen sich für Wendeschneidplatten-Eckradien von max. 2,0 mm, ohne modifiziert werden zu müssen.

### ■ VSM17 Z-Achsen Tauchfräsen

| Werkzeug-<br>durchmesser<br>(D1) | Z max | Y     |
|----------------------------------|-------|-------|
| 25                               | 9     | 24,00 |
| 32                               | 9     | 28,77 |
| 40                               | 9     | 33,41 |
| 50                               | 9     | 38,42 |
| 63                               | 9     | 44,09 |
| 80                               | 9     | 50,56 |
| 100                              | 9     | 57,24 |
| 125                              | 9     | 64,62 |
| 160                              | 9     | 73,73 |





#### M4000 Kassetten-Frässystem

Unterstützt die neueste WIDIA $^{\text{\tiny TM}}$  Technologie für das 90° Eckfräsen mit bis zu D1 = 315 mm.

- Schruppen und Schlichten mit nur einem Werkzeugkörper.
- Anschlagstopp für schnellen Kassetten-Wechsel.
- Einfaches Einstellen des Planlaufs.
- Einfacher Austausch der Kassetten mit unterschiedlichen Wendeschneidplatten und Einstellwinkeln.



VSM11™

M4000CA-XDPT11 (MM6152926)

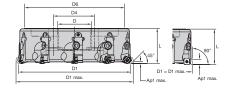


VSM17™

M4000CA-XDPT17 (MM6152927)



VSM490™-10


M4000CA-XN10 (MM6433216)



VSM490™-15

M4000CA-XN15 (MM6357989)





#### ■ Kassetten-Frässystem

| Bestellnr. | Katalognummer   | D1  | D  | D4    | D6  | L    | Anzahl<br>Kassetten | max.<br>Drehzahl | Innere<br>Kühlmittel-<br>zuführung | kg    |
|------------|-----------------|-----|----|-------|-----|------|---------------------|------------------|------------------------------------|-------|
| 4136343    | M4000D125Z06ADJ | 125 | 40 | _     | 108 | 68,0 | 6                   | 2000             | No                                 | 3,34  |
| 4136344    | M4000D125Z08ADJ | 125 | 40 | _     | 108 | 68,0 | 8                   | 2000             | No                                 | 3,51  |
| 4136345    | M4000D160Z08ADJ | 160 | 40 | 66,7  | 137 | 63,0 | 8                   | 1800             | No                                 | 5,19  |
| 4136346    | M4000D160Z12ADJ | 160 | 40 | 66,7  | 137 | 63,0 | 12                  | 1800             | No                                 | 5,20  |
| 4136347    | M4000D200Z10ADJ | 200 | 60 | 101,6 | 178 | 63,0 | 10                  | 1500             | No                                 | 8,02  |
| 4136348    | M4000D200Z14ADJ | 200 | 60 | 101,6 | 178 | 80,0 | 14                  | 1500             | No                                 | 12,57 |
| 4136349    | M4000D250Z12ADJ | 250 | 60 | 101,6 | 228 | 63,0 | 12                  | 1200             | No                                 | 13,53 |
| 4136350    | M4000D250Z18ADJ | 250 | 60 | 101,6 | 228 | 63,0 | 18                  | 1200             | No                                 | 13,90 |
| 4136351    | M4000D315Z16ADJ | 315 | 60 | 101,6 | 293 | 80,0 | 16                  | 1000             | No                                 | 25,08 |
| 4136352    | M4000D315Z22ADJ | 315 | 60 | 101,6 | 293 | 80,0 | 22                  | 1000             | No                                 | 25,42 |

#### ■ Ersatzteile

Empfohlenes maximales Anzugsmoment (Nm) für

| D1        | Schraube für<br>Kassette | (Nm) für<br>Spannschraube | Klemmkeil   | Einstell-<br>schraube | Schlüssel<br>Spannschraube |
|-----------|--------------------------|---------------------------|-------------|-----------------------|----------------------------|
| 125 - 315 | MS1294                   | 20,0                      | 12748308500 | 12748600900           | MW3                        |

# Hochgeschwindigkeitsfräser zum Profilfräsen und Taschenfräsen in Aluminium





# **VHSC**

#### VHSC Victory™ Hochgeschwindigkeitsfräsen

- Speziell entwickelt für echtes Hochgeschwindigkeitsfräsen von Aluminiumkomponenten mit bis zu 3000 m/min.
- Die aktuelle Fräserkörpertechnologie ermöglicht hohe Vorschübe und Eintauchwinkel.
- Optimierte Spanräume und innere Kühlmittelzuführung für verbesserte Spanabfuhr.
- Erstklassige Lösung zur Bearbeitung dünnwandiger Komponenten.
- Produktivitätssteigerung mit einem Zeitspanungsvolumen von bis zu 8600 cm<sup>3</sup>/min.

#### Wendeschneidplatten zur Hochgeschwindigkeitsbearbeitung XDET-ALP

- · Erste Wahl für NE-Metalle.
- Extrem positive ALP-Geometrie mit polierter Spanfläche zur Verringerung der Aufbauschneidenbildung.
- Verschleißfeste Sorte mit einem feinkörnigen Hartmetall.
- Hochpräzise umfangsseitig geschliffen.



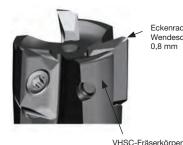
Scharfe Schneidkante "F" Ausführung für Schrupp- und Schlichtarbeiten.



Verrundete Schneidkantenausführung "E" für schwere Schruppbearbeitungen und anspruchsvolle Gusseisenbearbeitungen.

Schlichtfähigkeit/Geringere Schnittkräfte

Geometrie-Stabilität


#### Die benutzerfreundliche Werkzeugeinrichtung ist entscheidend

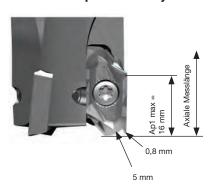
#### **Großer Eckenradius**



Eckenradius der Wendeschneidplatte 5 mm

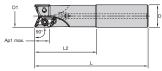
#### **Kleiner Eckenradius**




Eckenradius der Wendeschneidplatte 0.8 mm

- Kosteneinsparungen bei.Nur ein Fräserkörper zum Einse
  - Nur ein Fräserkörper zum Einsetzen von Wendeschneidplatten mit einem Eckenradius von R0,4 bis max. R6,0 notwendig.

· Die einzigartige Funktion trägt enorm zu


 Bei allen anderen Anbietern muss der Fräserkörper umgebaut und neu ausgewuchtet werden.

#### Wendeschneidplatten-Overlay



- Die axiale Messlänge am Fräserkörper wird stets identisch sein, unabhängig vom Eckenradius der Wendeschneidplatte.
- Bevorzugt bei CNC-Programmierern und -Bedienern.
- Ap1 max beträgt stets 16 mm, unabhängig vom Eckenradius der Wendeschneidplatte.

# Victory™ Eckfräser • VHSC16



#### ■ Schaftfräser mit Zylinderschaft für das Hochgeschwindigkeitsfräsen

| Bestellnr. | Katalognummer     | D1 | D  | L   | L2 | Ap1 max | z | Max.<br>Tauchwinkel | max.<br>Drehzahl | Innere<br>Kühlmittel-<br>zuführung | kg   |
|------------|-------------------|----|----|-----|----|---------|---|---------------------|------------------|------------------------------------|------|
| 6425258    | VHSC025Z02A25XD16 | 25 | 25 | 131 | 75 | 16      | 2 | 14.7°               | 50000            | Yes                                | 0,39 |
| 6425259    | VHSC032Z02A32XD16 | 32 | 32 | 135 | 75 | 16      | 2 | 11.4°               | 41500            | Yes                                | 0,65 |
| 6425260    | VHSC032Z03A32XD16 | 32 | 32 | 135 | 75 | 16      | 3 | 11.4°               | 41500            | Yes                                | 0,65 |

HINWEIS: Wuchtgüte G6,3 bei 30.000 U/min.



#### ■ Monoblock-Fräser für das Hochgeschwindigkeitsfräsen • HSK63A

| Bestellnr. | Katalognummer       | D1 | D  | L   | L1  | L2 | Ap1 max | z | Max.<br>Tauchwinkel | max.<br>Drehzahl | Innere<br>Kühlmittel-<br>zuführung | kg   |
|------------|---------------------|----|----|-----|-----|----|---------|---|---------------------|------------------|------------------------------------|------|
| 6425447    | VHSC025Z02HSK63XD16 | 25 | 63 | 133 | 101 | 75 | 16      | 2 | 14.5°               | 51000            | Yes                                | 0,81 |
| 6425449    | VHSC032Z03HSK63XD16 | 32 | 63 | 133 | 101 | 75 | 16      | 3 | 11.4°               | 41500            | Yes                                | 0,91 |
| 6425451    | VHSC040Z04HSK63XD16 | 40 | 63 | 133 | 101 | 75 | 16      | 4 | 7.8°                | 35000            | Yes                                | 1,09 |
| 6425453    | VHSC050Z04HSK63XD16 | 50 | 63 | 133 | 101 | 75 | 15      | 4 | 7.8°                | 30000            | Yes                                | 1,41 |

HINWEIS: Wuchtgüte G6,3 bei 30.000 U/min.

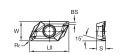


#### Aufsteckfräser für das Hochgeschwindigkeitsfräsen

| Bestellnr. | Katalognummer     | D1 | D  | D6 | L  | Ap1 max | z | Max.<br>Tauchwinkel | max.<br>Drehzahl | Innere<br>Kühlmittel-<br>zuführung | kg   |
|------------|-------------------|----|----|----|----|---------|---|---------------------|------------------|------------------------------------|------|
| 6425291    | VHSC040Z03S16XD16 | 40 | 16 | 32 | 45 | 16      | 3 | 7.6°                | 35000            | Yes                                | 0,20 |
| 6425292    | VHSC050Z04S22XD16 | 50 | 22 | 45 | 45 | 16      | 4 | 7.8°                | 30000            | Yes                                | 0,31 |
| 6425293    | VHSC063Z04S22XD16 | 63 | 22 | 50 | 45 | 16      | 4 | 5.9°                | 26000            | Yes                                | 0,55 |
| 6425294    | VHSC080Z05S27XD16 | 80 | 27 | 55 | 50 | 16      | 5 | 4.4°                | 22500            | Yes                                | 0,89 |

#### ■ Ersatzteile

| D1      | Wendeschneidplatten-<br>Spannschraube | Anzugsmoment (Nm) für Spannschraube | Torx-<br>Schraubendreher |
|---------|---------------------------------------|-------------------------------------|--------------------------|
| 25 - 80 | DP5009A                               | 6,1                                 | DT20IP                   |


HINWEIS: Für höchste Sicherheit ist es wichtig, die Schraube bei jedem Wechsel der Wendeschneidplatte ebenfalls auszutauschen. Ein Drehmomentschlüssel und der Korrekte Drehmomentwert für die Schraube der Wendeschneidplatte sind bei Anwendungen mit hohen Schnittgeschwindigkeiten von großer Bedeutung. Ein einstellbarer Drehmomentschlüssel (Bestell-Nr. 6197561) und ein Torx Plus 20er Bit (Bestell-Nr. 6205891) können separat bestellt werden.

# **VHSC**

## Victory<sup>™</sup> Eckfräser • VHSC16









Erste WahlAlternative



#### ■ Wendeschneidplatten für das Hochgeschwindigkeitsfräsen XDET-ALP

| <b></b>         |               |       |      |       |      | _    | DWD+ |      | 6425772 WN10HM |
|-----------------|---------------|-------|------|-------|------|------|------|------|----------------|
| Katalognummer   | Schneidkanten | LI    | S    | W     | BS   | Rε   | RWP* | hm   | 2              |
| XDET16M5PDFRALP | 2             | 22,92 | 5,00 | 11,25 | 1,42 | 0,30 | 0,30 | 0,02 | 642577         |
| XDET16M504FRALP | 2             | 23,02 | 5,00 | 11,25 | 1,27 | 0,40 | 0,40 | 0,02 | 6425773        |
| XDET16M508FRALP | 2             | 23,02 | 5,00 | 11,25 | 0,87 | 0,80 | 0,80 | 0,02 | 6425774        |
| XDET16M520FRALP | 2             | 23,02 | 5,00 | 11,25 | 0,58 | 2,10 | 2,00 | 0,02 | 6425775        |
| XDET16M530ERALP | 2             | 23,02 | 5,00 | 11,25 | 0,48 | 3,10 | 3,00 | 0,03 | 6425776        |
| XDET16M530FRALP | 2             | 23,02 | 5,00 | 11,25 | 0,48 | 3,10 | 3,00 | 0,02 | 6425777        |
| XDET16M540ERALP | 2             | 23,02 | 5,00 | 11,25 | 0,60 | 4,10 | 4,00 | 0,03 | 6425778        |
| XDET16M540FRALP | 2             | 23,02 | 5,00 | 11,25 | 0,60 | 4,10 | 4,00 | 0,02 | 6425779        |
| XDET16M550FRALP | 2             | 23,02 | 5,00 | 11,25 | 0,24 | 5,20 | 5,00 | 0,02 | 6425780        |

HINWEIS: RWP\* = Radius des resultierenden Werkstücks.

#### ■ Auswahlhilfe für Wendeschneidplatten

| Werkstoff- |           | chte<br>eitung |           | neine<br>ndung | Schrupp-<br>bearbeitung |        |  |
|------------|-----------|----------------|-----------|----------------|-------------------------|--------|--|
| gruppe     | Geometrie | Sorte          | Geometrie | Sorte          | Geometrie               | Sorte  |  |
| N1-N2      | .FALP     | WN10HM         | .FALP     | WN10HM         | .EALP                   | WN10HM |  |
| N3         | .FALP     | WN10HM         | .FALP     | WN10HM         | .EALP                   | WN10HM |  |

#### ■ Empfohlene Startwerte für Schnittgeschwindigkeiten für die Nassbearbeitung [m/min]

| 1  | rkstoff- |      |        |     |
|----|----------|------|--------|-----|
| gr | ruppe    |      | WN10HM |     |
|    | 1        | 2950 | 1800   | 875 |
| N  | 2        | 2950 | 1800   | 875 |
|    | 3        | 1600 | 850    | 480 |

HINWEIS: Start-Schnittgeschwindigkeiten der ERSTEN Wahl sind fett gedruckt. Bei zunehmender Mittenspanstärke sollte die Schnittgeschwindigkeit reduziert werden.

#### Victory™ Eckfräser • VHSC16

#### ■ Empfohlene Startwerte für Vorschübe [mm]

| Leichte     | Allgemeine | Schrupp-    |
|-------------|------------|-------------|
| Bearbeitung | Anwendung  | bearbeitung |

| Wendeschneid-<br>platten- |      | Programmierter Vorschub pro Zahn (fz) als % der radialen Schnitttiefe (ae) |      |      |      |      |      |      |      |      |      | Wendeschneid-<br>platten- |      |         |      |           |
|---------------------------|------|----------------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|---------------------------|------|---------|------|-----------|
| Geometrie                 |      | 5%                                                                         |      |      | 10%  |      |      | 20%  |      |      | 30%  |                           | 4    | 40–100% | )    | Geometrie |
| .FALP                     | 0,12 | 0,45                                                                       | 0,81 | 0,08 | 0,33 | 0,58 | 0,06 | 0,25 | 0,43 | 0,06 | 0,21 | 0,38                      | 0,05 | 0,20    | 0,35 | .FALP     |
| .EALP                     | 0,15 | 0,50                                                                       | 0,92 | 0,11 | 0,36 | 0,66 | 0,08 | 0,27 | 0,50 | 0,07 | 0,24 | 0,43                      | 0,07 | 0,22    | 0,40 | .EALP     |

HINWEIS: Die Werte für "Leichte Bearbeitung" als Anfangsvorschub verwenden.

#### Empfehlungen für das Hochgeschwindigkeitsfräsen mit 8000 U/min oder mehr

- Zustand der Spindel überprüfen:
  - Rundlaufabweichung
  - Spannfunktion an der Spindelschnittstelle
  - auf evtl. Markierungen und Partikelablagerungen achten
- Sicherstellen, dass das Werkzeug für die erforderliche Anwendung geeignet ist.
- Wendeschneidplatten müssen in dem Plattensitz formschlüssig auf- und anliegen und mit der mitgelieferten Torx-Schraube gesichert werden. Die Schraube muss mit dem korrekten Drehmomentwert gemäß den Tabellen auf den Produktseiten festgezogen werden.
- Aufgrund der hohen auf die Schraube wirkenden Kräfte muss die Schraube beim Auswechseln der Wendeschneidplatte ebenfalls ausgewechselt werden.
- Auswuchtung des montierten Werkzeugs überprüfen: Fräserkörper, Wendeschneidplatten und Werkzeugaufnahme.

- Vor dem Einschalten die auf das Werkzeug gravierte maximale Drehzahl beachten. Die maximale Drehzahl ist mit einem präzisen Auswuchtwert verknüpft.
- Beachten Sie den Anwendungsbereich des Werkzeugs in Ihren technischen Dokumenten und die technischen Parameter:

Ae (mm) Schnittbreite, lateraler Eingriff (radial)

ap (mm) Axiale Schnitttiefe fz (mm/Zahn) mm pro Zahn

n (U/min) Umdrehungen pro Minute



# WIDIA™ übernimmt keine Verantwortung für den fehlerhaften Einsatz des Werkzeugs aufgrund von:

- Nichtbeachtung der obigen Anweisungen
- Bearbeitung ohne Schutzabdeckung
- Falsche Spannung der Werkstücke
- Keine Sicherheitsvorrichtung an der Maschine
- Fehlgebrauch oder falsche Spannung

Die optimale Rotation muss anhand des Zustands der Spindel ermittelt werden. Die Spindel muss stabil sein, um diesen höheren Drehzahlen standzuhalten.

Es darf unter keinen Umständen versucht werden, dieses Werkzeug zu reparieren. Die einzige zugelassene Wartungsmaßnahme ist das Wenden oder Einsetzen der Wendeschneidplatten.

Beim Einbau eines Fräsers in das Schrumpfspannfutter darf die Auskragung maximal 10% der mögl. Gesamtauskragung des Werkzeugs betragen.

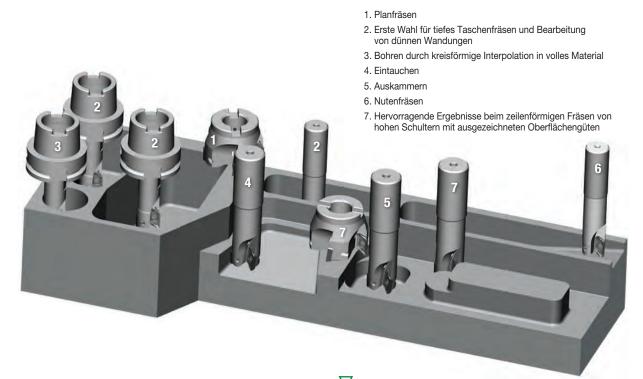
#### Auswuchtung:

- Zylinderschaft und integrierte HSK63A-Schäfte sind für Durchmesser bis zu 50 mm auf G6,3 bei 30.000 U/min ausgewuchtet.
- Zylinderschaft-Werkzeuge in einem Schrumpfspannfutter oder einem anderen Fräserspannfutter + Wendeschneidplatten + Schrauben müssen bei 8000 U/min oder mehr vom Endnutzer erneut auf die richtige Auswuchtung überprüft werden. Der Endnutzer muss den Bausatz auf maximal G6,3 bei 30.000 U/min auswuchten.
- Aufsteckfräser werden nicht ausgewuchtet. Diese Werkzeuge müssen bei der Hochgeschwindigkeitsbearbeitung mit 8000 U/min oder höher als Bausatz, Fräser + Wendeschneidplatten + Schrauben vom Endnutzer erneut auf die richtige Auswuchtung überprüft werden. Der Endnutzer muss den Bausatz auf mindestens G6,3 auswuchten.
- Beim Auswuchten muss ein definiertes Materialvolumen vom Werkzeugkörper durch Bohren oder Fräsen entfernt werden.
- Bei jedem neuen an der Werkzeugaufnahme befestigten Aufsteckfräser muss die komplette Werkzeugkombination neu ausgewuchtet werden.

Schmiermittel auf die Schraube zum spannen des Aufsteckfräsers auf die Werkzeugaufnahme auftragen und mit folgendem Drehmomentwert festziehen:

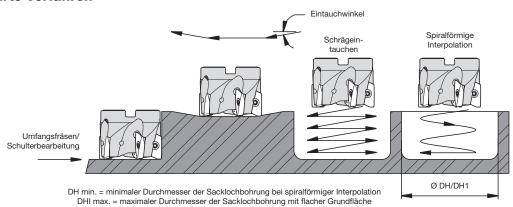
| Gewindegrößen<br>(mm) | Bohrungsgröße<br>Fräser (mm) | Drehmomentwerte<br>(Nm) |
|-----------------------|------------------------------|-------------------------|
| M6                    | 13                           | 10                      |
| M8                    | 16                           | 30                      |
| M10                   | 22                           | 50                      |
| M12                   | 27                           | 80                      |
| M16                   | 32                           | 110                     |
| M20                   | 40                           | 120                     |




# **VHSC**

Victory™ Eckfräser • VHSC16

#### ■ Zerspanbarkeit nach Werkstoffen • Aluminium


|                       |                            |           | Grenzwerte für die chemische Zusammensetzung (WT%) |      |           |           |           |           |      |      |      |             |             |                     |             |                            |                     |
|-----------------------|----------------------------|-----------|----------------------------------------------------|------|-----------|-----------|-----------|-----------|------|------|------|-------------|-------------|---------------------|-------------|----------------------------|---------------------|
| Legierungs-<br>gruppe | Legierungs-<br>bezeichnung | Cu        | Si-Gehalt                                          | Fe   | Mn        | Mg        | Zn        | Cr        | Ti   | Pb   | Bi   | Al          | Andere      | Typische<br>Härtung | Rm<br>(MPa) | Zerspanbarkeit<br>Spanform | Zerspan-<br>barkeit |
|                       | 1050                       | 0.05      | 0.25                                               | 0.40 | 0.50      | 0.05      | 0.05      | -         | -    | -    | ı    | 99.50 min.  | -           | H14                 | 105         | D                          | А                   |
| Al                    | 1100                       | 0.05-0.20 | Si+Fe 1.00<br>max                                  | -    | 0.05      | -         | 0.10      | -         | -    | -    | ı    | 99.00 min.  | ı           | H14                 | 90          | D                          | А                   |
|                       | 2011                       | 5.00-6.00 | 0.40                                               | 0.70 | -         | -         | 0.30      | -         | _    | 0.20 | 0.60 | verbleibend | -           | T3                  | 310         | Α                          | Α                   |
|                       | 2014                       | 3.90-5.00 | 0.50-1.20                                          | 0.70 | 0.40-1.20 | 0.20-0.80 | 0.25      | 0.10      | 0.15 | -    | -    | verbleibend | -           | T6                  | 430         | В                          | Α                   |
| AlCu                  | 2017                       | 3.50-4.50 | 0.20-0.80                                          | 0.70 | 0.40-1.00 | 0.40-0.80 | 0.25      | 0.10      | 0.15 | -    | -    | verbleibend | -           | T4                  | 390         | В                          | Α                   |
| AlGu                  | 2024                       | 3.80-4.90 | 0.50                                               | 0.50 | 0.30-0.90 | 1.20-1.80 | 0.25      | 0.10      | 0.15 | -    | -    | verbleibend | 1           | T4                  | 465         | В                          | А                   |
|                       | 2218                       | 3.50-4.50 | 0.90                                               | 1    | 0.20      | 1.20–1.80 | 0.25      | 0.10      | -    | -    | -    | verbleibend | Ni1.7-2.3   | T72                 | 331         | В                          | В                   |
|                       | 2224                       | 3.80-4.40 | 0.12                                               | 0.15 | 0.30-0.90 | 1.20-1.80 | 0.25      | 0.10      | 0.15 | -    | -    | verbleibend | -           | -                   | -           | Α                          | Α                   |
| AlMn                  | 3003                       | 0.05-0.20 | 0.60                                               | 0.70 | 1.00-1.50 | -         | 0.10      | -         | -    | -    | -    | verbleibend | 1           | H14                 | 140         | D                          | В                   |
| AlSi                  | 4032                       | 0.50–1.30 | 11.00–13.50                                        | 1    | -         | 0.80–1.30 | 0.25      | 0.10      | -    | -    | ı    | verbleibend | Ni0.5-1.3   | T6                  | 379         | В                          | D                   |
| AlMg                  | 5083                       | 0.10      | 0.40                                               | 0.40 | 0.40-1.00 | 4.00-4.90 | 0.25      | 0.05–0.25 | 0.15 | -    | -    | verbleibend | -           | H112                | 335         | С                          | Α                   |
|                       | 6061                       | 0.15-0.40 | 0.40-0.80                                          | 0.70 | 0.15      | 0.80-1.20 | 0.25      | 0.04-0.35 | 0.15 | -    | -    | verbleibend | -           | T6                  | 300         | С                          | В                   |
|                       | 6063                       | 0.10      | 0.20-0.60                                          | 0.35 | 0.10      | 0.45-0.90 | 0.10      | 0.10      | 0.10 | -    | -    | verbleibend | -           | T5                  | 200         | С                          | В                   |
|                       | 6070                       | 0.15–0.40 | 1.00–1.70                                          | 0.50 | 0.40-1.00 | 0.50-1.20 | 0.25      | 0.10      | 0.15 | -    | -    | verbleibend | -           | T6                  | 379         | С                          | С                   |
| AlMgSi                | 6151                       | 0.35      | 0.60-1.20                                          | 1    | 0.20      | 0.45-0.80 | 0.25      | 0.15–0.35 | 0.15 | _    | -    | verbleibend | -           | T6                  | -           | С                          | С                   |
|                       | 6262                       | 0.15-0.40 | 0.40-0.80                                          | 0.70 | 0.15      | 0.80–1.20 | 0.25      | 0.04–0.14 | 0.15 | 0.40 | 0.70 | verbleibend | -           | T9                  | 400         | В                          | В                   |
|                       | 6351                       | 0.10      | 0.70-1.30                                          | 0.50 | 0.40-0.80 | 0.40-0.80 | 0.20      | -         | 0.20 | -    | -    | verbleibend | -           | T6                  | 310         | D                          | С                   |
|                       | 6463                       | 0.20      | 0.20-0.60                                          | 0.15 | 0.05      | 0.45-0.90 | 0.05      | -         | -    | -    | -    | verbleibend | -           | T6                  | 241         | С                          | В                   |
|                       | 7001                       | 1.60-2.60 | 0.35                                               | 0.40 | 0.20      | 2.60-3.40 | 6.80–8.00 | 0.18–0.35 | 0.20 | _    | _    | verbleibend | -           | 0                   | -           | В                          | Α                   |
|                       | 7003                       | 0.20      | 0.30                                               | 0.35 | 0.30      | 0.50-1.00 | 5.00–6.50 | 0.20      | 0.20 | -    | -    | verbleibend | Zr0.05-0.25 | T5                  | 400         | В                          | Α                   |
| AlZn                  | 7050                       | 2.00-2.60 | 0.12                                               | 0.15 | 0.10      | 1.90-2.60 | 5.70–6.70 | 0.04      | 0.06 | -    | -    | verbleibend | Zr0.08-0.15 | T73                 | 530         | В                          | Α                   |
| AILII                 | 7075                       | 1.20-2.00 | 0.40                                               | 0.50 | 0.30      | 2.10-2.90 | 5.10–6.10 | 0.18-0.28 | 0.20 | -    | -    | verbleibend | -           | T6                  | 570         | В                          | А                   |
|                       | 7178                       | 1.60-2.40 | 0.40                                               | 0.50 | 0.30      | 2.40–3.10 | 6.30–7.30 | 0.18-0.35 | 0.20 | -    | -    | verbleibend | -           | T6                  | 600         | В                          | Α                   |
|                       | 7475                       | 1.20-1.90 | 0.10                                               | 0.12 | 0.06      | 1.90-2.60 | 5.20–6.20 | 0.18–0.25 | 0.06 | -    | -    | verbleibend | -           | T61                 | 565         | В                          | Α                   |

Zerspanbarkeit: A (ausgezeichnet), B (gut bis ausgezeichnet), C (gut), D (nicht gut)



## Victory™ Eckfräser • VHSC16

#### Bewährte Verfahren

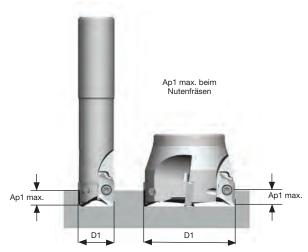


#### Eintauchwinkel

| Fräserdurchmesser | Fase  | Max. Eintau<br>R0,4 | uchwinkel zum We<br>R0,8 | ndeschneidplatter<br>R2,0 | n-Eckenradius und<br>R3,0 | R4,0  | R5,0  |
|-------------------|-------|---------------------|--------------------------|---------------------------|---------------------------|-------|-------|
| 25                | 14,8° | 14,8°               | 14,8°                    | 9,4°                      | 18,8°                     | 9,0°  | 11,2° |
| 32                | 11,4° | 11,4°               | 11,4°                    | 11,9°                     | 12,4°                     | 13,1° | 13,8° |
| 40                | 7,6°  | 7,6°                | 7,6°                     | 7,8°                      | 8,1°                      | 8,5°  | 8,8°  |
| 50                | 7,8°  | 7,5°                | 7,8°                     | 7,7°                      | 7,9°                      | 8,4°  | 8,8°  |
| 63                | 5,8°  | 5,6°                | 5,9°                     | 5,7°                      | 5,8°                      | 6,1°  | 6,3°  |
| 80                | 4,4°  | 4,2°                | 4,4°                     | 4,2°                      | 4,3°                      | 4,5°  | 4,7°  |

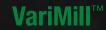
#### ■ Min. spiralförmige Bohrung und max. spiralförmige Bohrung

| Fräserdurch-<br>messer | DH min | DH1 max |
|------------------------|--------|---------|
| 25                     | 30,3   | 48,8    |
| 32                     | 43,5   | 62,0    |
| 40                     | 59,5   | 78,0    |
| 50                     | 79,5   | 98,0    |
| 63                     | 105,5  | 124,0   |
| 80                     | 139,5  | 158,0   |


#### ■ Ap1 max. bei spiralförmiger Interpolation für Werkzeug-Bearbeitungsbahn von 360°

| Fräserdurch-<br>messer | Spiralförmige Interpolationstiefe Ap1 max.<br>für Werkzeug-Bearbeitungsbahn von 360° |
|------------------------|--------------------------------------------------------------------------------------|
| 25                     | 4,06                                                                                 |
| 32                     | 4,06                                                                                 |
| 40                     | 4,06                                                                                 |
| 50                     | 4,06                                                                                 |
| 63                     | 4,06                                                                                 |
| 80                     | 4,06                                                                                 |

HINWEIS: Ap max. abhängig von Fräserdurchmesser, Steifigkeit des Fräsers, Steifigkeit der Maschine und Größe der Spannute.


#### ■ Ap1 max. beim Nutenfräsen

| Schneiden-<br>durchmesser<br>(D1) | Anzahl der<br>Wendeschneid-<br>platten Z | Ap1 max |
|-----------------------------------|------------------------------------------|---------|
| 25                                | 2                                        | 7,5     |
| 32                                | 2                                        | 11,0    |
| 32                                | 3                                        | 6,0     |
| 40                                | 3                                        | 9,0     |
| 50                                | 4                                        | 9,0     |
| 63                                | 4                                        | 11,0    |
| 80                                | 5                                        | 11,0    |



# WIDIA-HA

EINE SOLIDE GRUNDLAGE



**ArCut** 

WavCut™

Der originale Schaftfräser mit variabler Teilung, der die Anwendung in der Industrie revolutionierte.

Geschützte Geometrie für hohe Steifigkeit und verbesserte Spanabfuhr beim Schruppen und Schlichten von Aluminium. Spezielle wellenförmige
Ausführung der
Schneidreihen für
hervorragende Leistungen
bei der Titanbearbeitung und
anderen Anwendungen in der
Luft- und Raumfahrtindustrie.



# NILLA TM Die Geschichte



WIDIA™ ist nach wie vor ein führender Entwickler von Zerspanungstechnologien für die Luft-/Raumfahrt- und Rüstungsindustrie. In diesen Industrien werden immer komplexere Bearbeitungstechniken und exotischere Werkstoffe benötigt. Die Produktreihen mit Vollhartmetall-Fräsern von WIDIA-Hanita sind dafür bekannt, dass sie stetig weiterentwickelt und verbessert werden.

WIDIA HANITA

# WIDIA-HA









# VariMill™ II und III

X Feed™

Schruppfräser

Modulare Schaftfräser

Fortschrittliche Geometrie mit 5 und 7 Schneidreihen für anspruchsvolle Fräsarbeiten in Titan, hochwarmfesten Legierungen und rostfreien Stählen. Geometrie mit 6 Schneidreihen für hohe Vorschübe zur Senkung der Fertigungszeit bei wärmebehandeltem oder Titan. Hochleistungsprofil für Schruppanwendungen in Stahl, rostfreien Stählen und hochwarmfesten Legierungen.

Die VariMill™ Technologie trifft auf das Duo-Lock™ Schnittstellensystem.

Seite 48-64



# MANA Die Evolution

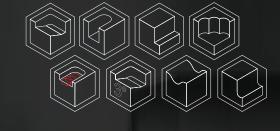


WIDIA™ bietet weiterhin fortschrittliche Geometrien für Lösungen für schwierig zu zerspanende exotische Werkstoffe und gibt Kunden die Möglichkeit, ihre Produktivität zu steigern und die Kosten zu senken.

Erfahren Sie, wie WIDIA-Hanita™ dabei geholfen hat, die Bearbeitungszeiten von Triebwerkskomponenten für die Luftund Raumfahrtindustrie um bis zu 35% zu senken.

| Triebwerkshalterung | Aktuelle Parameter                             | WIDIA™                  |  |  |
|---------------------|------------------------------------------------|-------------------------|--|--|
| Werkstück           | -                                              | 120 mm x 120 mm x 60 mm |  |  |
| Zykluszeit          | 03:22 Stunden<br>(daraus folgt Kapitalverlust) | 01:20 Stunden           |  |  |
| Kosten pro Stück    | 400 \$                                         | 250 \$                  |  |  |




WIDIA HANITA

RUNDLAUFSGENAUIGKEIT

MAXIMALE SCHNITTSTELLEN-STABILITÄT

LÄNGEN-WIEDERHOLGENAUIGKEIT

# VariMill™ Technologie trifft auf DUO-λOCK® Schnittstelle







#### VariMill™ Modular

Schnittdaten und Standzeiten vergleichbar mit leistungsstarken Vollhartmetallwerkzeugen.

Geschützte VariMill Geometrien erlauben das Schruppen und Schlichten mit einem Werkzeug.

Eine standardmäßige Schneidkantenlänge von 1,5 x D sorgt für weniger Durchgänge.

Bis zu 1 x D Nutfräsen erhöht das Zeitspanungsvolumen und steigert die Produktivität erheblich.

### Werkzeugaufnahmen

Umfabgreiches Programm von zylindrischen und kegelförmigen Werkzeugaufnahmen sowie integrale Werkzeugaufnahmen inklusive CV, PSC, BT und HSK.



#### Modulare Hochleistungs-Vollhartmetall-Schaftfräser

Das modulare VariMill-System vereint höchste Rundlaufgenauigkeit und Wiederholbarkeit der Länge mit maximaler Schnittstellenstabilität. Auf diese Weise kann das modulare VariMill-System das Potenzial der WIDIA™ VariMill Geometrien und der WIDIA Victory™ Sorten in vollem Umfang nutzen. Das flexible modulare VariMill System ist für Anwendungen wie etwa das Fräsen mit Vollhartmetall-Schaftfräsern vorgesehen. Ein großer Durchmesserbereich von 10−32 mm und verschiedenste Schneideckenkonfigurationen hinsichtlich scharfer Kanten, Fasen und Radien sind ab Lager lieferbar.

Höhere Produktivität durch die Stabilität von Duo-Lock™ von Haimer und dem WIDIA Schnittstellensystem.



Modulare Hochleistungs-Vollhartmetall-Schaftfräser

- Leistungsstarke Geometrien bieten höchste Zeitspanungsvolumen.
- Die ungleiche Schneidreihenteilung reduziert Vibrationen und verbessert die Oberflächengüte.
- Ein intelligentes Gewinde sorgt dafür, dass das Belastungsniveau unter kritischen Werten bleibt.
- Eine dritte Kontaktfläche liefert hohe Steifigkeit und Genauigkeit mit einer Rundlaufabweichung von unter 5 µm.



#### Modulares VariMill™ Programm

- · Geringere Schnittkräfte und Schneidkantenbelastung aufgrund speziell abgestimmter axialer und radialer Spanwinkel.
- Geschützter, konischer Kern bietet höchste Werkzeugstabilität beim Schruppen und Schlichten.
- Exzentrisches Freiwinkeldesign verlängert Standzeiten durch höhere Schneidkantenstabilität.



#### VariMill 4X47

- 4 Schneidreihen.
- Neue asymmetrische Spannutengeometrie.
- Hohes Zerspanungsvolumen und lange Standzeiten bei:
- Nicht rostenden Stählen, Stählen und legierten Stählen.
- Hochtemperaturlegierungen und Titan.



#### VariMill II™ 5747

- 5 Schneidreihen.
- Hohes Zerspanungsvolumen und lange Standzeiten bei:
  - Nicht rostenden Stählen, Stählen und legierten Stählen.
  - Gusseisen.
  - Hochtemperaturlegierungen und Titan.



#### 4547 & 4548 Hochleistungs-Schlichtfräser

- Mehrschneidige Schlichtwerkzeuge.
- Eckenradius.
- Hohes Zerspanungsvolumen und lange Standzeiten bei:
- Stählen und nicht rostenden Stählen.



#### 4U40 • Hochleistungs-Schruppfräser 45°

- Mehrschneidiges Schlichtwerkzeuge.
- Eckenradius.
- $\bullet \ \ \text{Geometrien für hohe Bearbeitungstemperaturen}.$



#### 4969 • Hochleistungs-Schruppfräser mit Kugelkopf

- Schruppfräser mit 4 Schneidreihen und Kugelkopf.
- Geometrien für Stähle und rostfreie Stähle.



#### 4946 • Hochleistungs-Schruppfräser 20°

- Mehrschneidiges Schruppwerkzeug
- Eckenfase
- Geometrien für Stähle und rostfreie Stähle.



#### VariMill 4XN0

- 4 Schneidreihen.
- Geometrieausführung für Stähle und rostfreie Stähle.
- Über Mitte schneidender Kugelkopf.



#### VariMill 4X48

- 4 Schneidreihen.
- Neue asymmetrische Schneidreihengeometrie.
- Geometrieausführung für die Titanbearbeitung.
- Umfangreiches Angebot an Eckenradien.



#### VariMill II ER 5748

- 5 Schneidreihen.
- Geometrieausführung für die Titanbearbeitung.
- Exzentrischer Freiwinkel für Kantenstabilität und Festigkeit.
- Umfangreiches Angebot an Eckenradien.



#### VariMill III™ ER 774E

- 7 Schneidreihen.
- Geometrieausführung für die Titanbearbeitung.
- Exzentrischer Freiwinkel für Kantenstabilität und Festigkeit.
- Umfangreiches Angebot an Eckenradien.



#### 5142 und 5143 - AluSurf™

Plattform im Einsatz!

- Schlichtfräser mit 2 und 3 Schneidreihen.
- Eckenradius.
- Geometrien für Aluminium.



#### 8045 – Kantenverrundungsfräser

- 4 Schneidreihen.
- Eckenverrundung.

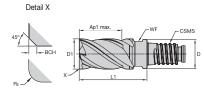


#### 8046 – Kantenfasfräser

- Mehrschneidiges Schruppwerkzeug.
  - Eckenfase.



# Leistungsstarke modulare DUO-λOCK® Schaftfräser • VariMill™


#### ■ 4X47 • 4X48 • 4 Schneidreihen • 38° Spiralwinkel • Metrisch





• Erste Wahl

O Alternative





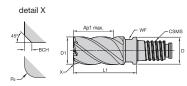
| 4X47<br>Sorte WP15PE<br>AITIN | 4X48<br>Sorte WS15PE<br>AITIN |      |       |                         |    |                     |       |      |      |
|-------------------------------|-------------------------------|------|-------|-------------------------|----|---------------------|-------|------|------|
| Bestell #                     | Bestell #                     | D1   | D     | Schnittlänge<br>Ap1 max | L1 | CSMS<br>Systemgröße | WF    | всн  | Rε   |
| 6071019                       | -                             | 10,0 | 9,60  | 15,00                   | 23 | DL10                | 8,00  | 0,50 | _    |
| -                             | 6071095                       | 10,0 | 9,60  | 15,00                   | 23 | DL10                | 8,00  | _    | 0,50 |
| -                             | 6071096                       | 10,0 | 9,60  | 15,00                   | 23 | DL10                | 8,00  | _    | 1,00 |
| _                             | 6071097                       | 10,0 | 9,60  | 15,00                   | 23 | DL10                | 8,00  | _    | 2,00 |
| 6071020                       | _                             | 12,0 | 11,50 | 18,00                   | 27 | DL12                | 9,50  | 0,50 | _    |
| _                             | 6071098                       | 12,0 | 11,50 | 18,00                   | 27 | DL12                | 9,50  | _    | 0,50 |
| -                             | 6071099                       | 12,0 | 11,50 | 18,00                   | 27 | DL12                | 9,50  | _    | 1,00 |
|                               | 6071100                       | 12,0 | 11,50 | 18,00                   | 27 | DL12                | 9,50  | _    | 2,00 |
| 6071091                       | -                             | 16,0 | 15,50 | 24,00                   | 36 | DL16                | 13,00 | 0,50 | _    |
| -                             | 6071111                       | 16,0 | 15,50 | 24,00                   | 36 | DL16                | 13,00 | _    | 1,00 |
| _                             | 6071112                       | 16,0 | 15,50 | 24,00                   | 36 | DL16                | 13,00 | _    | 2,00 |
|                               | 6071113                       | 16,0 | 15,50 | 24,00                   | 36 | DL16                | 13,00 | _    | 3,00 |
| 6071092                       | _                             | 20,0 | 19,30 | 30,00                   | 45 | DL20                | 16,00 | 0,50 | _    |
| _                             | 6071114                       | 20,0 | 19,30 | 30,00                   | 45 | DL20                | 16,00 | _    | 1,00 |
| _                             | 6071115                       | 20,0 | 19,30 | 30,00                   | 45 | DL20                | 16,00 | _    | 2,00 |
|                               | 6071116                       | 20,0 | 19,30 | 30,00                   | 45 | DL20                | 16,00 |      | 3,00 |
| -                             | 6071117                       | 20,0 | 19,30 | 30,00                   | 45 | DL20                | 16,00 | _    | 4,00 |
| 6071093                       | -                             | 25,0 | 24,00 | 37,50                   | 57 | DL25                | 21,00 | 0,50 | _    |
| -                             | 6071118                       | 25,0 | 24,00 | 37,50                   | 57 | DL25                | 21,00 | _    | 1,00 |
|                               | 6071119                       | 25,0 | 24,00 | 37,50                   | 57 | DL25                | 21,00 | _    | 2,00 |
| -                             | 6071120                       | 25,0 | 24,00 | 37,50                   | 57 | DL25                | 21,00 | _    | 3,00 |
| _                             | 6071121                       | 25,0 | 24,00 | 37,50                   | 57 | DL25                | 21,00 | _    | 4,00 |
| 6071094                       | _                             | 32,0 | 31,00 | 48,00                   | 72 | DL32                | 28,00 | 0,50 | _    |
|                               | 6071122                       | 32,0 | 31,00 | 48,00                   | 72 | DL32                | 28,00 | _    | 2,00 |
| -                             | 6071123                       | 32,0 | 31,00 | 48,00                   | 72 | DL32                | 28,00 | _    | 3,00 |

HINWEIS: Anwendungsdaten finden Sie auf Seite 58.

#### Toleranzen für Schaftfräser

| rotoratizott far contactifacot |               |  |  |  |  |
|--------------------------------|---------------|--|--|--|--|
| D1                             | Toleranz e8   |  |  |  |  |
| >10–18                         | -0,032/-0,059 |  |  |  |  |
| >18–30                         | -0,040/-0,073 |  |  |  |  |
| >30                            | -0.050/-0.089 |  |  |  |  |

Leistungsstarke modulare DUO-λOCK® Schaftfräser • VariMill™




#### ■ 5747 • 5748 • 5 Schneidreihen • 38° Spiralwinkel • Metrisch





Erste WahlAlternative





| 5747         | 5748         |      |       |              |    |             |       |      |      |
|--------------|--------------|------|-------|--------------|----|-------------|-------|------|------|
| Sorte WP15PE | Sorte WS15PE |      |       |              |    |             |       |      |      |
| AITIN        | AlTiN        |      |       | Schnittlänge |    | CSMS        |       |      |      |
| Bestell #    | Bestell #    | D1   | D     | Ap1 max      | L1 | Systemgröße | WF    | BCH  | Rε   |
| 6071260      | -            | 10,0 | 9,60  | 15,00        | 23 | DL10        | 8,00  | 0,50 | _    |
| -            | 6071366      | 10,0 | 9,60  | 15,00        | 23 | DL10        | 8,00  | _    | 0,50 |
| _            | 6071367      | 10,0 | 9,60  | 15,00        | 23 | DL10        | 8,00  | _    | 1,00 |
| _            | 6071368      | 10,0 | 9,60  | 15,00        | 23 | DL10        | 8,00  | _    | 2,00 |
| 6071361      | -            | 12,0 | 11,50 | 18,00        | 27 | DL12        | 9,50  | 0,50 | _    |
| -            | 6071369      | 12,0 | 11,50 | 18,00        | 27 | DL12        | 9,50  | _    | 0,50 |
| _            | 6071370      | 12,0 | 11,50 | 18,00        | 27 | DL12        | 9,50  | _    | 1,00 |
| _            | 6071371      | 12,0 | 11,50 | 18,00        | 27 | DL12        | 9,50  | _    | 2,00 |
| 6071362      | _            | 16,0 | 15,50 | 24,00        | 36 | DL16        | 13,00 | 0,50 | _    |
| _            | 6071372      | 16,0 | 15,50 | 24,00        | 36 | DL16        | 13,00 | _    | 1,00 |
| _            | 6071373      | 16,0 | 15,50 | 24,00        | 36 | DL16        | 13,00 | _    | 2,00 |
|              | 6071374      | 16,0 | 15,50 | 24,00        | 36 | DL16        | 13,00 | _    | 3,00 |
| 6071363      | _            | 20,0 | 19,30 | 30,00        | 45 | DL20        | 16,00 | 0,50 | _    |
| _            | 6071375      | 20,0 | 19,30 | 30,00        | 45 | DL20        | 16,00 | _    | 1,00 |
| _            | 6071376      | 20,0 | 19,30 | 30,00        | 45 | DL20        | 16,00 | _    | 2,00 |
|              | 6071377      | 20,0 | 19,30 | 30,00        | 45 | DL20        | 16,00 | _    | 3,00 |
| -            | 6071378      | 20,0 | 19,30 | 30,00        | 45 | DL20        | 16,00 | _    | 4,00 |
| 6071364      | -            | 25,0 | 24,00 | 37,50        | 57 | DL25        | 21,00 | 0,50 | _    |
| -            | 6071379      | 25,0 | 24,00 | 37,50        | 56 | DL25        | 21,00 | _    | 1,00 |
|              | 6071380      | 25,0 | 24,00 | 37,50        | 56 | DL25        | 21,00 | _    | 2,00 |
| _            | 6071391      | 25,0 | 24,00 | 37,50        | 56 | DL25        | 21,00 | _    | 3,00 |
| _            | 6071392      | 25,0 | 24,00 | 37,50        | 56 | DL25        | 21,00 | _    | 4,00 |
| 6071365      | _            | 32,0 | 31,00 | 48,00        | 72 | DL32        | 28,00 | 0,50 | _    |
|              | 6071393      | 32,0 | 31,00 | 48,00        | 72 | DL32        | 28,00 | _    | 2,00 |
| -            | 6071394      | 32,0 | 31,00 | 48,00        | 72 | DL32        | 28,00 | _    | 3,00 |


HINWEIS: Anwendungsdaten finden Sie auf Seite 58.

#### Toleranzen für Schaftfräser

| 101014112011141 CONTAINI CONT |               |  |  |  |  |
|-------------------------------|---------------|--|--|--|--|
| D1                            | Toleranz e8   |  |  |  |  |
| >10–18                        | -0,032/-0,059 |  |  |  |  |
| >18–30                        | -0,040/-0,073 |  |  |  |  |
| >30                           | -0,050/-0,089 |  |  |  |  |

#### Leistungsstarke modulare DUO-λOCK® Schaftfräser • VariMill™

#### ■ 774E • 7 Schneidreihen mit exzentrischem Freiwinkelschliff • 38° Spiralwinkel • Metrisch



30,00

30,00

30,00

37,50

37,50

37,50

37,50

48,00

48,00

45

45

45

57

57

57

57

72

72

DL20

DL20

DL20

DL25

DL25

DL25

DL25

DL32

DL32

16,00

16,00

16,00

21,00

21,00

21,00

21,00

28,00

28,00

2,00

3,00

4,00

1,00

2,00

3,00

4,00

2,00

3,00

HINWEIS: Anwendungsdaten finden Sie auf Seite 59.

20,0

20,0

20,0

25,0

25,0

25,0

25,0

32,0

32,0

6071525

6071526

6071527

6071528

6071529

6071530

6071531

6071532

6071533

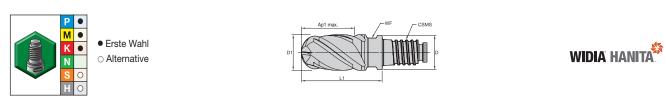
#### ■ 4XN0 • 4 Schneidreihen, Kugelkopf • 38° Spiralwinkel • Metrisch

19,30

19,30

19,30

24,00


24,00

24,00

24,00

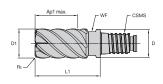
31,00

31,00



| AITIN     |      |       | Cobnittlänge            |    | CSMS        |       |
|-----------|------|-------|-------------------------|----|-------------|-------|
| Bestell # | D1   | D     | Schnittlänge<br>Ap1 max | L1 | Systemgröße | WF    |
| 6071128   | 10,0 | 9,60  | 15,00                   | 23 | DL10        | 8,00  |
| 6071130   | 12,0 | 11,50 | 18,00                   | 27 | DL12        | 9,50  |
| 6071151   | 16,0 | 15,50 | 24,00                   | 36 | DL16        | 13,00 |
| 6071152   | 20,0 | 19,30 | 30,00                   | 45 | DL20        | 16,00 |
| 6071153   | 25,0 | 24,00 | 37,50                   | 57 | DL25        | 21,00 |

HINWEIS: Anwendungsdaten finden Sie auf Seite 60.


| Toleranzen für Schaftfräser |               |  |  |  |  |
|-----------------------------|---------------|--|--|--|--|
| D1                          | Toleranz e8   |  |  |  |  |
| >10–18                      | -0,032/-0,059 |  |  |  |  |
| >18–30                      | -0,040/-0,073 |  |  |  |  |
| >30                         | -0,050/-0,089 |  |  |  |  |

Leistungsstarke modulare DUO-λOCK® Schaftfräser ● Schlichten/Schruppen



#### ■ 4547 • Mehrschneidiger Schlichtfräser • 45° Spiralwinkel • Metrisch



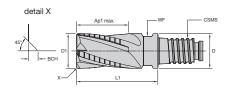




| Sorte | WP15PI |
|-------|--------|
| Α     | JTiN   |

|           |      |       | Schnittlänge |    | CSMS        |       |      |    |
|-----------|------|-------|--------------|----|-------------|-------|------|----|
| Bestell # | D1   | D     | Ap1 max      | L1 | Systemgröße | WF    | Rε   | ZU |
| 6127193   | 10,0 | 9,60  | 15,00        | 23 | DL10        | 8,00  | 0,50 | 6  |
| 6127194   | 12,0 | 11,50 | 18,00        | 27 | DL12        | 9,50  | 0,75 | 6  |
| 6127195   | 16,0 | 15,50 | 24,00        | 36 | DL16        | 13,00 | 0,75 | 6  |
| 6127196   | 20,0 | 19,30 | 30,00        | 45 | DL20        | 16,00 | 0,75 | 6  |
| 6127197   | 25,0 | 24,00 | 37,50        | 57 | DL25        | 21,00 | 0,75 | 6  |

HINWEIS: Anwendungsdaten finden Sie auf Seite 60.


Für weitere Informationen über die Schaftfräser 4548, besuchen Sie uns auf widia.com or widia.com/novo.

| Toleranzen für Schaftfräser |               |  |  |  |  |
|-----------------------------|---------------|--|--|--|--|
| D1                          | Toleranz e8   |  |  |  |  |
| > 10–18                     | -0,032/-0,059 |  |  |  |  |
| > 18–30                     | -0,040/-0,073 |  |  |  |  |
| > 30                        | -0,050/-0,089 |  |  |  |  |

#### ■ 4946 • Hochleistungs-Schruppfräser • 20° Spiralwinkel • Metrisch



Erste WahlAlternative



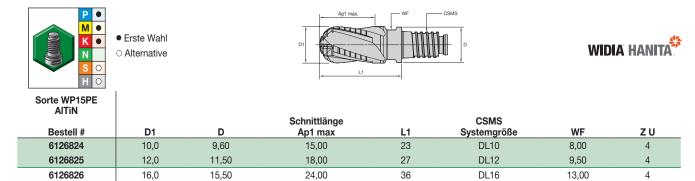


| Sorte | WP15PE |
|-------|--------|
| Α     | JTiN   |

| AIIII     |      |       | Schnittlänge |    | CSMS        |       |      |    |
|-----------|------|-------|--------------|----|-------------|-------|------|----|
| Bestell # | D1   | D     | Ap1 max      | L1 | Systemgröße | WF    | ВСН  | ΖU |
| 6127281   | 10,0 | 9,60  | 15,00        | 23 | DL10        | 8,00  | 0,50 | 4  |
| 6127282   | 12,0 | 11,50 | 18,00        | 27 | DL12        | 9,50  | 0,50 | 4  |
| 6127283   | 16,0 | 15,50 | 24,00        | 36 | DL16        | 13,00 | 0,50 | 4  |
| 6127284   | 20,0 | 19,30 | 30,00        | 45 | DL20        | 16,00 | 0,50 | 4  |
| 6127285   | 25,0 | 24,00 | 37,50        | 57 | DL25        | 21,00 | 0,50 | 5  |

HINWEIS: Anwendungsdaten finden Sie auf Seite 61.

| Toleranzen für S | Schaftfräser |
|------------------|--------------|
|------------------|--------------|


| D1      | Toleranz d11  |
|---------|---------------|
| > 10-18 | -0,050/-0,160 |
| > 18-30 | -0,065/-0,195 |

# Leistungsstarke modulare DUO-λOCK® Schaftfräser ● Schruppen

#### ■ 4969 • Schruppfräser mit Kugelkopf • 20° Spiralwinkel • Metrisch

19,30

24,00



30,00

37,50

45

57

DL20

DL25

16,00

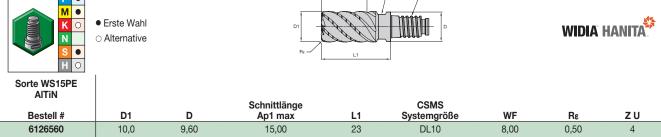
21,00

4

4

HINWEIS: Anwendungsdaten finden Sie auf Seite 61.

6126827


6126828

# | Toleranzen für Schaftfräser | D1 | Toleranz d11 | | > 10-18 | -0,050/-0,160 | > 18-30 | -0,065/-0,195 |

20,0

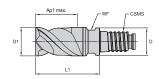
25,0

#### ■ 4U40 • Schruppfräser • 45° Spiralwinkel • Metrisch



| AITIN     |      |       | Schnittlänge |    | CSMS        |       |      |    |
|-----------|------|-------|--------------|----|-------------|-------|------|----|
| Bestell # | D1   | D     | Ap1 max      | L1 | Systemgröße | WF    | Rε   | ΖU |
| 6126560   | 10,0 | 9,60  | 15,00        | 23 | DL10        | 8,00  | 0,50 | 4  |
| 6126721   | 12,0 | 11,50 | 18,00        | 27 | DL12        | 9,50  | 0,75 | 4  |
| 6126722   | 16,0 | 15,50 | 24,00        | 36 | DL16        | 13,00 | 0,75 | 6  |
| 6126723   | 20,0 | 19,30 | 30,00        | 45 | DL20        | 16,00 | 0,75 | 6  |
| 6126724   | 25,0 | 24,00 | 37,50        | 57 | DL25        | 21,00 | 0,75 | 6  |

HINWEIS: Anwendungsdaten finden Sie auf Seite 62.


| Toleranzen für Schaftfräser |               |  |  |  |
|-----------------------------|---------------|--|--|--|
| D1                          | Toleranz e8   |  |  |  |
| > 10–18                     | -0,032/-0,059 |  |  |  |
| > 18–30                     | -0,040/-0,073 |  |  |  |
| > 30                        | -0,050/-0,089 |  |  |  |

Leistungsstarke modulare DUO-λOCK® Schaftfräser • AluSurf™

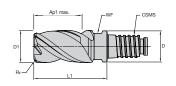


#### ■ AluSurf • 5142 • 2 Schneidreihen • 45° Spiralwinkel • Aluminium








Sorte UNBESCHICHTET

| Bestell # | D1   | D     | Schnittlänge<br>Ap1 max | L1 | CSMS<br>Systemgröße | WF    |
|-----------|------|-------|-------------------------|----|---------------------|-------|
| 6151048   | 10,0 | 9,60  | 15,00                   | 23 | DL10                | 8,00  |
| 6151049   | 12,0 | 11,50 | 18,00                   | 27 | DL12                | 9,50  |
| 6151050   | 16,0 | 15,50 | 24,00                   | 36 | DL16                | 13,00 |
| 6151061   | 20,0 | 19,30 | 30,00                   | 45 | DL20                | 16,00 |

HINWEIS: Anwendungsdaten finden Sie auf Seite 62.

#### ■ AluSurf • 5143 • 3 Schneidreihen • 45° Spiralwinkel • Aluminium



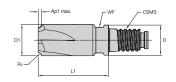




Sorte UNBESCHICHTET

| Bestell # | D1   | D     | Schnittlänge<br>Ap1 max | L1 | CSMS<br>Systemgröße | WF    | Rε   |
|-----------|------|-------|-------------------------|----|---------------------|-------|------|
| 6150886   | 10,0 | 9,60  | 15,00                   | 23 | DL10                | 8,00  | 0,50 |
| 6150887   | 10,0 | 9,60  | 15,00                   | 23 | DL10                | 8,00  | 1,00 |
| 6150888   | 10,0 | 9,60  | 15,00                   | 23 | DL10                | 8,00  | 2,00 |
| 6150889   | 12,0 | 11,50 | 17,50                   | 27 | DL12                | 9,50  | 0,50 |
| 6150890   | 12,0 | 11,50 | 18,00                   | 27 | DL12                | 9,50  | 1,00 |
| 6151011   | 12,0 | 11,50 | 18,00                   | 27 | DL12                | 9,50  | 2,00 |
| 6151013   | 16,0 | 15,50 | 24,00                   | 36 | DL16                | 13,00 | 1,00 |
| 6151014   | 16,0 | 15,50 | 24,00                   | 36 | DL16                | 13,00 | 2,00 |
| 6151015   | 16,0 | 15,50 | 24,00                   | 36 | DL16                | 13,00 | 3,00 |
| 6151016   | 20,0 | 19,30 | 30,00                   | 45 | DL20                | 16,00 | 1,00 |
| 6151017   | 20,0 | 19,30 | 30,00                   | 45 | DL20                | 16,00 | 2,00 |
| 6151018   | 20,0 | 19,30 | 30,00                   | 45 | DL20                | 16,00 | 3,00 |
| 6151019   | 20,0 | 19,30 | 30,00                   | 45 | DL20                | 16,00 | 4,00 |
| 6151020   | 25,0 | 24,00 | 37,50                   | 57 | DL25                | 21,00 | 1,00 |
| 6151021   | 25,0 | 24,00 | 37,50                   | 57 | DL25                | 21,00 | 2,00 |
| 6151022   | 25,0 | 24,00 | 37,50                   | 57 | DL25                | 21,00 | 3,00 |
| 6151024   | 25,0 | 24,00 | 37,50                   | 57 | DL25                | 21,00 | 4,00 |

HINWEIS: Anwendungsdaten finden Sie auf Seite 62.


| Toleranzen | für | Sch | aftfrä | Sei |
|------------|-----|-----|--------|-----|

| D1      | Toleranz e8   |
|---------|---------------|
| > 10–18 | -0,032/-0,059 |
| > 18–30 | -0,040/-0,073 |
| > 30    | -0,050/-0,089 |

# Leistungsstarke modulare DUO-λOCK® Schaftfräser ● Eckenverrundung/Fasen

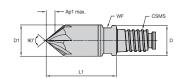
#### ■ 8045 • Eckenverrundungsfräser







| Sorte | WP15PE |  |
|-------|--------|--|
| Δ     | ITiN   |  |


| AIIII     |      |       |                         |    |                     |       |      |    |
|-----------|------|-------|-------------------------|----|---------------------|-------|------|----|
| Bestell # | D1   | D     | Schnittlänge<br>Ap1 max | L1 | CSMS<br>Systemgröße | WF    | Rε   | ΖU |
| 6127354   | 10,0 | 9,60  | 1,50                    | 23 | DL10                | 8,00  | 1,50 | 4  |
| 6127355   | 10,0 | 9,60  | 3,00                    | 23 | DL10                | 8,00  | 3,00 | 4  |
| 6127356   | 12,0 | 11,50 | 1,00                    | 27 | DL12                | 9,50  | 1,00 | 4  |
| 6127357   | 12,0 | 11,50 | 2,00                    | 27 | DL12                | 9,50  | 2,00 | 4  |
| 6127358   | 12,0 | 11,50 | 3,00                    | 27 | DL12                | 9,50  | 3,00 | 4  |
| 6127359   | 16,0 | 15,50 | 2,00                    | 36 | DL16                | 13,00 | 2,00 | 4  |
| 6127360   | 16,0 | 15,50 | 3,00                    | 36 | DL16                | 13,00 | 3,00 | 4  |
| 6127381   | 16,0 | 15,50 | 4,00                    | 36 | DL16                | 13,00 | 4,00 | 4  |
|           |      |       |                         |    |                     |       |      |    |

HINWEIS: Anwendungsdaten finden Sie auf Seite 63.

#### ■ 8046 • Eckenfasfräser



Erste WahlAlternative



WIDIA HANITA

Sorte WP15PE AITIN

|           |      |       | Schnittlänge |    | CSMS        |       |      |    |
|-----------|------|-------|--------------|----|-------------|-------|------|----|
| Bestell # | D1   | D     | Ap1 max      | L1 | Systemgröße | WF    | BCH  | ZU |
| 6127401   | 10,0 | 9,60  | 2,00         | 23 | DL10        | 8,00  | 2,00 | 4  |
| 6127402   | 12,0 | 11,50 | 3,00         | 27 | DL12        | 9,50  | 3,00 | 5  |
| 6127403   | 16.0 | 15.50 | 4.00         | 36 | DL16        | 13.00 | 4.00 | 6  |

HINWEIS: Anwendungsdaten finden Sie auf Seite 63.

#### Toleranzen für Schaftfräser

| D1      | Toleranz e8   |
|---------|---------------|
| > 10–18 | -0,032/-0,059 |
| > 18–30 | -0,040/-0,073 |
| > 30    | -0,050/-0,089 |

#### DUO-λOCK® Zubehör



#### ■ Drehmomentschlüssel

| Bestellnr. | Katalognummer              | Beschreibung                          | Menge |
|------------|----------------------------|---------------------------------------|-------|
| 6390382    | DL - Torque Wrench KT210   | Nur Schlüssel mit 30-130 Nm           | 10    |
| 6390561    | DL - 12 Key                | Nur Schlüssel mit 30 Nm               | 20    |
| 6390562    | DL - 16 Key                | Nur Schlüssel mit 60 Nm               | 20    |
| 6390563    | DL - 20 Key                | Nur Schlüssel mit 80 Nm               | 10    |
| 6390564    | DL - 25 Key                | Nur Schlüssel mit 100 Nm              | 10    |
| 6390565    | DL - 32 Key                | Nur Schlüssel mit 130 Nm              | 10    |
| 6390566    | DL10 - Torque Wrench + Key | Drehmomentschlüssel + Schlüssel 25 Nm | 5     |

DUO-λOCK® Modulare Hochleistungs-Vollhartmetall-Schaftfräser • VariMill™



#### ■ VariMill<sup>™</sup> • 4X47 • 4X48 • Ungleiche Schneidreihenteilung

|      |        | 40      |                           |          |          |            |                       |          |            |                       |          |             |                       |          | HARCON IN |           |                                  |          |       |       |
|------|--------|---------|---------------------------|----------|----------|------------|-----------------------|----------|------------|-----------------------|----------|-------------|-----------------------|----------|-----------|-----------|----------------------------------|----------|-------|-------|
|      |        |         | ılterfräsen<br>lutenfräse |          |          | kurz       | Z                     | r        | nitte      | el                    |          | lang        | ı                     |          |           | nulterfrä | hub pro<br>sen (A). 2<br>20% red | Zum Nute |       |       |
|      |        |         |                           |          |          | Au         | ıskraglä              | inge de  | r We       | erkzeug               | aufnah   | me          |                       |          |           |           |                                  |          |       |       |
|      |        | A       |                           | В        |          | P15<br>S15 |                       |          | P15<br>S15 |                       |          | P15 <br>S15 |                       |          |           | D1        | – Durch                          | ımesser  |       |       |
| Werk | stoff- |         |                           |          | wii      | ndig       | esch-<br>keit<br>/min | wir      | ndig       | esch-<br>keit<br>/min | wii      | ndigl       | esch-<br>keit<br>/min |          |           |           |                                  |          |       |       |
| gru  | ppe    | ар      | ae                        | ар       | min.     |            | max.                  | min.     |            | max.                  | min.     |             | max.                  | mm       | 10,0      | 12,0      | 16,0                             | 20,0     | 25,0  | 32,0  |
|      | 0      | 1,5 x D | 0,5 x D                   | 1 x D    | 150      | _          | 200                   | 135      | -          | 180                   | 135      | _           | 180                   | fz       | 0,061     | 0,070     | 0,086                            | 0,097    | 0,105 | 0,106 |
|      | 1      | 1,5 x D | 0,5 x D                   | 1 x D    | 150      | _          | 200                   | 135      | -          | 180                   | 135      | _           | 180                   | fz       | 0,061     | 0,070     | 0,086                            | 0,097    | 0,105 | 0,106 |
|      | 2      | 1,5 x D | 0,5 x D                   | 1 x D    | 140      | _          | 190                   | 126      | -          | 171                   | 126      | _           | 171                   | fz       | 0,061     | 0,070     | 0,086                            | 0,097    | 0,105 | 0,106 |
| Р    | 3      | 1,5 x D | 0,5 x D                   | 1 x D    | 120      | _          | 160                   | 108      | -          | 144                   | 108      | _           | 144                   | fz       | 0,051     | 0,060     | 0,074                            | 0,086    | 0,097 | 0,105 |
|      | 4      | 1,5 x D | 0,5 x D                   | 0,75 x D | 90       | -          | 150                   | 81       | -          | 135                   | 81       | _           | 135                   | fz       | 0,046     | 0,053     | 0,065                            | 0,075    | 0,083 | 0,087 |
|      | 5      | 1,5 x D | 0,5 x D                   | 1 x D    | 60       | _          | 100                   | 51       |            | 85                    | 48       | _           | 80                    | fz       | 0,041     | 0,048     | 0,059                            | 0,069    | 0,077 | 0,084 |
|      | 6      | 1,5 x D | 0,5 x D                   | 0,75 x D | 50       | _          | 75                    | 42       | -          | 64                    | 40       | _           | 60                    | fz       | 0,034     | 0,040     | 0,048                            | 0,055    | 0,060 | 0,062 |
|      | 1      | 1,5 x D | 0,5 x D                   | 1 x D    | 90       | _          | 115                   | 72       | _          | 92                    | 63       | _           | 80                    | fz       | 0,051     | 0,060     | 0,074                            | 0,086    | 0,097 | 0,105 |
| М    | 2      | 1,5 x D | 0,5 x D                   | 1 x D    | 60       | _          | 80                    | 48       |            | 64                    | 42       | _           | 56                    | fz       | 0,041     | 0,048     | 0,059                            | 0,069    | 0,077 | 0,084 |
|      | 3      | 1,5 x D | 0,5 x D                   | 1 x D    | 60       | _          | 70                    | 48       | _          | 56                    | 42       | _           | 49                    | fz       | 0,034     | 0,040     | 0,048                            | 0,055    | 0,060 | 0,062 |
|      | 1      | 1,5 x D | 0,5 x D                   | 1 x D    | 120      | -          | 150                   | 108      | -          | 135                   | 108      | _           | 135                   | fz       | 0,061     | 0,070     | 0,086                            | 0,097    | 0,105 | 0,106 |
| K    | 2      | 1,5 x D | 0,5 x D                   | 1 x D    | 110      | -          | 140                   | 99       | _          | 126                   | 99       | _           | 126                   | fz       | 0,051     | 0,060     | 0,074                            | 0,086    | 0,097 | 0,105 |
|      | 3      | 1,5 x D | 0,5 x D                   | 1 x D    | 110      | -          | 130                   | 99       | _          | 117                   | 99       | _           | 117                   | fz       | 0,041     | 0,048     | 0,059                            | 0,069    | 0,077 | 0,084 |
|      | 1      | 1,5 x D | 0,3 x D                   | 0,3 x D  | 50       | -          | 90                    | 40       | -          | 72                    | 30       | _           | 54                    | fz       | 0,051     | 0,060     | 0,074                            | 0,086    | 0,097 | 0,105 |
| S    | 3      | 1,5 x D | 0,3 x D                   | 0,3 x D  | 25<br>60 | -          | 40<br>80              | 20<br>48 | _          | 32<br>64              | 15<br>36 | _           | 24<br>48              | fz<br>fz | 0,027     | 0,032     | 0,039                            | 0,046    | 0,052 | 0,057 |
|      |        | 1,5 x D | 0,5 x D                   | 1xD      |          | -          | 60                    | 48       | -          | 48                    |          |             | 36                    |          | 0,041     | 0,048     | 0,059                            |          | - , - | 0,084 |
|      | 4      | 1,5 x D | 0,5 x D                   | 1 x D    | 50<br>80 | -          |                       |          | _          | 112                   | 30       | _           |                       | fz       | 0,038     | 0,044     | 0,055                            | 0,063    | 0,071 | 0,077 |
| Н    | 1      | 1,5 x D | 0,5 x D                   | 0,75 x D |          | -          | 140                   | 64       | _          |                       | 48       | _           | 84                    | fz       | 0,046     | 0,053     | 0,065                            | 0,075    | 0,083 | 0,087 |
|      | 2      | 1,5 x D | 0,2 x D                   | 0,5 x D  | 70       | _          | 120                   | 56       | -          | 96                    | 42       | _           | 72                    | fz       | 0,034     | 0,040     | 0,048                            | 0,055    | 0,060 | 0,062 |

#### ■ VariMill II<sup>™</sup> • 5747 • 5748 • Ungleiche Schneidreihenteilung

|    |     |       | 40 <u>1</u>           |                           |          |      |            |                       |         |            |                       |        |            |                       |       |       |            |                                  |          |       |       |
|----|-----|-------|-----------------------|---------------------------|----------|------|------------|-----------------------|---------|------------|-----------------------|--------|------------|-----------------------|-------|-------|------------|----------------------------------|----------|-------|-------|
|    |     |       |                       | ılterfräsen<br>lutenfräse |          |      | kur        | Z                     | ı       | nitte      | el                    |        | lang       | I                     |       |       | nulterfräs | hub pro<br>sen (A). 2<br>20% red | Zum Nute |       |       |
|    |     | Ì     |                       |                           |          |      | Αι         | ıskraglä              | inge de | r We       | erkzeug               | aufnah | me         |                       |       |       |            |                                  |          |       |       |
|    |     |       | A                     |                           | В        |      | P15<br>S15 |                       |         | P15<br>S15 | _                     |        | P15<br>S15 | _                     |       |       | D1         | – Durch                          | messer   |       |       |
| We | rks | toff- |                       |                           |          | wi   | ndig       | esch-<br>keit<br>/min | vii     | ndig       | esch-<br>keit<br>/min | wir    | ndigl      | esch-<br>keit<br>/min |       |       |            |                                  |          |       |       |
| g  | rup | ре    | ар                    | ae                        | ар       | min. |            | max.                  | min.    |            | max.                  | min.   |            | max.                  | mm    | 10,0  | 12,0       | 16,0                             | 20,0     | 25,0  | 32,0  |
|    |     | 0     | 1,5 x D               | 0,5 x D                   | 1 x D    | 150  | -          | 200                   | 135     | -          | 180                   | 135    | _          | 180                   | fz    | 0,061 | 0,070      | 0,086                            | 0,097    | 0,105 | 0,106 |
|    |     | 1     | 1,5 x D 0,5 x D 1 x D | 1 x D                     | 150      | -    | 200        | 135                   | -       | 180        | 135                   | -      | 180        | fz                    | 0,061 | 0,070 | 0,086      | 0,097                            | 0,105    | 0,106 |       |
|    |     | 2     | 1,5 x D               | 0,5 x D                   | 1 x D    | 140  | _          | 190                   | 126     | ı          | 171                   | 126    | _          | 171                   | fz    | 0,061 | 0,070      | 0,086                            | 0,097    | 0,105 | 0,106 |
| F  | •   | 3     | 1,5 x D               | 0,5 x D                   | 1 x D    | 120  | _          | 160                   | 108     | _          | 144                   | 108    | _          | 144                   | fz    | 0,051 | 0,060      | 0,074                            | 0,086    | 0,097 | 0,105 |
|    |     | 4     | 1,5 x D               | 0,5 x D                   | 0,75 x D | 90   | _          | 150                   | 81      | _          | 135                   | 81     | _          | 135                   | fz    | 0,046 | 0,053      | 0,065                            | 0,075    | 0,083 | 0,087 |
|    |     | 5     | 1,5 x D               | 0,5 x D                   | 1 x D    | 60   | _          | 100                   | 51      | ı          | 85                    | 48     | _          | 80                    | fz    | 0,041 | 0,048      | 0,059                            | 0,069    | 0,077 | 0,084 |
|    |     | 6     | 1,5 x D               | 0,5 x D                   | 0,75 x D | 50   | _          | 75                    | 42      | _          | 64                    | 40     | _          | 60                    | fz    | 0,034 | 0,040      | 0,048                            | 0,055    | 0,060 | 0,062 |
|    |     | 1     | 1,5 x D               | 0,5 x D                   | 1 x D    | 90   | _          | 115                   | 72      | ı          | 92                    | 63     | _          | 80                    | fz    | 0,051 | 0,060      | 0,074                            | 0,086    | 0,097 | 0,105 |
| N  | 1   | 2     | 1,5 x D               | 0,5 x D                   | 1 x D    | 60   | _          | 80                    | 48      | -          | 64                    | 42     | _          | 56                    | fz    | 0,041 | 0,048      | 0,059                            | 0,069    | 0,077 | 0,084 |
|    |     | 3     | 1,5 x D               | 0,5 x D                   | 1 x D    | 60   | _          | 70                    | 48      | ı          | 56                    | 42     | _          | 49                    | fz    | 0,034 | 0,040      | 0,048                            | 0,055    | 0,060 | 0,062 |
|    |     | 1     | 1,5 x D               | 0,5 x D                   | 1 x D    | 120  | _          | 150                   | 108     | _          | 135                   | 108    | _          | 135                   | fz    | 0,061 | 0,070      | 0,086                            | 0,097    | 0,105 | 0,106 |
| ŀ  |     | 2     | 1,5 x D               | 0,5 x D                   | 1 x D    | 110  | _          | 140                   | 99      | _          | 126                   | 99     | _          | 126                   | fz    | 0,051 | 0,060      | 0,074                            | 0,086    | 0,097 | 0,105 |
|    |     | 3     | 1,5 x D               | 0,5 x D                   | 1 x D    | 110  | _          | 130                   | 99      | -          | 117                   | 99     | _          | 117                   | fz    | 0,041 | 0,048      | 0,059                            | 0,069    | 0,077 | 0,084 |
|    |     | 1     | 1,5 x D               | 0,3 x D                   | 0,3 x D  | 50   | _          | 90                    | 40      | _          | 72                    | 30     | _          | 54                    | fz    | 0,051 | 0,060      | 0,074                            | 0,086    | 0,097 | 0,105 |
|    |     | 2     | 1,5 x D               | 0,3 x D                   | 0,3 x D  | 25   | _          | 40                    | 20      | ı          | 32                    | 15     | _          | 24                    | fz    | 0,027 | 0,032      | 0,039                            | 0,046    | 0,052 | 0,057 |
| ,  | ٦ [ | 3     | 1,5 x D               | 0,5 x D                   | 1 x D    | 60   | _          | 80                    | 48      | _          | 64                    | 36     | _          | 48                    | fz    | 0,041 | 0,048      | 0,059                            | 0,069    | 0,077 | 0,084 |
|    |     | 4     | 1,5 x D               | 0,5 x D                   | 1 x D    | 50   | _          | 60                    | 40      | ı          | 48                    | 30     | _          | 36                    | fz    | 0,038 | 0,044      | 0,055                            | 0,063    | 0,071 | 0,077 |
|    |     | 1     | 1,5 x D               | 0,5 x D                   | 0,75 x D | 80   | _          | 140                   | 64      | _          | 112                   | 48     | _          | 84                    | fz    | 0,046 | 0,053      | 0,065                            | 0,075    | 0,083 | 0,087 |
|    |     | 2     | 1,5 x D               | 0,2 x D                   | 0,5 x D  | 70   | _          | 120                   | 56      | -          | 96                    | 42     | _          | 72                    | fz    | 0,034 | 0,040      | 0,048                            | 0,055    | 0,060 | 0,062 |

HINWEIS: Ein niedrigerer Wert für die Schnittgeschwindigkeit wird für Anwendungen mit hoher Abtragleistung oder für größere Härte (Zerspanbarkeit) innerhalb der Gruppe verwendet. Ein höherer Wert für die Schnittgeschwindigkeit wird für Schlichtanwendungen oder für geringere Härte (Zerspanbarkeit) innerhalb der Gruppe verwendet.

Die Parameter oben basieren auf Idealbedingungen. Bei Bearbeitungszentren mit kleinerer Kegelaufnahme sind die Parameter entsprechend den Durchmessern von >12 mm anzupassen. Bei Walzfräsanwendungen mit ap > 1 x D bitte fz um 20% reduzieren!

## Leistungsstarke modulare DUO-λOCK® Schaftfräser • VariMill™ Schruppen/Schlichten

#### ■ VariMill III<sup>™</sup> • 774E • Ungleiche Schneidreihenteilung • Schruppen

|      |                                 |                                                                 |                                                                                                 |                                              |                           |                                                |                                              |                          |                                              |                                              |                          |                                                | C-thirt                                | HAY IN                                                               |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |
|------|---------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------|------------------------------------------------|----------------------------------------------|--------------------------|----------------------------------------------|----------------------------------------------|--------------------------|------------------------------------------------|----------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
|      |                                 | Schulterf                                                       | räsen (A)                                                                                       |                                              | kurz                      |                                                |                                              | mitte                    | el                                           |                                              | lang                     |                                                | E                                      | mpfohle                                                              | ner Vorso<br>zum S                                                   | chub pro i                                                           |                                                                      | = mm/Zal                                                             | nn)                                                                  |
|      |                                 |                                                                 |                                                                                                 |                                              | -                         | luskragi                                       | änge de                                      | er We                    | rkzeuga                                      | ufnahm                                       | ie                       |                                                |                                        |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |
|      |                                 | ,                                                               | A                                                                                               |                                              | /S15I                     |                                                |                                              | /S15I                    |                                              |                                              | /S15F                    |                                                |                                        |                                                                      | D1                                                                   | - Durch                                                              | messer                                                               |                                                                      |                                                                      |
| Werk | stoff-                          |                                                                 |                                                                                                 | wi                                           | nittge<br>indigk<br>vc m/ | eit                                            | wi                                           | nittge<br>ndigl<br>vc m/ | esch-<br>ceit<br>min                         | wi                                           | nittge<br>ndigk<br>vc m/ | eit                                            |                                        |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |
| gru  | ре                              | ар                                                              | ae                                                                                              | min.                                         |                           | max.                                           | min.                                         |                          | max.                                         | min.                                         |                          | max.                                           | mm                                     | 10,0                                                                 | 12,0                                                                 | 16,0                                                                 | 20,0                                                                 | 25,0                                                                 | 32,0                                                                 |
| P    | 4                               | Ap max.                                                         | 000                                                                                             |                                              |                           | 450                                            |                                              |                          |                                              |                                              |                          |                                                |                                        |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |
|      |                                 | др шах.                                                         | 0,3 x D                                                                                         | 90                                           | _                         | 150                                            | 81                                           | _                        | 135                                          | 81                                           | _                        | 135                                            | fz                                     | 0,043                                                                | 0,050                                                                | 0,061                                                                | 0,070                                                                | 0,078                                                                | 0,082                                                                |
| Р    | 5                               | Ap max.                                                         | 0,3 x D                                                                                         | 60                                           | _                         | 100                                            | 51                                           | -                        | 135<br>85                                    | 81<br>48                                     | -                        | 135<br>80                                      | fz<br>fz                               | 0,043<br>0,039                                                       | 0,050<br>0,045                                                       | 0,061<br>0,056                                                       | 0,070<br>0,065                                                       | 0,078<br>0,073                                                       | 0,082<br>0,079                                                       |
| Р    | _                               |                                                                 | - / -                                                                                           |                                              | _                         |                                                |                                              |                          |                                              |                                              | -                        |                                                |                                        |                                                                      | -                                                                    |                                                                      | ,                                                                    |                                                                      | ,                                                                    |
| M    | _                               | Ap max.                                                         | 0,3 x D                                                                                         | 60                                           | -                         | 100                                            | 51                                           | -                        | 85                                           | 48                                           | -                        | 80                                             | fz                                     | 0,039                                                                | 0,045                                                                | 0,056                                                                | 0,065                                                                | 0,073                                                                | 0,079                                                                |
|      | 5                               | Ap max.<br>Ap max.                                              | 0,3 x D<br>0,3 x D                                                                              | 60<br>90                                     | -                         | 100<br>115                                     | 51<br>72                                     | -                        | 85<br>92<br>64<br>56                         | 48<br>63<br>42<br>42                         | -                        | 80<br>80,5<br>56<br>49                         | fz<br>fz                               | 0,039<br>0,048                                                       | 0,045<br>0,056                                                       | 0,056<br>0,070                                                       | 0,065<br>0,081                                                       | 0,073<br>0,091                                                       | 0,079<br>0,099                                                       |
|      | 5<br>1<br>2                     | Ap max.<br>Ap max.<br>Ap max.                                   | 0,3 x D<br>0,3 x D<br>0,3 x D                                                                   | 60<br>90<br>60<br>60<br>50                   | -<br>-<br>-               | 100<br>115<br>80                               | 51<br>72<br>48<br>48<br>40                   | -<br>-<br>-              | 85<br>92<br>64<br>56<br>72                   | 48<br>63<br>42                               | -<br>-<br>-              | 80<br>80,5<br>56<br>49<br>54                   | fz<br>fz<br>fz                         | 0,039<br>0,048<br>0,039                                              | 0,045<br>0,056<br>0,045                                              | 0,056<br>0,070<br>0,056                                              | 0,065<br>0,081<br>0,065                                              | 0,073<br>0,091<br>0,073                                              | 0,079<br>0,099<br>0,079                                              |
| M    | 5<br>1<br>2<br>3<br>1<br>2      | Ap max. Ap max. Ap max. Ap max.                                 | 0,3 x D<br>0,3 x D<br>0,3 x D<br>0,3 x D<br>0,3 x D<br>0,3 x D                                  | 60<br>90<br>60<br>60<br>50<br>25             | -<br>-<br>-               | 100<br>115<br>80<br>70<br>90<br>40             | 51<br>72<br>48<br>48<br>40<br>20             | -<br>-<br>-              | 85<br>92<br>64<br>56<br>72<br>32             | 48<br>63<br>42<br>42<br>30<br>15             | -<br>-<br>-              | 80<br>80,5<br>56<br>49<br>54<br>24             | fz          | 0,039<br>0,048<br>0,039<br>0,032<br>0,048<br>0,026                   | 0,045<br>0,056<br>0,045<br>0,037<br>0,056<br>0,030                   | 0,056<br>0,070<br>0,056<br>0,046<br>0,070<br>0,037                   | 0,065<br>0,081<br>0,065<br>0,052<br>0,081<br>0,043                   | 0,073<br>0,091<br>0,073<br>0,057<br>0,091<br>0,049                   | 0,079<br>0,099<br>0,079<br>0,058<br>0,099<br>0,054                   |
|      | 5<br>1<br>2<br>3                | Ap max. Ap max. Ap max. Ap max. Ap max. Ap max.                 | 0,3 x D<br>0,3 x D<br>0,3 x D<br>0,3 x D<br>0,3 x D<br>0,3 x D<br>0,3 x D                       | 60<br>90<br>60<br>60<br>50<br>25<br>60       | -<br>-<br>-<br>-          | 100<br>115<br>80<br>70<br>90<br>40<br>80       | 51<br>72<br>48<br>48<br>40<br>20<br>48       | -<br>-<br>-<br>-         | 85<br>92<br>64<br>56<br>72<br>32<br>64       | 48<br>63<br>42<br>42<br>30<br>15<br>36       | -<br>-<br>-<br>-         | 80<br>80,5<br>56<br>49<br>54<br>24<br>48       | fz       | 0,039<br>0,048<br>0,039<br>0,032<br>0,048<br>0,026<br>0,039          | 0,045<br>0,056<br>0,045<br>0,037<br>0,056                            | 0,056<br>0,070<br>0,056<br>0,046<br>0,070<br>0,037<br>0,056          | 0,065<br>0,081<br>0,065<br>0,052<br>0,081<br>0,043<br>0,065          | 0,073<br>0,091<br>0,073<br>0,057<br>0,091<br>0,049<br>0,073          | 0,079<br>0,099<br>0,079<br>0,058<br>0,099<br>0,054<br>0,079          |
| M    | 5<br>1<br>2<br>3<br>1<br>2      | Ap max.         | 0,3 x D<br>0,3 x D | 60<br>90<br>60<br>60<br>50<br>25<br>60<br>50 | -<br>-<br>-<br>-<br>-     | 100<br>115<br>80<br>70<br>90<br>40<br>80<br>60 | 51<br>72<br>48<br>48<br>40<br>20<br>48<br>40 | -<br>-<br>-<br>-<br>-    | 85<br>92<br>64<br>56<br>72<br>32<br>64<br>48 | 48<br>63<br>42<br>42<br>30<br>15<br>36<br>30 | -<br>-<br>-<br>-<br>-    | 80<br>80,5<br>56<br>49<br>54<br>24<br>48<br>36 | fz | 0,039<br>0,048<br>0,039<br>0,032<br>0,048<br>0,026<br>0,039<br>0,036 | 0,045<br>0,056<br>0,045<br>0,037<br>0,056<br>0,030<br>0,045<br>0,041 | 0,056<br>0,070<br>0,056<br>0,046<br>0,070<br>0,037<br>0,056<br>0,051 | 0,065<br>0,081<br>0,065<br>0,052<br>0,081<br>0,043<br>0,065<br>0,059 | 0,073<br>0,091<br>0,073<br>0,057<br>0,091<br>0,049<br>0,073<br>0,067 | 0,079<br>0,099<br>0,079<br>0,058<br>0,099<br>0,054<br>0,079<br>0,072 |
| M    | 5<br>1<br>2<br>3<br>1<br>2<br>3 | Ap max. | 0,3 x D<br>0,3 x D<br>0,3 x D<br>0,3 x D<br>0,3 x D<br>0,3 x D<br>0,3 x D                       | 60<br>90<br>60<br>60<br>50<br>25<br>60       | -<br>-<br>-<br>-<br>-     | 100<br>115<br>80<br>70<br>90<br>40<br>80       | 51<br>72<br>48<br>48<br>40<br>20<br>48       | -<br>-<br>-<br>-<br>-    | 85<br>92<br>64<br>56<br>72<br>32<br>64       | 48<br>63<br>42<br>42<br>30<br>15<br>36       | -<br>-<br>-<br>-<br>-    | 80<br>80,5<br>56<br>49<br>54<br>24<br>48       | fz       | 0,039<br>0,048<br>0,039<br>0,032<br>0,048<br>0,026<br>0,039          | 0,045<br>0,056<br>0,045<br>0,037<br>0,056<br>0,030<br>0,045          | 0,056<br>0,070<br>0,056<br>0,046<br>0,070<br>0,037<br>0,056          | 0,065<br>0,081<br>0,065<br>0,052<br>0,081<br>0,043<br>0,065          | 0,073<br>0,091<br>0,073<br>0,057<br>0,091<br>0,049<br>0,073          | 0,079<br>0,099<br>0,079<br>0,058<br>0,099<br>0,054<br>0,079          |

#### ■ VariMill III • 774E • Ungleiche Schneidreihenteilung • Schlichten

|      |        | #1.100<br>#1.100 |            |      |                 |                      |         |                 |                      |        |                          |      | C-11 | ***     |       |                         |                         |          |       |
|------|--------|------------------|------------|------|-----------------|----------------------|---------|-----------------|----------------------|--------|--------------------------|------|------|---------|-------|-------------------------|-------------------------|----------|-------|
|      |        | Schulter         | fräsen (A) |      | kurz            | :                    |         | mitte           | ıl                   |        | lang                     |      | E    | mpfohle |       | hub pro i<br>chulterfra | Zahn (fz =<br>isen (A). | = mm/Zal | hn)   |
|      |        |                  |            |      | P               | uskragl              | änge de | er We           | rkzeuga              | ufnahn | ne                       |      |      |         |       |                         |                         |          |       |
|      |        |                  | A          | W    | /S15l           | PE                   | W       | /S15l           | PE                   | W      | /S15F                    | PE   |      |         | D1    | - Durch                 | messer                  |          |       |
| Werk | stoff- |                  | •          | l wi | nittge<br>ndigl | esch-<br>ceit<br>min | l wi    | nittge<br>ndigl | esch-<br>ceit<br>min | wi     | nittge<br>ndigk<br>vc m/ | ceit |      |         | 5.    | Duroi                   | incooci                 |          |       |
| gru  | ppe    | ар               | ae         | min. |                 | max.                 | min.    |                 | max.                 | min.   |                          | max. | mm   | 10,0    | 12,0  | 16,0                    | 20,0                    | 25,0     | 32,0  |
| P    | 4      | Ap max.          | 0,06 x D   | 180  | -               | 300                  | 162     | -               | 270                  | 162    | _                        | 270  | fz   | 0,052   | 0,060 | 0,074                   | 0,084                   | 0,094    | 0,098 |
|      | 5      | Ap max.          | 0,06 x D   | 120  | _               | 200                  | 102     | _               | 170                  | 96     |                          | 160  | fz   | 0,046   | 0,054 | 0,067                   | 0,078                   | 0,087    | 0,095 |
|      | 1      | Ap max.          | 0,06 x D   | 180  | _               | 230                  | 144     | _               | 184                  | 126    | _                        | 161  | fz   | 0,058   | 0,067 | 0,084                   | 0,097                   | 0,109    | 0,118 |
| M    | 2      | Ap max.          | 0,06 x D   | 120  | _               | 160                  | 96      | _               | 128                  | 84     | _                        | 112  | fz   | 0,046   | 0,054 | 0,067                   | 0,078                   | 0,087    | 0,095 |
|      | 3      | Ap max.          | 0,06 x D   | 120  | _               | 140                  | 96      | _               | 112                  | 84     |                          | 98   | fz   | 0,039   | 0,045 | 0,055                   | 0,062                   | 0,068    | 0,070 |
|      | 1      | Ap max.          | 0,06 x D   | 100  | -               | 180                  | 80      | _               | 144                  | 60     | _                        | 108  | fz   | 0,058   | 0,067 | 0,084                   | 0,097                   | 0,109    | 0,118 |
| s    | 2      | Ap max.          | 0,06 x D   | 50   | _               | 80                   | 40      | _               | 64                   | 30     | _                        | 48   | fz   | 0,031   | 0,036 | 0,045                   | 0,052                   | 0,059    | 0,065 |
| _ 3  | 3      | Ap max.          | 0,06 x D   | 120  | _               | 160                  | 96      | _               | 128                  | 72     | _                        | 96   | fz   | 0,046   | 0,054 | 0,067                   | 0,078                   | 0,087    | 0,095 |
|      | 4      | Ap max.          | 0,06 x D   | 100  | _               | 120                  | 80      | _               | 96                   | 60     | _                        | 72   | fz   | 0,043   | 0,050 | 0,062                   | 0,071                   | 0,080    | 0,087 |
| н    | 1      | Ap max.          | 0,06 x D   | 160  | _               | 280                  | 128     | _               | 224                  | 96     | _                        | 168  | fz   | 0,052   | 0,060 | 0,074                   | 0,084                   | 0,094    | 0,098 |
|      | 2      | Ap max.          | 0,06 x D   | 140  | _               | 240                  | 112     | _               | 192                  | 84     | _                        | 144  | fz   | 0,039   | 0,045 | 0,055                   | 0,062                   | 0,068    | 0,070 |

HINWEIS: Ein niedrigerer Wert für die Schnittgeschwindigkeit wird für Anwendungen mit hoher Abtragleistung oder für größere Härte (Zerspanbarkeit) innerhalb der Gruppe verwendet. Ein höherer Wert für die Schnittgeschwindigkeit wird für Schlichtanwendungen oder für geringere Härte (Zerspanbarkeit) innerhalb der Gruppe verwendet.

Die Parameter oben basieren auf Idealbedingungen. Bei Bearbeitungszentren mit kleinerer Kegelaufnahme sind die Parameter entsprechend den Durchmessern von >12 mm anzupassen.

Leistungsstarke modulare DUO-λOCK® Schaftfräser • VariMill™ Schlichten



#### ■ VariMill mit Kugelkopf • 4XN0 • Ungleiche Schneidreihenteilung

|      |        |          | ılterfräsen<br>utenfräse |          |      | kurz |               | ı       | nitte | el      |        | lang | ı             |    |       | nulterfräs | hub pro<br>sen (A). Z<br>20% red | Zum Nute |       |       |
|------|--------|----------|--------------------------|----------|------|------|---------------|---------|-------|---------|--------|------|---------------|----|-------|------------|----------------------------------|----------|-------|-------|
|      |        |          |                          |          |      | Au   | skraglä       | inge de | r We  | erkzeug | aufnah | me   |               |    |       |            |                                  |          |       |       |
|      |        |          |                          |          | w    | P15  | oF .          | w       | P15   | PF      | w      | P15  | PF            |    |       |            |                                  |          |       |       |
| Werk | stoff- | А        |                          | В        | Schr |      | esch-<br>keit | Schr    | ittge | esch-   | Schr   |      | esch-<br>keit |    |       | D1         | – Durch                          | messer   |       |       |
| gru  | ppe    | ар       | ae                       | ар       | min. |      | max.          | min.    |       | max.    | min.   |      | max.          | mm | 10,0  | 12,0       | 16,0                             | 20,0     | 25,0  | 32,0  |
|      | 0      | 1,25 x D | 0,5 x D                  | 1 x D    | 150  | -    | 200           | 135     | _     | 180     | 135    | -    | 180           | fz | 0,061 | 0,070      | 0,086                            | 0,097    | 0,105 | 0,106 |
|      | 1      | 1,25 x D | 0,5 x D                  | 1 x D    | 150  | _    | - 200 135     |         |       | 180     | 135    | _    | 180           | fz | 0,061 | 0,070      | 0,086                            | 0,097    | 0,105 | 0,106 |
|      | 2      | 1,25 x D | 0,5 x D                  | 1 x D    | 140  | _    | 190           | 126     | _     | 171     | 126    | _    | 171           | fz | 0,061 | 0,070      | 0,086                            | 0,097    | 0,105 | 0,106 |
| Р    | 3      | 1,25 x D | 0,5 x D                  | 1 x D    | 120  | _    | 160           | 108     | _     | 144     | 108    | _    | 144           | fz | 0,051 | 0,060      | 0,074                            | 0,086    | 0,097 | 0,105 |
|      | 4      | 1,25 x D | 0,5 x D                  | 0,75 x D | 90   | _    | 150           | 81      | _     | 135     | 81     | _    | 135           | fz | 0,046 | 0,053      | 0,065                            | 0,075    | 0,083 | 0,087 |
|      | 5      | 1,25 x D | 0,5 x D                  | 1 x D    | 60   | _    | 100           | 51      | _     | 85      | 48     | _    | 80            | fz | 0,041 | 0,048      | 0,059                            | 0,069    | 0,077 | 0,084 |
|      | 6      | 1,25 x D | 0,5 x D                  | 0,75 x D | 50   | -    | 75            | 42      | _     | 64      | 40     | _    | 60            | fz | 0,034 | 0,040      | 0,048                            | 0,055    | 0,060 | 0,062 |
|      | 1      | 1,25 x D | 0,5 x D                  | 1 x D    | 90   | _    | 115           | 72      | _     | 92      | 63     | _    | 80            | fz | 0,051 | 0,060      | 0,074                            | 0,086    | 0,097 | 0,105 |
| M    | 2      | 1,25 x D | 0,5 x D                  | 1 x D    | 60   | _    | 80            | 48      | _     | 64      | 42     | _    | 56            | fz | 0,041 | 0,048      | 0,059                            | 0,069    | 0,077 | 0,084 |
|      | 3      | 1,25 x D | 0,5 x D                  | 1 x D    | 60   | _    | 70            | 48      | _     | 56      | 42     | _    | 49            | fz | 0,034 | 0,040      | 0,048                            | 0,055    | 0,060 | 0,062 |
|      | 1      | 1,25 x D | 0,5 x D                  | 1 x D    | 120  | -    | 150           | 108     | -     | 135     | 108    | _    | 135           | fz | 0,061 | 0,070      | 0,086                            | 0,097    | 0,105 | 0,106 |
| K    | 2      | 1,25 x D | 0,5 x D                  | 1 x D    | 110  | _    | 140           | 99      | _     | 126     | 99     | _    | 126           | fz | 0,051 | 0,060      | 0,074                            | 0,086    | 0,097 | 0,105 |
|      | 3      | 1,25 x D | 0,5 x D                  | 1 x D    | 110  | _    | 130           | 99      | _     | 117     | 99     | _    | 117           | fz | 0,041 | 0,048      | 0,059                            | 0,069    | 0,077 | 0,084 |
|      | 1      | 1 x D    | 0,3 x D                  | 0,3 x D  | 50   | _    | 90            | 40      | _     | 72      | 30     | _    | 54            | fz | 0,051 | 0,060      | 0,074                            | 0,086    | 0,097 | 0,105 |
| S    | 2      | 1 x D    | 0,3 x D                  | 0,3 x D  | 25   | _    | 40            | 20      | _     | 32      | 15     | _    | 24            | fz | 0,027 | 0,032      | 0,039                            | 0,046    | 0,052 | 0,057 |
|      | 3      | 1,25 x D | 0,5 x D                  | 1 x D    | 60   | -    | 80            | 48      | _     | 64      | 36     | _    | 48            | fz | 0,041 | 0,048      | 0,059                            | 0,069    | 0,077 | 0,084 |
|      | 4      | 1,25 x D | 0,5 x D                  | 1 x D    | 50   | _    | 60            | 40      |       | 48      | 30     |      | 36            | fz | 0,038 | 0,044      | 0,055                            | 0,063    | 0,071 | 0,077 |
| H    | 1      | 1,25 x D | 0,5 x D                  | 0,75 x D | 80   | -    | 140           | 64      | _     | 112     | 48     | _    | 84            | fz | 0,046 | 0,053      | 0,065                            | 0,075    | 0,083 | 0,087 |
|      | 2      | 1,25 x D | 0,2 x D                  | 0,5 x D  | 70   | _    | 120           | 56      | _     | 96      | 42     | _    | 72            | fz | 0,034 | 0,040      | 0,048                            | 0,055    | 0,060 | 0,062 |

HINWEIS: Ein niedrigerer Wert für die Schnittgeschwindigkeit wird für Anwendungen mit hoher Abtragleistung oder für größere Härte (Zerspanbarkeit) innerhalb der Gruppe verwendet.
Ein höherer Wert für die Schnittgeschwindigkeit wird für Schlichtanwendungen oder für geringere Härte (Zerspanbarkeit) innerhalb der Gruppe verwendet.
Die Parameter oben basieren auf Idealbedingungen. Bei Bearbeitungszentren mit kleinerer Kegelaufnahme sind die Parameter entsprechend den Durchmessem von >12 mm anzupassen.
Bei Walzfräsanwendungen mit ap > 1 x D bitte fz um 20% reduzieren!

#### ■ 4547 • 4548 • Mehrschneidiger Schlichtfräser • Metrisch

|       |           | 97       |            |      |                           |         |          |                  |                      |        |                          |                    |    |         |       |            |         |          |       |
|-------|-----------|----------|------------|------|---------------------------|---------|----------|------------------|----------------------|--------|--------------------------|--------------------|----|---------|-------|------------|---------|----------|-------|
|       |           | Schulter | fräsen (A) |      | kurz                      |         |          | mitte            | el                   |        | lang                     |                    | E  | mpfohle |       | chub pro i |         | = mm/Zal | hn)   |
|       |           |          |            |      | -                         | Auskrag | länge de | er We            | erkzeuga             | ufnahm | е                        |                    |    |         |       |            |         |          |       |
|       |           |          | Α          | ٧    | VP15I                     | PΕ      | ٧        | VP15             | PE                   | W      | /P15I                    | PE                 |    |         | D1    | - Durch    |         |          |       |
| Werk  | stoff-    |          | A          | w    | nittge<br>indigk<br>vc m/ | eit     | W        | nittge<br>indigl | esch-<br>keit<br>min | wi     | nittge<br>ndigk<br>/c m/ | sch-<br>eit<br>min |    |         | וט    | - Durch    | imesser |          |       |
| gru   | рре       | ар       | ae         | min. |                           | max.    | min.     |                  | max.                 | min.   |                          | max.               | mm | 10,0    | 12,0  | 16,0       | 20,0    | 25,0     | 32,0  |
|       | 0         | 1,5 x D  | 0,05 x D   | 150  | -                         | 200     | 135      | -                | 180                  | 135    | -                        | 180                | fz | 0,072   | 0,083 | 0,101      | 0,114   | 0,124    | 0,125 |
|       | 1         | 1,5 x D  | 0,05 x D   | 150  | _                         | 200     | 135      | _                | 180                  | 135    | _                        | 180                | fz | 0,072   | 0,083 | 0,101      | 0,114   | 0,124    | 0,125 |
|       | 2         | 1,5 x D  | 0,05 x D   | 140  | _                         | 190     | 126      | _                | 171                  | 126    | _                        | 171                | fz | 0,072   | 0,083 | 0,101      | 0,114   | 0,124    | 0,125 |
| P     | 3         | 1,5 x D  | 0,05 x D   | 120  | _                         | 160     | 108      | _                | 144                  | 108    | _                        | 144                | fz | 0,061   | 0,070 | 0,087      | 0,101   | 0,114    | 0,123 |
|       | 4         | 1,5 x D  | 0,05 x D   | 90   | -                         | 150     | 81       | _                | 135                  | 81     | _                        | 135                | fz | 0,054   | 0,062 | 0,077      | 0,088   | 0,098    | 0,102 |
|       | 5         | 1,5 x D  | 0,05 x D   | 60   | _                         | 100     | 51       | _                | 85                   | 48     | _                        | 80                 | fz | 0,048   | 0,056 | 0,070      | 0,081   | 0,091    | 0,099 |
|       | 6         | 1,5 x D  | 0,05 x D   | 50   | _                         | 75      | 42,5     | _                | 63,75                | 40     | _                        | 60                 | fz | 0,040   | 0,047 | 0,057      | 0,065   | 0,071    | 0,073 |
|       | 1         | 1,5 x D  | 0,05 x D   | 90   | -                         | 115     | 72       | _                | 92                   | 63     | _                        | 80,5               | fz | 0,061   | 0,070 | 0,087      | 0,101   | 0,114    | 0,123 |
| M     | 2         | 1,5 x D  | 0,05 x D   | 60   | -                         | 80      | 48       | _                | 64                   | 42     | _                        | 56                 | fz | 0,048   | 0,056 | 0,070      | 0,081   | 0,091    | 0,099 |
|       | 3         | 1,5 x D  | 0,05 x D   | 60   | _                         | 70      | 48       | _                | 56                   | 42     | _                        | 49                 | fz | 0,040   | 0,047 | 0,057      | 0,065   | 0,071    | 0,073 |
|       | 1         | 1,5 x D  | 0,05 x D   | 120  | -                         | 150     | 108      | -                | 135                  | 108    | _                        | 135                | fz | 0,072   | 0,083 | 0,101      | 0,114   | 0,124    | 0,125 |
| K     | 2         | 1,5 x D  | 0,05 x D   | 110  | _                         | 140     | 99       | _                | 126                  | 99     | _                        | 126                | fz | 0,061   | 0,070 | 0,087      | 0,101   | 0,114    | 0,123 |
|       | 3         | 1,5 x D  | 0,05 x D   | 110  | -                         | 130     | 99       | -                | 117                  | 99     | -                        | 117                | fz | 0,048   | 0,056 | 0,070      | 0,081   | 0,091    | 0,099 |
|       | 1         | 1,5 x D  | 0,05 x D   | 50   | -                         | 90      | 40       | -                | 72                   | 30     | -                        | 54                 | fz | 0,061   | 0,070 | 0,087      | 0,101   | 0,114    | 0,123 |
| s     | 2         | 1,5 x D  | 0,05 x D   | 25   | -                         | 40      | 20       | _                | 32                   | 15     | _                        | 24                 | fz | 0,032   | 0,037 | 0,046      | 0,054   | 0,061    | 0,067 |
|       | 3         | 1,5 x D  | 0,05 x D   | 25   | -                         | 40      | 20       | _                | 32                   | 15     | -                        | 24                 | fz | 0,032   | 0,037 | 0,046      | 0,054   | 0,061    | 0,067 |
|       | 4         | 1,5 x D  | 0,05 x D   | 50   | -                         | 60      | 40       | _                | 48                   | 30     | _                        | 36                 | fz | 0,045   | 0,052 | 0,064      | 0,074   | 0,084    | 0,090 |
| н     | $\square$ | 1,5 x D  | 0,05 x D   | 80   | -                         | 140     | 64       | _                | 112                  | 48     | -                        | 84                 | fz | 0,054   | 0,062 | 0,077      | 0,088   | 0,098    | 0,102 |
| - ' ' | 2         | 1,5 x D  | 0,05 x D   | 70   | _                         | 120     | 56       | _                | 96                   | 42     |                          | 72                 | fz | 0,040   | 0,047 | 0,057      | 0,065   | 0,071    | 0,073 |

HINWEIS: Ein niedrigerer Wert für die Schnittgeschwindigkeit wird für Anwendungen mit hoher Abtragleistung oder für größere Härte (Zerspanbarkeit) innerhalb der Gruppe verwendet. Ein höherer Wert für die Schnittgeschwindigkeit wird für Schlichtanwendungen oder für geringere Härte (Zerspanbarkeit) innerhalb der Gruppe verwendet. Die Parameter oben basieren auf Idealbedingungen. Bei Bearbeitungszentren mit kleinerem Kegel die Parameter entsprechend dem Durchmesser von >12 mm anpassen.

#### Leistungsstarke modulare DUO-λOCK® Schaftfräser • VariMill™ Schruppen

#### ■ 4946 • Hochleistungs-Schruppfräser • Metrisch

|      |        |         | lterfräsen<br>utenfräse |          | kurz                                      |        |      | r                                         | mittel |                                           |       | lang             | l     | Empfohlener Vorschub pro Zahn (fz = mm/Zahn) für das Schulterfräsen (A). Zum Nutenfräsen (B), fz um 20% reduzieren. |       |       |       |       |       |       |
|------|--------|---------|-------------------------|----------|-------------------------------------------|--------|------|-------------------------------------------|--------|-------------------------------------------|-------|------------------|-------|---------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|
|      |        |         |                         |          | Auskraglänge der Werkzeugaufnahme         |        |      |                                           |        |                                           |       |                  |       |                                                                                                                     |       |       |       |       |       |       |
|      |        | A toff- |                         |          |                                           | WP15PE |      |                                           | WP15PE |                                           |       | WP15PE           |       |                                                                                                                     |       |       |       |       |       |       |
| Werl | stoff- |         |                         | В        | Schnittgesch-<br>windigkeit<br>– vc m/min |        |      | Schnittgesch-<br>windigkeit<br>– vc m/min |        | Schnittgesch-<br>windigkeit<br>– vc m/min |       | D1 — Durchmesser |       |                                                                                                                     |       |       |       |       |       |       |
| grı  | ірре   | ар      | ae                      | ар       | min.                                      |        | max. | min.                                      |        | max.                                      | min.  |                  | max.  | mm                                                                                                                  | 10,0  | 12,0  | 16,0  | 20,0  | 25,0  | 32,0  |
|      | 0      | 1,5 x D | 0,5 x D                 | 1 x D    | 120                                       | _      | 160  | 108                                       | _      | 144                                       | 108   | _                | 144   | fz                                                                                                                  | 0,061 | 0,070 | 0,086 | 0,097 | 0,105 | 0,106 |
|      | 1      | 1,5 x D | 0,5 x D                 | 1 x D    | 120                                       | _      | 160  | 108                                       | _      | 144                                       | 108   | _                | 144   | fz                                                                                                                  | 0,061 | 0,070 | 0,086 | 0,097 | 0,105 | 0,106 |
| P    | 2      | 1,5 x D | 0,5 x D                 | 1 x D    | 112                                       | _      | 152  | 100,8                                     | _      | 136,8                                     | 100,8 | _                | 136,8 | fz                                                                                                                  | 0,061 | 0,070 | 0,086 | 0,097 | 0,105 | 0,106 |
|      | 3      | 1,5 x D | 0,4 x D                 | 0,75 x D | 96                                        | _      | 128  | 86,4                                      | -      | 115,2                                     | 86,4  | _                | 115,2 | fz                                                                                                                  | 0,051 | 0,060 | 0,074 | 0,086 | 0,097 | 0,105 |
|      | 4      | 1,5 x D | 0,3 x D                 | 0,30 x D | 72                                        | _      | 120  | 64,8                                      | -      | 108                                       | 64,8  | _                | 108   | fz                                                                                                                  | 0,046 | 0,053 | 0,065 | 0,075 | 0,083 | 0,087 |
|      | 5      | 1,5 x D | 0,4 x D                 | 0,75 x D | 48                                        | _      | 80   | 40,8                                      | ı      | 68                                        | 38,4  | _                | 64    | fz                                                                                                                  | 0,041 | 0,048 | 0,059 | 0,069 | 0,077 | 0,084 |
|      | 1      | 1,5 x D | 0,4 x D                 | 0,75 x D | 72                                        | _      | 92   | 57,6                                      | -      | 73,6                                      | 50,4  | _                | 64,4  | fz                                                                                                                  | 0,051 | 0,060 | 0,074 | 0,086 | 0,097 | 0,105 |
| M    | 2      | 1,5 x D | 0,4 x D                 | 0,75 x D | 48                                        | _      | 64   | 38,4                                      | -      | 51,2                                      | 33,6  | _                | 44,8  | fz                                                                                                                  | 0,041 | 0,048 | 0,059 | 0,069 | 0,077 | 0,084 |
|      | 3      | 1,5 x D | 0,4 x D                 | 0,75 x D | 48                                        | _      | 56   | 38,4                                      | -      | 44,8                                      | 33,6  | _                | 39,2  | fz                                                                                                                  | 0,034 | 0,040 | 0,048 | 0,055 | 0,060 | 0,062 |
|      | 1      | 1,5 x D | 0,5 x D                 | 1 x D    | 96                                        | _      | 120  | 86,4                                      | -      | 108                                       | 86,4  | _                | 108   | fz                                                                                                                  | 0,061 | 0,070 | 0,086 | 0,097 | 0,105 | 0,106 |
| K    | 2      | 1,5 x D | 0,4 x D                 | 1 x D    | 88                                        | _      | 112  | 79,2                                      | -      | 100,8                                     | 79,2  | _                | 100,8 | fz                                                                                                                  | 0,051 | 0,060 | 0,074 | 0,086 | 0,097 | 0,105 |
|      | 3      | 1,5 x D | 0,4 x D                 | 1 x D    | 88                                        | _      | 104  | 79,2                                      | _      | 93,6                                      | 79,2  | _                | 93,6  | fz                                                                                                                  | 0,041 | 0,048 | 0,059 | 0,069 | 0,077 | 0,084 |
| s    | 1      | 1,5 x D | 0,4 x D                 | 0,75 x D | 40                                        | _      | 72   | 32                                        | _      | 57,6                                      | 24    | _                | 43,2  | fz                                                                                                                  | 0,051 | 0,060 | 0,074 | 0,086 | 0,097 | 0,105 |
| 3    | 3      | 1,5 x D | 0,4 x D                 | 0,75 x D | 20                                        | _      | 32   | 16                                        | _      | 25,6                                      | 12    | _                | 19,2  | fz                                                                                                                  | 0,027 | 0,032 | 0,039 | 0,046 | 0,052 | 0,057 |
| Н    | 1      | 1,5 x D | 0,3 x D                 | 0,30 x D | 64                                        | _      | 112  | 51,2                                      | _      | 89,6                                      | 38,4  | _                | 67,2  | fz                                                                                                                  | 0,046 | 0,053 | 0,065 | 0,075 | 0,083 | 0,087 |

HINWEIS: Ein niedrigerer Wert für die Schnittgeschwindigkeit wird für Anwendungen mit hoher Abtragleistung oder für größere Härte (Zerspanbarkeit) innerhalb der Gruppe verwendet. Ein höherer Wert für die Schnittgeschwindigkeit wird für Schlichtanwendungen oder für geringere Härte (Zerspanbarkeit) innerhalb der Gruppe verwendet. Die Parameter oben basieren auf Idealbedingungen. Bei Bearbeitungszentren mit kleinerer Kegelaufnahme sind die Parameter entsprechend der Systemstabilität anzupassen. Bei Walzfräsanwendungen mit ap > 1 x D bitte fz um 20% reduzieren! Keinen Zylinderschaft zum Nutenfräsen verwenden!

#### ■ 4969 • Schruppfräser mit Kugelkopf • Metrisch

|            |     | ar                                        |         |          |                                           |   |      |                                           |        |       |                                           |      |                  |                                                                                                                     |       |       |       |       | -     |       |
|------------|-----|-------------------------------------------|---------|----------|-------------------------------------------|---|------|-------------------------------------------|--------|-------|-------------------------------------------|------|------------------|---------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|
|            |     | Schulterfräsen (A)<br>und Nutenfräsen (B) |         |          | kurz                                      |   |      |                                           | mittel |       |                                           | lang | J                | Empfohlener Vorschub pro Zahn (fz = mm/Zahn) für das Schulterfräsen (A). Zum Nutenfräsen (B), fz um 20% reduzieren. |       |       |       |       |       |       |
|            |     |                                           |         |          | Auskraglänge der Werkzeugaufnahme         |   |      |                                           |        |       |                                           |      |                  |                                                                                                                     |       |       |       |       |       |       |
|            |     |                                           |         |          | WP15PE                                    |   |      | WP15PE                                    |        |       | WP15PE                                    |      |                  | -                                                                                                                   |       |       |       |       |       |       |
| Werkstoff- |     | Α                                         |         | В        | Schnittgesch-<br>windigkeit<br>– vc m/min |   |      | Schnittgesch-<br>windigkeit<br>– vc m/min |        |       | Schnittgesch-<br>windigkeit<br>– vc m/min |      | D1 — Durchmesser |                                                                                                                     |       |       |       |       |       |       |
| gru        | рре | ар                                        | ae      | ар       | min.                                      |   | max. | min.                                      |        | max.  | min.                                      |      | max.             | mm                                                                                                                  | 10,0  | 12,0  | 16,0  | 20,0  | 25,0  | 32,0  |
|            | 0   | 1,5 x D                                   | 0,5 x D | 1 x D    | 150                                       | - | 200  | 135                                       | -      | 180   | 135                                       | -    | 180              | fz                                                                                                                  | 0,061 | 0,070 | 0,086 | 0,097 | 0,105 | 0,106 |
|            | 1   | 1,5 x D                                   | 0,5 x D | 1 x D    | 150                                       | - | 200  | 135                                       | _      | 180   | 135                                       | _    | 180              | fz                                                                                                                  | 0,061 | 0,070 | 0,086 | 0,097 | 0,105 | 0,106 |
|            | 2   | 1,5 x D                                   | 0,5 x D | 1 x D    | 140                                       | _ | 190  | 126                                       | _      | 171   | 126                                       | _    | 171              | fz                                                                                                                  | 0,061 | 0,070 | 0,086 | 0,097 | 0,105 | 0,106 |
| Р          | 3   | 1,5 x D                                   | 0,4 x D | 0,75 x D | 120                                       | _ | 160  | 108                                       | _      | 144   | 108                                       | _    | 144              | fz                                                                                                                  | 0,051 | 0,060 | 0,074 | 0,086 | 0,097 | 0,105 |
|            | 4   | 1,5 x D                                   | 0,3 x D | 0,30 x D | 90                                        | _ | 150  | 81                                        | _      | 135   | 81                                        | _    | 135              | fz                                                                                                                  | 0,046 | 0,053 | 0,065 | 0,075 | 0,083 | 0,087 |
|            | 5   | 1,5 x D                                   | 0,4 x D | 0,75 x D | 60                                        | _ | 100  | 51                                        | _      | 85    | 48                                        | _    | 80               | fz                                                                                                                  | 0,041 | 0,048 | 0,059 | 0,069 | 0,077 | 0,084 |
|            | 6   | 1,5 x D                                   | 0,3 x D | 0,30x D  | 50                                        | _ | 75   | 42,5                                      | _      | 63,75 | 40                                        | _    | 60               | fz                                                                                                                  | 0,034 | 0,040 | 0,048 | 0,055 | 0,060 | 0,062 |
|            | 1   | 1,5 x D                                   | 0,4 x D | 0,75 x D | 90                                        | _ | 115  | 72                                        | _      | 92    | 63                                        | _    | 80,5             | fz                                                                                                                  | 0,051 | 0,060 | 0,074 | 0,086 | 0,097 | 0,105 |
| M          | 2   | 1,5 x D                                   | 0,4 x D | 0,75 x D | 60                                        | _ | 80   | 48                                        | _      | 64    | 42                                        | _    | 56               | fz                                                                                                                  | 0,041 | 0,048 | 0,059 | 0,069 | 0,077 | 0,084 |
|            | 3   | 1,5 x D                                   | 0,4 x D | 0,75 x D | 60                                        | _ | 70   | 48                                        | _      | 56    | 42                                        | _    | 49               | fz                                                                                                                  | 0,034 | 0,040 | 0,048 | 0,055 | 0,060 | 0,062 |
|            | 1   | 1,5 x D                                   | 0,5 x D | 1 x D    | 120                                       | _ | 150  | 108                                       | _      | 135   | 108                                       | _    | 135              | fz                                                                                                                  | 0,061 | 0,070 | 0,086 | 0,097 | 0,105 | 0,106 |
| K          | 2   | 1,5 x D                                   | 0,4 x D | 1 x D    | 110                                       | _ | 140  | 99                                        | _      | 126   | 99                                        | _    | 126              | fz                                                                                                                  | 0,051 | 0,060 | 0,074 | 0,086 | 0,097 | 0,105 |
|            | 3   | 1,5 x D                                   | 0,4 x D | 1 x D    | 110                                       | _ | 130  | 99                                        | _      | 117   | 99                                        | _    | 117              | fz                                                                                                                  | 0,041 | 0,048 | 0,059 | 0,069 | 0,077 | 0,084 |
|            | 1   | 1,5 x D                                   | 0,4 x D | 0,75 x D | 50                                        | _ | 90   | 40                                        | _      | 72    | 30                                        | _    | 54               | fz                                                                                                                  | 0,051 | 0,060 | 0,074 | 0,086 | 0,097 | 0,105 |
| s          | 2   | 1,5 x D                                   | 0,3 x D | 0,30 x D | 25                                        | _ | 40   | 20                                        | _      | 32    | 15                                        | _    | 24               | fz                                                                                                                  | 0,027 | 0,032 | 0,039 | 0,046 | 0,052 | 0,057 |
| 3          | 3   | 1,5 x D                                   | 0,3 x D | 0,30 x D | 25                                        | - | 40   | 20                                        | _      | 32    | 15                                        | _    | 24               | fz                                                                                                                  | 0,027 | 0,032 | 0,039 | 0,046 | 0,052 | 0,057 |
|            | 4   | 1,5 x D                                   | 0,3 x D | 0,75 x D | 50                                        | _ | 60   | 40                                        | _      | 48    | 30                                        | _    | 36               | fz                                                                                                                  | 0,038 | 0,044 | 0,055 | 0,063 | 0,071 | 0,077 |
|            | 1   | 1,5 x D                                   | 0,3 x D | 0,30 x D | 80                                        | - | 140  | 64                                        | _      | 112   | 48                                        | _    | 84               | fz                                                                                                                  | 0,046 | 0,053 | 0,065 | 0,075 | 0,083 | 0,087 |
| Н          | 2   | 1,5 x D                                   | 0,2 x D | 0,20 x D | 70                                        | - | 120  | 56                                        | _      | 96    | 42                                        | _    | 72               | fz                                                                                                                  | 0,034 | 0,040 | 0,048 | 0,055 | 0,060 | 0,062 |
|            | 3   | 1,5 x D                                   | 0,2 x D | 0,20 x D | 60                                        | - | 90   | 48                                        | _      | 72    | 36                                        | _    | 54               | fz                                                                                                                  | 0,027 | 0,032 | 0,039 | 0,046 | 0,052 | 0,057 |

HINWEIS: Ein niedrigerer Wert für die Schnittgeschwindigkeit wird für Anwendungen mit hoher Abtragleistung oder für größere Härte (Zerspanbarkeit) innerhalb der Gruppe verwendet. Ein höherer Wert für die Schnittgeschwindigkeit wird für Schlichtanwendungen oder für geringere Härte (Zerspanbarkeit) innerhalb der Gruppe verwendet. Die Parameter oben basieren auf Idealbedingungen. Die Parameter sind entsprechend den Durchmessern von >12 mm anzupassen. Bei Walzfräsanwendungen mit ap > 1 x D bitte fz um 20% reduzieren! Keinen Zylinderschaft zum Nutenfräsen verwenden!

Leistungsstarke modulare DUO-λOCK® Schaftfräser • Schruppen/AluSurf™



#### ■ 4U40 • Schruppfräser

|      |        | Schu<br>und N | kurz    |          |                             | mittel |      |                                        |   | lang  | 3                                      | Empfohlener Vorschub pro Zahn (fz = mm/Zahn)<br>für das Schulterfräsen (A). Zum Nutenfräsen (B),<br>fz um 20% reduzieren. |      |                  |       |       |       |       |       |       |
|------|--------|---------------|---------|----------|-----------------------------|--------|------|----------------------------------------|---|-------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------|------------------|-------|-------|-------|-------|-------|-------|
|      |        |               |         |          | Auskragl                    |        |      | llänge der Werkzeugaufnahme            |   |       |                                        |                                                                                                                           |      |                  |       |       |       |       |       |       |
|      |        | А В<br>ff-    |         |          | WS15PE                      |        |      | WS15PE Schnittgeschwindigkeit vc m/min |   |       | WS15PE Schnittgeschwindigkeit vc m/min |                                                                                                                           |      | D1 — Durchmesser |       |       |       |       |       |       |
|      |        |               |         | В        | Schnittgesch-<br>windigkeit |        |      |                                        |   |       |                                        |                                                                                                                           |      |                  |       |       |       |       |       |       |
| Werk | stoff- |               |         |          | - vc m/min                  |        |      |                                        |   |       |                                        |                                                                                                                           |      |                  |       |       |       |       |       |       |
| gru  | ppe    | ар            | ae      | ар       | min.                        |        | max. | min.                                   |   | max.  | min.                                   |                                                                                                                           | max. | mm               | 10,0  | 12,0  | 16,0  | 20,0  | 25,0  | 32,0  |
|      | 3      | 1,0 x D       | 0,5 x D | 0,75 x D | 120                         | _      | 160  | 108                                    | _ | 144   | 108                                    | _                                                                                                                         | 144  | fz               | 0,051 | 0,060 | 0,074 | 0,086 | 0,097 | 0,105 |
| D    | 4      | 1,0 x D       | 0,3 x D | 0,75 x D | 90                          |        | 150  | 81                                     | _ | 135   | 81                                     | _                                                                                                                         | 135  | fz               | 0,046 | 0,053 | 0,065 | 0,075 | 0,083 | 0,087 |
|      | 5      | 1,0 x D       | 0,5 x D | 0,75 x D | 60                          | _      | 100  | 51                                     | _ | 85    | 48                                     | -                                                                                                                         | 80   | fz               | 0,041 | 0,048 | 0,059 | 0,069 | 0,077 | 0,084 |
|      | 6      | 1,0 x D       | 0,3 x D | 0,30 x D | 50                          | _      | 75   | 42,5                                   | _ | 63,75 | 40                                     | _                                                                                                                         | 60   | fz               | 0,034 | 0,040 | 0,048 | 0,055 | 0,060 | 0,062 |
|      | 1      | 1,0 x D       | 0,4 x D | 0,75 x D | 90                          | _      | 115  | 72                                     | _ | 92    | 63                                     | -                                                                                                                         | 80,5 | fz               | 0,051 | 0,060 | 0,074 | 0,086 | 0,097 | 0,105 |
| M    | 2      | 1,0 x D       | 0,4 x D | 0,75 x D | 60                          | _      | 80   | 48                                     | _ | 64    | 42                                     | -                                                                                                                         | 56   | fz               | 0,041 | 0,048 | 0,059 | 0,069 | 0,077 | 0,084 |
|      | 3      | 1,0 x D       | 0,4 x D | 0,75 x D | 60                          |        | 70   | 48                                     | _ | 56    | 42                                     | _                                                                                                                         | 49   | fz               | 0,034 | 0,040 | 0,048 | 0,055 | 0,060 | 0,062 |
|      | 1      | 1,0 x D       | 0,5 x D | 1 x D    | 120                         | _      | 150  | 108                                    | _ | 135   | 108                                    | -                                                                                                                         | 135  | fz               | 0,061 | 0,070 | 0,086 | 0,097 | 0,105 | 0,106 |
| K    | 2      | 1,0 x D       | 0,5 x D | 1 x D    | 110                         | _      | 140  | 99                                     | _ | 126   | 99                                     | _                                                                                                                         | 126  | fz               | 0,051 | 0,060 | 0,074 | 0,086 | 0,097 | 0,105 |
|      | 3      | 1,0 x D       | 0,5 x D | 1 x D    | 110                         | _      | 130  | 99                                     | _ | 117   | 99                                     | -                                                                                                                         | 117  | fz               | 0,041 | 0,048 | 0,059 | 0,069 | 0,077 | 0,084 |
|      | 1      | 1,0 x D       | 0,3 x D | 0,75 x D | 50                          | _      | 90   | 40                                     | _ | 72    | 30                                     | _                                                                                                                         | 54   | fz               | 0,051 | 0,060 | 0,074 | 0,086 | 0,097 | 0,105 |
| s    | 2      | 1,0 x D       | 0,3 x D | 0,75 x D | 25                          | _      | 40   | 20                                     | _ | 32    | 15                                     | _                                                                                                                         | 24   | fz               | 0,027 | 0,032 | 0,039 | 0,046 | 0,052 | 0,057 |
|      | 3      | 1,0 x D       | 0,3 x D | 0,75 x D | 25                          | _      | 40   | 20                                     | _ | 32    | 15                                     | -                                                                                                                         | 24   | fz               | 0,027 | 0,032 | 0,039 | 0,046 | 0,052 | 0,057 |
|      | 4      | 1,0 x D       | 0,4 x D | 0,75 x D | 50                          |        | 60   | 40                                     |   | 48    | 30                                     | <u> </u>                                                                                                                  | 36   | fz               | 0,038 | 0,044 | 0,055 | 0,063 | 0,071 | 0,077 |
|      | 1      | 1,0 x D       | 0,3 x D | 0,30 x D | 80                          | _      | 140  | 64                                     | _ | 112   | 48                                     | -                                                                                                                         | 84   | fz               | 0,046 | 0,053 | 0,065 | 0,075 | 0,083 | 0,087 |
| Н    | 2      | 1,0 x D       | 0,2 x D | 0,20 x D | 70                          |        | 120  | 56                                     | _ | 96    | 42                                     | _                                                                                                                         | 72   | fz               | 0,034 | 0,040 | 0,048 | 0,055 | 0,060 | 0,062 |
|      | 3      | 1,0 x D       | 0,2 x D | 0,20 x D | 60                          | _      | 90   | 48                                     | _ | 72    | 36                                     | _                                                                                                                         | 54   | fz               | 0,027 | 0,032 | 0,039 | 0,046 | 0,052 | 0,057 |

HINWEIS: Ein niedrigerer Wert für die Schnittgeschwindigkeit wird für Anwendungen mit hoher Abtragleistung oder für größere Härte (Zerspanbarkeit) innerhalb der Gruppe verwendet.

Ein höherer Wert für die Schnittgeschwindigkeit wird für Schlichtanwendungen oder für geringere Härte (Zerspanbarkeit) innerhalb der Gruppe verwendet.

Die Parameter oben basieren auf Idealbedingungen. Die Parameter sind entsprechend der Systemstabilität anzupassen.

Bei Walzfräsanwendungen mit ap > 1 x D bitte fz um 20% reduzieren! Keinen Zylinderschaft zum Nutenfräsen verwenden!

#### ■ AluSurf • 5142 • 5143 • Aluminium

|      |                                           |         |         |         |                                   |        |               |                             |   |               |      |       | - 11111                                                                                                                   |    |       |       |         |        |       |       |
|------|-------------------------------------------|---------|---------|---------|-----------------------------------|--------|---------------|-----------------------------|---|---------------|------|-------|---------------------------------------------------------------------------------------------------------------------------|----|-------|-------|---------|--------|-------|-------|
|      | Schulterfräsen (A)<br>und Nutenfräsen (B) |         |         |         | Z                                 | mittel |               |                             |   | lang          |      |       | Empfohlener Vorschub pro Zahn (fz = mm/Zahn)<br>für das Schulterfräsen (A). Zum Nutenfräsen (B),<br>fz um 20% reduzieren. |    |       |       |         |        |       |       |
|      |                                           |         |         |         | Auskraglänge der Werkzeugaufnahme |        |               |                             |   |               |      |       |                                                                                                                           |    |       |       |         |        |       |       |
|      |                                           |         |         | UNBES   | SCH                               | ICHTET | UNBESCHICHTET |                             |   | UNBESCHICHTET |      |       |                                                                                                                           |    |       |       |         |        |       |       |
|      |                                           | A B     |         | В       | Schnittgesch-<br>windigkeit       |        |               | Schnittgesch-<br>windigkeit |   |               |      | nittg | esch-<br>keit                                                                                                             |    |       | D1    | — Durch | messer |       |       |
| Werk | stoff                                     |         |         |         |                                   |        | /min          |                             |   | /min          |      |       | /min                                                                                                                      |    |       |       |         |        |       |       |
| gru  | ppe                                       | ар      | ae      | ар      | min.                              |        | max.          | min.                        |   | max.          | min. |       | max.                                                                                                                      | mm | 10,0  | 12,0  | 16,0    | 20,0   | 25,0  | 32,0  |
|      | 1                                         | 1,5 x D | 0,3 x D | 1,0 x D | 500                               | -      | 2000          | 400                         | _ | 1200          | 300  | 1     | 1200                                                                                                                      | fz | 0,077 | 0,092 | 0,122   | 0,153  | 0,191 | 0,245 |
|      | 2                                         | 1,5 x D | 0,3 x D | 1,0 x D | 500                               | ı      | 1500          | 400                         | - | 900           | 300  | _     | 900                                                                                                                       | fz | 0,069 | 0,083 | 0,110   | 0,138  | 0,172 | 0,220 |
| N    | 3                                         | 1,5 x D | 0,3 x D | 1,0 x D | 500                               | _      | 1500          | 400                         | _ | 900           | 300  | _     | 900                                                                                                                       | fz | 0,054 | 0,064 | 0,086   | 0,107  | 0,134 | 0,171 |
|      | 4                                         | 1,5 x D | 0,3 x D | 1,0 x D | 400                               | ı      | 750           | 320                         | _ | 450           | 240  | _     | 450                                                                                                                       | fz | 0,054 | 0,064 | 0,086   | 0,107  | 0,134 | 0,171 |
|      | 5                                         | 1,5 x D | 0,3 x D | 1,0 x D | 250                               | _      | 1000          | 200                         | _ | 600           | 150  | -     | 600                                                                                                                       | fz | 0,069 | 0,083 | 0,110   | 0,138  | 0,172 | 0,220 |

HINWEIS: Für Spindel mit Keramiklagern ap mit 0,5 multiplizieren.

Für eine bessere Oberflächengüte den Vorschub pro Zahn reduzieren.

Die Parameter oben basieren auf Idealbedingungen. Die Parameter sind entsprechend der Systemstabilität anzupassen.

Bei Walzfräsanwendungen mit ap > 1 x D bitte fz um 20% reduzieren! Keinen Zylinderschaft zum Nutenfräsen verwenden!

## Leistungsstarke modulare DUO-λOCK® Schaftfräser ● Eckenverrundung/Fasen

#### ■ 8045 Eckenverrundungsfräser • 8046 Eckenfasfräser

|       |        | क्रिक    |                                          |      |      |          | -6                          | Addda.     |            |                        | The state of |      |        |                                                                         |       |       |  |  |
|-------|--------|----------|------------------------------------------|------|------|----------|-----------------------------|------------|------------|------------------------|--------------|------|--------|-------------------------------------------------------------------------|-------|-------|--|--|
|       |        | Schulter | fräsen (A)                               |      | kurz |          | mittel                      |            |            |                        | lang         |      |        | Empfohlener Vorschub pro Zahn<br>(fz = mm/Zahn) zum Schulterfräsen (A). |       |       |  |  |
|       |        |          |                                          |      |      | Auskra   | aglänge der Werkzeugaufnahm |            |            |                        | ahme         |      |        |                                                                         |       |       |  |  |
|       |        |          | WP15PE Schnittgeschwindigkeit - vc m/min |      |      | ,        | WP15F                       | E          | 1          | WP15F                  | E            | ]    | D1 _ I | Durchmess                                                               | or    |       |  |  |
|       |        | · '      |                                          |      |      | Schnitte | geschv                      | /indigkeit | Schnitte   | Schnittgeschwindigkeit |              |      | ו – וע | Juicilliess                                                             | ei    |       |  |  |
| Werks | stoff- |          |                                          |      |      |          | vc m/                       | min        | – vc m/min |                        |              |      |        |                                                                         |       |       |  |  |
| grup  | ре     | ap ae    |                                          | min. |      | max.     | min.                        |            | max.       | min.                   |              | max. | mm     | 10,0                                                                    | 12,0  | 16,0  |  |  |
|       | 0      | 0,35 x D | 0,35 x D                                 | 150  | _    | 200      | 135                         | _          | 180        | 135                    | _            | 180  | fz     | 0,058                                                                   | 0,066 | 0,081 |  |  |
|       | 1      | 0,35 x D | 0,35 x D                                 | 150  | _    | 200      | 135                         | _          | 180        | 135                    | _            | 180  | fz     | 0,058                                                                   | 0,066 | 0,081 |  |  |
|       | 2      | 0,35 x D | 0,35 x D                                 | 140  | _    | 190      | 126                         | _          | 171        | 126                    | _            | 171  | fz     | 0,058                                                                   | 0,066 | 0,081 |  |  |
| P     | 3      | 0,35 x D | 0,35 x D                                 | 120  | _    | 160      | 108                         | _          | 144        | 108                    | _            | 144  | fz     | 0,048                                                                   | 0,056 | 0,070 |  |  |
|       | 4      | 0,35 x D | 0,35 x D                                 | 90   | _    | 150      | 81                          | _          | 135        | 81                     | _            | 135  | fz     | 0,043                                                                   | 0,050 | 0,061 |  |  |
|       | 5      | 0,35 x D | 0,35 x D                                 | 60   | -    | 100      | 51                          | _          | 85         | 48                     | _            | 80   | fz     | 0,039                                                                   | 0,045 | 0,056 |  |  |
|       | 6      | 0,35 x D | 0,35 x D                                 | 50   | _    | 75       | 42,5                        | _          | 63,75      | 40                     | _            | 60   | fz     | 0,032                                                                   | 0,037 | 0,046 |  |  |
|       | 1      | 0,35 x D | 0,35 x D                                 | 90   | -    | 115      | 72                          | _          | 92         | 63                     | _            | 80,5 | fz     | 0,048                                                                   | 0,056 | 0,070 |  |  |
| M     | 2      | 0,35 x D | 0,35 x D                                 | 60   | _    | 80       | 48                          | _          | 64         | 42                     | _            | 56   | fz     | 0,039                                                                   | 0,045 | 0,056 |  |  |
|       | 3      | 0,35 x D | 0,35 x D                                 | 60   | -    | 70       | 48                          | _          | 56         | 42                     | _            | 49   | fz     | 0,032                                                                   | 0,037 | 0,046 |  |  |
|       | 1      | 0,35 x D | 0,35 x D                                 | 120  | _    | 150      | 108                         | _          | 135        | 108                    | _            | 135  | fz     | 0,058                                                                   | 0,066 | 0,081 |  |  |
| K     | 2      | 0,35 x D | 0,35 x D                                 | 110  | _    | 140      | 99                          | _          | 126        | 99                     | _            | 126  | fz     | 0,048                                                                   | 0,056 | 0,070 |  |  |
|       | 3      | 0,35 x D | 0,35 x D                                 | 110  | _    | 130      | 99                          | -          | 117        | 99                     | _            | 117  | fz     | 0,039                                                                   | 0,045 | 0,056 |  |  |
|       | 1      | 0,35 x D | 0,35 x D                                 | 500  | _    | 2000     | 400                         | _          | 1600       | 300                    | _            | 1200 | fz     | 0,080                                                                   | 0,096 | 0,128 |  |  |
|       | 2      | 0,35 x D | 0,35 x D                                 | 500  | -    | 1500     | 400                         | _          | 1200       | 300                    | _            | 900  | fz     | 0,072                                                                   | 0,086 | 0,115 |  |  |
|       | 3      | 0,35 x D | 0,35 x D                                 | 500  | _    | 1500     | 400                         | _          | 1200       | 300                    | _            | 900  | fz     | 0,056                                                                   | 0,067 | 0,090 |  |  |
| N     | 4      | 0,35 x D | 0,35 x D                                 | 400  | _    | 750      | 320                         | _          | 600        | 240                    | _            | 450  | fz     | 0,056                                                                   | 0,067 | 0,090 |  |  |
|       | 5      | 0,35 x D | 0,35 x D                                 | 250  | _    | 1000     | 200                         | _          | 800        | 150                    | _            | 600  | fz     | 0,072                                                                   | 0,086 | 0,115 |  |  |
|       | 6      | 0,35 x D | 0,35 x D                                 | 100  | _    | 750      | 80                          | _          | 600        | 60                     | -            | 450  | fz     | 0,080                                                                   | 0,096 | 0,128 |  |  |
|       | 7      | 0,35 x D | 0,35 x D                                 | 100  | -    | 750      | 80                          | -          | 600        | 60                     | -            | 450  | fz     | 0,056                                                                   | 0,067 | 0,090 |  |  |
|       | 1      | 0,35 x D | 0,35 x D                                 | 50   | -    | 90       | 40                          | _          | 72         | 30                     | _            | 54   | fz     | 0,048                                                                   | 0,056 | 0,070 |  |  |
| s     | 2      | 0,35 x D | 0,35 x D                                 | 25   | _    | 40       | 20                          | _          | 32         | 15                     | _            | 24   | fz     | 0,026                                                                   | 0,030 | 0,037 |  |  |
| - 3   | 3      | 0,35 x D | 0,35 x D                                 | 25   | _    | 40       | 20                          | _          | 32         | 15                     | _            | 24   | fz     | 0,026                                                                   | 0,030 | 0,037 |  |  |
|       | 4      | 0,35 x D | 0,35 x D                                 | 50   | _    | 60       | 40                          | _          | 48         | 30                     | _            | 36   | fz     | 0,036                                                                   | 0,041 | 0,051 |  |  |
| H     | 1      | 0,35 x D | 0,35 x D                                 | 80   | -    | 140      | 64                          | -          | 112        | 48                     | -            | 84   | fz     | 0,043                                                                   | 0,050 | 0,061 |  |  |

HINWEIS: Ein niedrigerer Wert für die Schnittgeschwindigkeit wird für Anwendungen mit hoher Abtragleistung oder für größere Härte (Zerspanbarkeit) innerhalb der Gruppe verwendet. Ein höherer Wert für die Schnittgeschwindigkeit wird für Schlichtanwendungen oder für geringere Härte (Zerspanbarkeit) innerhalb der Gruppe verwendet. Die Parameter oben basieren auf Idealbedingungen. Die Parameter sind entsprechend der Systemstabilität anzupassen.

63

Leistungsstarke modulare DUO-λOCK® Schaftfräser



#### ■ Informationen zur Montage des Systems

Während der Montage angemessene persönliche Schutzausrüstung wie Handschuhe und Augenschutz tragen.

Den Duo-Lock™ Schaftfräser und die Schnittstelle reinigen.





Die Duo-Lock™ Werkzeugaufnahme in einen Spannblock stecken und darauf achten, dass das Spannfutter ausreichend groß ist, um eine Drehmomentübertragung zu ermöglichen.



Den Duo-Lock™ Schaftfräser von Hand in die Werkzeugaufnahme eindrehen.

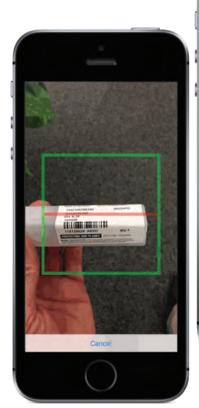
Achtung: Das Tragen von Schutzhandschuhen ist Pflicht!

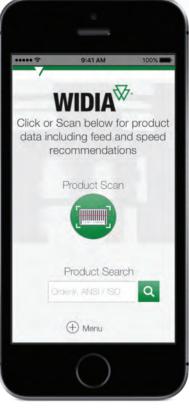


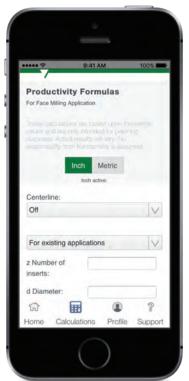
Es sollte ein Spalt von ca. 0,15–0,3 mm sichtbar sein.



Das korrekte Anzugsmoment gemäß Tabelle anwenden. Es muss ein hochwertiger, gewöhnlicher Drehmomentschlüssel verwendet werden. Der Torque Master von ERICKSON™ wird empfohlen.





| Duo-Lock™ Größe | Anzugsmoment [Nm] |
|-----------------|-------------------|
| DL 16           | 60                |
| DL 20           | 80                |
| DL 25           | 100               |
| DL 32           | 130               |




# Machining Central App von WIDIA™

Die schnellste und einfachste Methode zum Abrufen von Vorschub- und Schnittgeschwindigkeiten









#### **SCANNEN**

Mit der neuen WIDIA App können Produktdaten mit einem einfachen Barcode-Scan abgerufen werden. Wenn Sie sich im Fertigungsbereich befinden und die Vorschub- und Schnittgeschwindigkeiten Ihres bevorzugten WIDIA Werkzeugs schnell abrufen müssen, erhalten Sie mit der WIDIA App in wenigen Sekunden zuverlässige Informationen.



#### SUCHEN

Sie haben keinen Barcode? Die neue WIDIA App enthält eine weitere einfache Suchmethode: Geben Sie einfach die zugehörige Auftragsnummer des Werkzeugs oder die ANSI- oder ISO-Katalognummer in die Suchleiste ein. Sie erhalten dieselben zuverlässigen Daten wie bei einem Scan des Barcodes des Werkzeugs. Das geht schnell und einfach und die Produktion wird nicht unterbrochen!



#### **BERECHNEN**

Sie benötigen eine bestimmte Bearbeitung, die mit den empfohlenen Vorschub- und Schnittgeschwindigkeiten nicht möglich ist? Dann testen Sie unsere drei NOVO™ basierten Rechner. Es stehen Rechner für das Schaft- und Planfräsen zur Verfügung. Geben Sie einfach die nötigen Informationen ein und unsere Rechner liefern Ihnen schnell die nötigen Daten.


LADEN SIE DIE MOBILE MACHINING CENTRAL APP VON WIDIA HERUNTER







# WIDIA-Hanita™ Universal-Schaftfräser





# Die Weiterentwicklung eines revolutionären Vollhartmetall-Schaftfräsers

Die Produktreihen mit Vollhartmetall-Schaftfräsern von WIDIA-Hanita sind dafür bekannt, dass sie stetig weiterentwickelt und verbessert werden.

Universal-Schaftfräser von WIDIA-Hanita zum Tauch-, Nuten- und Profilfräsen für verschiedenste Werkstoffe und Anwendungen. Ausgelegt für ein hohes Zerspanungsvolumen und eine hervorragende Oberflächenbeschaffenheit zu einem günstigen Preis. Ein großer Durchmesserbereich sowie verschiedenste Längen- und Eckenvarianten hinsichtlich Fase, scharfer Kanten und Kugelkopf sind ab Lager lieferbar.





## 2 Schneidreihen

- Über Mitte schneidend.
- Stahl, rostfreier Stahl und Gusseisen.
- Verschiedenste axiale Schnittlängen kurz, normal, lang und extralang.

#### Flache Stirnausführung: D002/D012 • 2819 • 4002/4012/4022

• Scharfe Schneidkante mit Schmiernuten für längere Standzeit.

Kugelkopfausführung: D001/D011 • 2838 • 4001/4011/4021



### 3 Schneidreihen

- Über Mitte schneidend.
- Stahl, rostfreier Stahl und Gusseisen.
- Scharfe Schneidkante mit Schmiernuten für längere Standzeit.
- Verschiedenste axiale Schnittlängen kurz, normal, lang und extralang.

Flache Stirnausführung: D003..S/D013..S • D003/D013 • 4003..S/4013..S • 4003/4013



# 4 Schneidreihen

- Über Mitte schneidend
- Stahl, rostfreier Stahl und Gusseisen.

#### Flache Stirnausführung: D004/D014 • 2528 • 4004/4014/4024

- Verschiedenste axiale Schnittlängen kurz, normal, lang und extralang.
- Scharfe Schneidkante mit Schmiernuten für längere Standzeit.

#### Kugelkopfausführung: D010 • 2848 • 4000/4010

• Verschiedenste axiale Schnittlängen — kurz, normal, lang und extralang.

#### Eckenradiusausführung: 4004/4014/4024

• Normale Schnittlänge mit Eckenradius.







# **Produktivität**

Hervorragender Spanfluss aufgrund der Spannutform und -oberfläche.

Neue Beschichtung für höhere Schnittgeschwindigkeiten.

Höhere Vorschubraten bei rostfreiem Stahl und Duplex-Stahl.

# Leistung

Erhältlich für kundenspezifische Lösungen und zum Stufenbohren.

Bohrerlängen mit echtem 8 x D.

Zylinderschaft h6 für perfekten Rundlauf.

Zwei Führungsfasen für kritische Bearbeitungen.



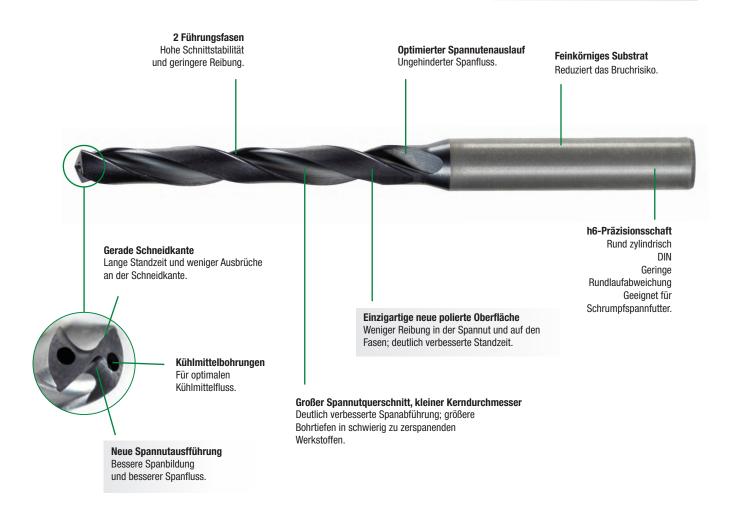
Erhöhung der Schnittgeschwindigkeit um bis zu 20% beim Bohren in austenitischem und nicht rostendem Duplex-Stahl.

| Serie  | Kühlmittel                    | Längenverhältnis | Durchmesserbereich           |  |  |  |  |
|--------|-------------------------------|------------------|------------------------------|--|--|--|--|
| TDS451 |                               | 3 x D            |                              |  |  |  |  |
| TDS452 | Innere<br>Kühlmittelzuführung | 5 x D            | 3,0–20,0 mm (0,1181–0,7874") |  |  |  |  |
| TDS453 |                               | 8 x D            |                              |  |  |  |  |



# TOP DRILL S™

#### TDS45x für nicht rostende Stähle


- · Exzellente Zentrierfähigkeit.
- Verbesserte Verschleißfestigkeit bei Bearbeitungen von zähen Werkstoffen mit hohen Bearbeitungstemperaturen.
- Die durchschnittliche Standzeit nimmt deutlich um 10-30% zu.
- Die neue Technologie bietet eine verbesserte Spanabführung, insbesondere bei tiefen Bohrungen und anspruchsvollen Schnittbedingungen.
- Neue Spannutgeometrie speziell für nicht rostende Stähle sowie schwierig zu zerspanende Werkstoffe:
  - Gleichmäßige Spanabfuhr von der Schneidkante zu den Spannuten.
  - Geringere Schnittkräfte und niedrigere Bearbeitungstemperaturen. Neue WM15PD-Beschichtung mit hohem Aluminiumgehalt und polierten Spannuten.
- Zwei Führungsfasen.
- Durchmesser-/Längenverhältnis echte 8 x D.
  - Größere axiale Schneidenlänge.
- Umfassendes Programm von 3-20 mm mit 3 x D, 5 x D und 8 x D.

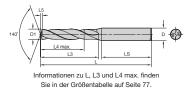
#### WM15PD Sorte

Die Mehrlagenbeschichtung auf AlTiN-Basis mit hoher Warmfestigkeit ermöglicht Bohren mit hohen Schnittgeschwindigkeiten sowie den Einsatz mit Minimalmengenschmierung.

#### Patentierte TDS-Spitze

Ausgezeichnete Zentriereigenschaften. Höchste Vorschub- und Schnittgeschwindigkeiten. Senkung der Schnittkräfte.




#### ■ TDS451A • 3 x D/TDS452A • 5 x D/TDS453A • 8 x D







Erste WahlAlternative



|                                | 1                              |                                | Durchm | esser D1 | Sie i | n der Größentabelle a | uf Seite 77. |
|--------------------------------|--------------------------------|--------------------------------|--------|----------|-------|-----------------------|--------------|
| 3 x D<br>Sorte WM15PD<br>AITIN | 5 x D<br>Sorte WM15PD<br>AITiN | 8 x D<br>Sorte WM15PD<br>AITiN |        |          |       |                       |              |
| Bestell #                      | Bestell #                      | Bestell #                      | mm     | Zoll     | L5    | LS                    | D            |
| 6327647                        | 6327948                        | 6328197                        | 3,000  | .1181    | 0,5   | 36                    | 6            |
| 6327648                        | 6327950                        | 6328200                        | 3,048  | .1200    | 0,5   | 36                    | 6            |
| 6327649                        | 6327952                        | 6328202                        | 3,100  | .1220    | 0,5   | 36                    | 6            |
| 6327650                        | 6327954                        | 6328204                        | 3,175  | .1250    | 0,5   | 36                    | 6            |
| 6327711                        | 6327956                        | 6328206                        | 3,200  | .1260    | 0,5   | 36                    | 6            |
| 6327712                        | 6327958                        | 6328208                        | 3,264  | .1285    | 0,5   | 36                    | 6            |
| 6327713                        | 6327960                        | 6328209                        | 3,300  | .1299    | 0,5   | 36                    | 6            |
| 6327714                        | 6327962                        | 6328211                        | 3,400  | .1339    | 0,6   | 36                    | 6            |
| 6327715                        | 6327964                        | 6328213                        | 3,455  | .1360    | 0,6   | 36                    | 6            |
| 6327716                        | 6327966                        | 6328216                        | 3,500  | .1378    | 0,6   | 36                    | 6            |
| 6327717                        | 6327968                        | 6328218                        | 3,571  | .1406    | 0,6   | 36                    | 6            |
| 6327718                        | 6327970                        | 6328219                        | 3,600  | .1417    | 0,6   | 36                    | 6            |
| 6327719                        | 6327972                        | 6328221                        | 3,658  | .1440    | 0,6   | 36                    | 6            |
| 6327720                        | 6327974                        | 6328223                        | 3,700  | .1457    | 0,6   | 36                    | 6            |
| 6327721                        | 6327976                        | 6328225                        | 3,734  | .1470    | 0,6   | 36                    | 6            |
| 6327722                        | 6327978                        | 6328227                        | 3,800  | .1496    | 0,6   | 36                    | 6            |
| 6327723                        | 6327980                        | 6328229                        | 3,900  | .1535    | 0,6   | 36                    | 6            |
| 6327724                        | 6327982                        | 6328231                        | 3,970  | .1563    | 0,0   | 36                    | 6            |
| 6327725                        | 6327984                        | 6328233                        |        |          | -     | 36                    | 6            |
| 6327726                        |                                | 6328235                        | 4,000  | .1575    | 0,7   | 36                    |              |
|                                | 6327986                        | 6328237                        | 4,039  | .1590    | 0,7   |                       | 6            |
| 6327727                        | 6327988                        |                                | 4,090  | .1610    | 0,7   | 36                    | 6            |
| 6327728                        | 6327990                        | 6328239                        | 4,100  | .1614    | 0,7   | 36                    | 6            |
| 6327729                        | 6327992                        | 6328241                        | 4,200  | .1654    | 0,7   | 36                    | 6            |
| 6327730                        | 6327994                        | 6328242                        | 4,217  | .1660    | 0,7   | 36                    | 6            |
| 6327741                        | 6327996                        | 6328243                        | 4,300  | .1693    | 0,7   | 36                    | 6            |
| 6327742                        | 6327998                        | 6328244                        | 4,366  | .1719    | 0,7   | 36                    | 6            |
| 6327743                        | 6327999                        | 6328245                        | 4,400  | .1732    | 0,7   | 36                    | 6            |
| 6327744                        | 6328000                        | 6328246                        | 4,500  | .1772    | 0,7   | 36                    | 6            |
| 6327745                        | 6328001                        | 6328247                        | 4,600  | .1811    | 0,8   | 36                    | 6            |
| 6327746                        | 6328002                        | 6328248                        | 4,623  | .1820    | 0,8   | 36                    | 6            |
| 6327747                        | 6328003                        | 6328249                        | 4,700  | .1850    | 0,8   | 36                    | 6            |
| 6327748                        | 6328004                        | 6328250                        | 4,763  | .1875    | 0,8   | 36                    | 6            |
| 6327749                        | 6328005                        | 6328261                        | 4,800  | .1890    | 0,8   | 36                    | 6            |
| 6327750                        | 6328006                        | 6328262                        | 4,852  | .1910    | 0,8   | 36                    | 6            |
| 6327751                        | 6328007                        | 6328263                        | 4,900  | .1929    | 0,8   | 36                    | 6            |
| 6327752                        | 6328008                        | 6328264                        | 5,000  | .1969    | 0,8   | 36                    | 6            |
| 6327753                        | 6328009                        | 6328265                        | 5,100  | .2008    | 0,9   | 36                    | 6            |
| 6327754                        | 6328010                        | 6328266                        | 5,106  | .2010    | 0,9   | 36                    | 6            |
| 6327755                        | 6328011                        | 6328267                        | 5,159  | .2031    | 0,9   | 36                    | 6            |
| 6327756                        | 6328012                        | 6328268                        | 5,200  | .2047    | 0,9   | 36                    | 6            |
| 6327757                        | 6328013                        | 6328269                        | 5,300  | .2087    | 0,9   | 36                    | 6            |
| 6327758                        | 6328014                        | 6328270                        | 5,400  | .2126    | 0,9   | 36                    | 6            |
| 6327759                        | 6328015                        | 6328271                        | 5,410  | .2130    | 0,9   | 36                    | 6            |
| 6327760                        | 6328016                        | 6328272                        | 5,500  | .2165    | 0,9   | 36                    | 6            |

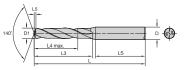
(Fortsetzung)



widia.com VIDIA 71

# TOP DRILL S™

## TOP DRILL S mit innerer Kühlmittelzuführung • Nicht rostende Stähle


(TDS451A • 3 x D/TDS452A • 5 x D/TDS453A • 8 x D — Fortsetzung)







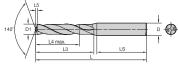
• Erste Wahl
O Alternative



Informationen zu L, L3 und L4 max. finden Sie in der Größentabelle auf Seite 77.

|                                |                                |                                | Durchme | esser D1 | Sie in d | der Größentabelle | auf Seite 77. |
|--------------------------------|--------------------------------|--------------------------------|---------|----------|----------|-------------------|---------------|
| 3 x D<br>Sorte WM15PD<br>AITIN | 5 x D<br>Sorte WM15PD<br>AITIN | 8 x D<br>Sorte WM15PD<br>AITIN |         |          |          |                   |               |
| Bestell #                      | Bestell #                      | Bestell #                      | mm      | Zoll     | L5       | LS                | D             |
| 6327761                        | 6328017                        | 6328273                        | 5,558   | .2188    | 0,9      | 36                | 6             |
| 6327762                        | 6328018                        | 6328274                        | 5,600   | .2205    | 0,9      | 36                | 6             |
| 6327763                        | 6328019                        | 6328275                        | 5,616   | .2211    | 0,9      | 36                | 6             |
| 6327764                        | 6328020                        | 6328276                        | 5,700   | .2244    | 1,0      | 36                | 6             |
| 6327765                        | 6328021                        | 6328277                        | 5,800   | .2283    | 1,0      | 36                | 6             |
| 6327766                        | 6328022                        | 6328278                        | 5,900   | .2323    | 1,0      | 36                | 6             |
| 6327767                        | 6328023                        | 6328279                        | 5,954   | .2344    | 1,0      | 36                | 6             |
| 6327768                        | 6328024                        | 6328280                        | 6,000   | .2362    | 1,0      | 36                | 6             |
| 6327769                        | 6328025                        | 6328291                        | 6,100   | .2402    | 1,0      | 36                | 8             |
| 6327770                        | 6328026                        | 6328292                        | 6,200   | .2441    | 1,0      | 36                | 8             |
| 6327771                        | 6328027                        | 6328293                        | 6,300   | .2480    | 1,1      | 36                | 8             |
| 6327772                        | 6328028                        | 6328294                        | 6,350   | .2500    | 1,1      | 36                | 8             |
| 6327773                        | 6328029                        | 6328295                        | 6,400   | .2520    | 1,1      | 36                | 8             |
| 6327774                        | 6328030                        | 6328296                        | 6,500   | .2559    | 1,1      | 36                | 8             |
| 6327775                        | 6328031                        | 6328297                        | 6,528   | .2570    | 1,1      | 36                | 8             |
| 6327776                        | 6328032                        | 6328298                        | 6,600   | .2598    | 1,1      | 36                | 8             |
| 6327777                        | 6328033                        | 6328299                        | 6,630   | .2610    | 1,1      | 36                | 8             |
| 6327778                        | 6328034                        | 6328300                        | 6,700   | .2638    | 1,1      | 36                | 8             |
| 6327779                        | 6328035                        | 6328301                        | 6,746   | .2656    | 1,1      | 36                | 8             |
| 6327780                        | 6328036                        | 6328302                        | 6,800   | .2677    | 1,1      | 36                | 8             |
| 6327781                        | 6328037                        | 6328303                        | 6,900   | .2717    | 1,2      | 36                | 8             |
| 6327782                        | 6328038                        | 6328304                        | 7,000   | .2756    | 1,2      | 36                | 8             |
| 6327783                        | 6328039                        | 6328305                        | 7,100   | .2795    | 1,2      | 36                | 8             |
| 6327784                        | 6328040                        | 6328306                        | 7,145   | .2813    | 1,2      | 36                | 8             |
| 6327785                        | 6328041                        | 6328307                        | 7,200   | .2835    | 1,2      | 36                | 8             |
| 6327786                        | 6328042                        | 6328308                        | 7,300   | .2874    | 1,2      | 36                | 8             |
| 6327787                        | 6328043                        | 6328309                        | 7,400   | .2913    | 1,3      | 36                | 8             |
| 6327788                        | 6328044                        | 6328310                        | 7,500   | .2953    | 1,3      | 36                | 8             |
| 6327789                        | 6328045                        | 6328311                        | 7,541   | .2969    | 1,3      | 36                | 8             |
| 6327790                        | 6328046                        | 6328312                        | 7,600   | .2992    | 1,3      | 36                | 8             |
| 6327791                        | 6328047                        | 6328313                        | 7,700   | .3031    | 1,3      | 36                | 8             |
| 6327792                        | 6328048                        | 6328314                        | 7,800   | .3071    | 1,3      | 36                | 8             |
| 6327793                        | 6328049                        | 6328315                        | 7,900   | .3110    | 1,3      | 36                | 8             |
| 6327794                        | 6328050                        | 6328316                        | 7,938   | .3125    | 1,3      | 36                | 8             |
| 6327795                        | 6328051                        | 6328317                        | 8,000   | .3150    | 1,4      | 36                | 8             |
| 6327796                        | 6328052                        | 6328318                        | 8,100   | .3189    | 1,4      | 40                | 10            |
| 6327797                        | 6328053                        | 6328319                        | 8,200   | .3228    | 1,4      | 40                | 10            |
| 6327798                        | 6328054                        | 6328320                        | 8,300   | .3268    | 1,4      | 40                | 10            |
| 6327799                        | 6328055                        | 6328321                        | 8,334   | .3281    | 1,4      | 40                | 10            |
| 6327800                        | 6328056                        | 6328322                        | 8,400   | .3307    | 1,4      | 40                | 10            |
| 6327801                        | 6328057                        | 6328323                        | 8,433   | .3320    | 1,4      | 40                | 10            |
| 6327802                        | 6328058                        | 6328324                        | 8,500   | .3346    | 1,4      | 40                | 10            |
| 6327803                        | 6328059                        | 6328325                        | 8,600   | .3386    | 1,5      | 40                | 10            |
| 6327804                        | 6328060                        | 6328326                        | 8,700   | .3425    | 1,5      | 40                | 10            |
| 00E100T                        | 1 3323000                      | 70230E0                        | 1 0,100 | .0 /20   | 1 1,0    | .0                | .0            |

**WIDIA**<sup>▽</sup>


(TDS451A •  $3 \times D$ /TDS452A •  $5 \times D$ /TDS453A •  $8 \times D$  — Fortsetzung)







Erste WahlAlternative



| 3 x D<br>Sorte WM15PD<br>AITIN | 5 x D<br>Sorte WM15PD<br>AlTiN | 8 x D<br>Sorte WM15PD<br>AITiN | Durchm | esser D1 | Sie in c | der Größentabelle | aur Seite 77. |
|--------------------------------|--------------------------------|--------------------------------|--------|----------|----------|-------------------|---------------|
| Bestell #                      | Bestell #                      | Bestell #                      | mm     | Zoll     | L5       | LS                | D             |
| 6327805                        | 6328061                        | 6328327                        | 8,733  | .3438    | 1,5      | 40                | 10            |
| 6327806                        | 6328062                        | 6328328                        | 8,800  | .3465    | 1,5      | 40                | 10            |
| 6327807                        | 6328063                        | 6328329                        | 8,900  | .3504    | 1,5      | 40                | 10            |
| 6327808                        | 6328064                        | 6328330                        | 9,000  | .3543    | 1,5      | 40                | 10            |
| 6327809                        | 6328065                        | 6328331                        | 9,100  | .3583    | 1,6      | 40                | 10            |
| 6327810                        | 6328066                        | 6328332                        | 9,129  | .3594    | 1,6      | 40                | 10            |
| 6327811                        | 6328067                        | 6328333                        | 9,200  | .3622    | 1,6      | 40                | 10            |
| 6327812                        | 6328068                        | 6328335                        | 9,300  | .3661    | 1,6      | 40                | 10            |
| 6327813                        | 6328069                        | 6328336                        | 9,347  | .3680    | 1,6      | 40                | 10            |
| 6327814                        | 6328070                        | 6328337                        | 9,400  | .3701    | 1,6      | 40                | 10            |
| 6327815                        | 6328071                        | 6328338                        | 9,500  | .3740    | 1,6      | 40                | 10            |
| 6327816                        | 6328072                        | 6328339                        | 9,525  | .3750    | 1,6      | 40                | 10            |
| 6327817                        | 6328073                        | 6328340                        | 9,600  | .3780    | 1,6      | 40                | 10            |
| 6327818                        | 6328074                        | 6328341                        | 9,700  | .3819    | 1,7      | 40                | 10            |
| 6327819                        | 6328075                        | 6328342                        | 9,800  | .3858    | 1,7      | 40                | 10            |
| 6327820                        | 6328076                        | 6328343                        | 9,900  | .3898    | 1,7      | 40                | 10            |
| 6327821                        | 6328077                        | 6328344                        | 9,921  | .3906    | 1,7      | 40                | 10            |
| 6327822                        | 6328078                        | 6328345                        | 10,000 | .3937    | 1,7      | 40                | 10            |
| 6327823                        | 6328079                        | 6328346                        | 10,100 | .3976    | 1,7      | 45                | 12            |
| 6327824                        | 6328080                        | 6328347                        | 10,200 | .4016    | 1,7      | 45                | 12            |
| 6327825                        | 6328081                        | 6328348                        | 10,300 | .4055    | 1,8      | 45                | 12            |
| 6327826                        | 6328082                        | 6328349                        | 10,320 | .4063    | 1,8      | 45                | 12            |
| 6327827                        | 6328083                        | 6328350                        | 10,400 | .4094    | 1,8      | 45                | 12            |
| 6327828                        | 6328084                        | 6328351                        | 10,500 | .4134    | 1,8      | 45                | 12            |
| 6327829                        | 6328085                        | 6324404                        | 10,600 | .4173    | 1,8      | 45                | 12            |
| 6327830                        | 6328086                        | 6324405                        | 10,700 | .4213    | 1,8      | 45                | 12            |
| 6327841                        | 6328087                        | 6324406                        | 10,716 | .4219    | 1,8      | 45                | 12            |
| 6327842                        | 6328088                        | 6324407                        | 10,800 | .4252    | 1,9      | 45                | 12            |
| 6327843                        | 6328089                        | 6324408                        | 10,900 | .4291    | 1,9      | 45                | 12            |
| 6327844                        | 6328090                        | 6324409                        | 11,000 | .4331    | 1,9      | 45                | 12            |
| 6327845                        | 6328091                        | 6324410                        | 11,100 | .4370    | 1,9      | 45                | 12            |
| 6327846                        | 6328092                        | 6324491                        | 11,113 | .4375    | 1,9      | 45                | 12            |
| 6327847                        | 6328093                        | 6324492                        | 11,200 | .4409    | 1,9      | 45                | 12            |
| 6327848                        | 6328094                        | 6324493                        | 11,300 | .4449    | 1,9      | 45                | 12            |
| 6327849                        | 6328095                        | 6324494                        | 11,400 | .4488    | 2,0      | 45                | 12            |
| 6327850                        | 6328096                        | 6324495                        | 11,500 | .4528    | 2,0      | 45                | 12            |
| 6327851                        | 6328097                        | 6324496                        | 11,509 | .4531    | 2,0      | 45                | 12            |
| 6327852                        | 6328098                        | 6324497                        | 11,600 | .4567    | 2,0      | 45                | 12            |
| 6327853                        | 6328099                        | 6324498                        | 11,700 | .4606    | 2,0      | 45                | 12            |
| 6327854                        | 6328100                        | 6324499                        | 11,800 | .4646    | 2,0      | 45                | 12            |
| 6327855                        | 6328111                        | 6324500                        | 11,900 | .4685    | 2,0      | 45                | 12            |
| 6327856                        | 6328112                        | 6324501                        | 11,908 | .4688    | 2,0      | 45                | 12            |
| 6327857                        | 6328113                        | 6324502                        | 12,000 | .4724    | 2,1      | 45                | 12            |

(Fortsetzung)



widia.com **VIDIA** 73

# TOP DRILL S™

## TOP DRILL S mit innerer Kühlmittelzuführung • Nicht rostende Stähle

(TDS451A • 3 x D/TDS452A • 5 x D/TDS453A • 8 x D — Fortsetzung)



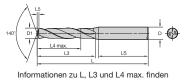
3 x D

Sorte WM15PD



5 x D

Sorte WM15PD




8 x D

Sorte WM15PD

• Erste Wahl

**Durchmesser D1** 



Sie in der Größentabelle auf Seite 77.

AITiN AITIN ΔITiN Bestell # Bestell # L5 LS Bestell # Zoll D mm 12,200 .4803 2,1 12,300 .4843 2,1 12,304 .4844 2,1 12.400 .4882 2.1 12,500 .4921 2,2 12,600 .4961 2,2 12,700 .5000 2,2 12.800 2.2 12.900 .5079 13,000 .5118 2,2 13,096 .5156 2,3 13.100 .5157 2.3 13,200 .5197 2,3 .5236 13.300 2.3 2,3 13.400 .5276 13,500 .5315 2,3 13,600 .5354 2,3 13,700 .5394 2,4 13,800 .5433 2,4 13,891 .5469 2.4 13,900 .5472 2,4 14,000 .5512 2,4 14,100 .5551 14,200 .5591 14,288 .5625 2,5 14,300 .5630 2,5 14,400 .5669 2,5 14,500 .5709 2,5 14,600 .5748 2,5 14,684 .5781 2,5 14.700 .5787 2.5 14.800 2.6 14.900 2,6 15,000 .5906 2,6 2,6 15.083 .5938 15.100 2.6 



15.200

15,300

15,400

15,479

15,500

15,600

15,700

15,800

2.6

2,6

2,7

2,7

2,7

2,7

2,7

2,7

.5984

.6063

.6094

.6102

.6142

.6181

.6220

**Durchmesser D1** 

(TDS451A • 3 x D/TDS452A • 5 x D/TDS453A • 8 x D — Fortsetzung)



3 x D

Sorte WM15PD

6327973

6327975

6327977

6327979

6327981

6327983

6327985

6328215

6328217

6328220

6328222

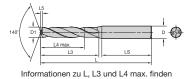
6328224

6328226

6328228



5 x D


Sorte WM15PD



8 x D

Sorte WM15PD

Erste WahlAlternative



Sie in der Größentabelle auf Seite 77

AITIN AITIN AITIN LS D Bestell # Bestell # Bestell # Zoll mm 6327913 6328169 6345327 15,875 .6250 2,8 48 16 6327914 6328170 6345328 15,900 .6260 2,8 48 16 6327915 6328171 6345329 16,000 .6299 2,8 48 16 6327916 6328172 6345330 16,100 .6339 2.8 48 18 6327917 6328173 6345331 16,200 .6378 2,8 48 18 6327918 6328174 6345332 16,271 .6406 2,8 48 18 6327919 6328175 6345333 16,300 .6417 2,8 48 18 6327920 6328176 6345334 16,400 .6457 2,8 48 18 6327921 6328177 6345335 16,500 .6496 2,9 48 18 6327922 6328178 6345336 16,600 .6535 2,9 48 18 6327923 6328179 6345337 16,670 .6563 2.9 48 18 6345338 16,700 .6575 48 18 6327924 6328180 2.9 16,800 .6614 2,9 48 18 6327925 6328181 6345339 6345340 48 6327926 6328182 16,900 .6654 2,9 18 48 18 6327927 6328183 6345341 17.000 .6693 3.0 6328184 6345342 17,100 .6732 3,0 48 18 6327928 6328185 6345343 17.200 .6772 3.0 48 18 6327929 6327930 6328186 6345345 17,300 .6811 3,0 48 18 6328187 6345346 17,400 .6850 3,0 48 18 6327941 6327942 6328188 6345347 17,463 .6875 3,0 48 18 17,500 .6890 48 6327943 6328189 6345348 3,0 18 6327944 6328190 6345349 17,600 .6929 3,1 48 18 6327945 6328191 6345350 17,700 .6969 3,1 48 18 6345351 17,800 .7008 48 18 6327946 6328192 3,1 6345352 17,859 .7031 3,1 48 18 .7047 6327949 6328194 6345353 17,900 3,1 48 18 6327951 6328195 6345354 18,000 .7087 3,1 48 18 6327953 6328196 6345355 18,100 .7126 3,1 50 20 6327955 6328198 6345356 18,200 .7165 3,2 50 20 6327957 6328199 6345357 18,258 .7188 3,2 50 20 6327959 6328201 6345358 18,300 .7205 3,2 50 20 6327961 6328203 6345359 18,400 .7244 3,2 50 20 3,2 6327963 6328205 6345360 18.500 .7283 50 20 18,600 6327965 6328207 6345361 .7323 3,2 50 20 .7344 6327967 6328210 6345362 18,654 3,2 50 20 6328212 6345363 18,700 .7362 3.3 50 20 6327969 6328214 6345364 18,800 .7402 3,3 50 20 6327971

> 20 (Fortsetzung)

20

20

20

20

20

20



6345365

6345366

6345367

6345368

6345369

6345370

6345371

widia.com **VIDIA** 75

18,900

19.000

19.050

19.100

19,200

19.300

19,400

.7441

.7480

.7500

.7520

.7559

.7598

.7638

3.3

3.3

3.3

3,3

3,3

3.4

3,4

50

50

50

50

50

50

50

# TOP DRILL S™

# TOP DRILL S mit innerer Kühlmittelzuführung • Nicht rostende Stähle

(TDS451A •  $3 \times D$ /TDS452A •  $5 \times D$ /TDS453A •  $8 \times D$  — Fortsetzung)



76





• Erste Wahl O Alternative



|                                |                                |                                | Durchme | esser D1 |     |    |    |
|--------------------------------|--------------------------------|--------------------------------|---------|----------|-----|----|----|
| 3 x D<br>Sorte WM15PD<br>AITIN | 5 x D<br>Sorte WM15PD<br>AITIN | 8 x D<br>Sorte WM15PD<br>AITIN |         |          |     |    |    |
| Bestell #                      | Bestell #                      | Bestell #                      | mm      | Zoll     | L5  | LS | D  |
| 6327987                        | 6328230                        | 6345372                        | 19,500  | .7677    | 3,4 | 50 | 20 |
| 6327989                        | 6328232                        | 6345373                        | 19,600  | .7717    | 3,4 | 50 | 20 |
| 6327991                        | 6328234                        | 6345374                        | 19,700  | .7756    | 3,4 | 50 | 20 |
| 6327993                        | 6328236                        | 6345375                        | 19,800  | .7795    | 3,4 | 50 | 20 |
| 6327995                        | 6328238                        | 6345376                        | 19,900  | .7835    | 3,5 | 50 | 20 |
| 6327997                        | 6328240                        | 6345377                        | 20,000  | .7874    | 3,5 | 50 | 20 |

| _  |    |   |   |
|----|----|---|---|
| Tο | ra | n | 7 |
|    |    |   |   |

| Durchmesserbereich | D1 Toleranz m7 | D Toleranz h6 |
|--------------------|----------------|---------------|
| >3-6               | 0,004/0,016    | 0,000/-0,008  |
| >6–10              | 0,006/0,021    | 0,000/-0,009  |
| >10-18             | 0,007/0,025    | 0,000/-0,011  |
| >18-25,4           | 0,008/0,029    | 0,000/-0,013  |

widia.com

#### ■ Abmessungen für TDS451A • 3 x D/TDS452A • 5 x D/TDS453A • 8 x D • Metrisch

| m       | nm      |    |    |     | KURZ*  |         |     | LANG*  |         | E   | XTRA LANG | G**     |
|---------|---------|----|----|-----|--------|---------|-----|--------|---------|-----|-----------|---------|
| 9       | Ø       |    |    |     | ~3 x D |         |     | ~5 x D |         |     | ~8 x D    |         |
| D1 min. | D1 max. | D  | LS | L   | L3     | L4 max. | L   | L3     | L4 max. | L   | L3        | L4 max. |
| 3,000   | 3,734   | 6  | 36 | 62  | 20     | 14      | 66  | 28     | 23      | 78  | 40        | 33      |
| 3,800   | 4,700   | 6  | 36 | 66  | 24     | 17      | 74  | 36     | 29      | 87  | 49        | 41      |
| 4,763   | 6,000   | 6  | 36 | 66  | 28     | 20      | 82  | 44     | 35      | 94  | 56        | 48      |
| 6,100   | 7,000   | 8  | 36 | 79  | 34     | 24      | 91  | 53     | 43      | 105 | 67        | 57      |
| 7,100   | 8,000   | 8  | 36 | 79  | 41     | 29      | 91  | 53     | 43      | 113 | 74        | 64      |
| 8,100   | 10,000  | 10 | 40 | 89  | 47     | 35      | 103 | 61     | 49      | 135 | 92        | 80      |
| 10,100  | 12,000  | 12 | 45 | 102 | 55     | 40      | 118 | 71     | 56      | 158 | 110       | 96      |
| 12,100  | 14,000  | 14 | 45 | 107 | 60     | 43      | 124 | 77     | 60      | 176 | 128       | 112     |
| 14,100  | 16,000  | 16 | 48 | 115 | 65     | 45      | 133 | 83     | 63      | 197 | 146       | 128     |
| 16,100  | 18,000  | 18 | 48 | 123 | 73     | 51      | 143 | 93     | 71      | 214 | 163       | 144     |
| 18,100  | 20,000  | 20 | 50 | 131 | 79     | 55      | 153 | 101    | 77      | 234 | 181       | 160     |

<sup>\*</sup> D1 < 20 mm gemäß DIN 6537K

#### ■ TDS451/TDS452/TDS453 Serie • WM15PD • Innere Kühlmittelzuführung • Metrisch

|   |               | Ì    | geschwi<br>– vc<br>ich – m | ndigkeit<br>n/min | Empfohlene Vorschubrate (f) pro Durchmesser |           |           |           |           |           |           |           |           |
|---|---------------|------|----------------------------|-------------------|---------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|   | stoff-<br>ppe | min. | _                          | max.              | Werkzeug-<br>durchmesser<br>(mm)            | 3,0       | 4,0       | 6,0       | 8,0       | 10,0      | 12,0      | 16,0      | 20,0      |
|   | 0             | 80   | _                          | 160               | mm/Ú                                        | 0,05–0,11 | 0,08-0,14 | 0,09-0,19 | 0,11-0,22 | 0,13-0,26 | 0,15-0,30 | 0,19-0,36 | 0,24-0,46 |
|   | 1             | 70   | _                          | 140               | mm/U                                        | 0,05–0,13 | 0,08-0,19 | 0,11-0,24 | 0,14–0,30 | 0,16-0,35 | 0,18-0,39 | 0,20-0,46 | 0,23-0,51 |
|   | 2             | 90   | _                          | 140               | mm/U                                        | 0,05-0,13 |           | 0,11-0,20 | 0,14-0,24 | 0,16-0,28 | 0,18-0,32 | 0,20-0,37 | 0,23-0,41 |
| P | 3             | 60   | _                          | 100               | mm/U                                        | 0,08-0,13 | 0,12-0,19 | 0,14-0,24 | 0,17-0,30 | 0,20-0,35 | 0,22-0,39 | 0,26-0,46 | 0,29-0,51 |
|   | 4             | 50   | _                          | 100               | mm/U                                        | 0,08-0,12 | 0,11-0,18 | 0,12-0,23 | 0,15-0,28 | 0,17-0,33 | 0,19-0,37 | 0,22-0,43 | 0,25-0,48 |
|   | 5             | 50   | _                          | 80                | mm/U                                        | 0,03-0,11 | 0,04-0,11 | 0,05-0,11 | 0,05-0,14 | 0,08-0,18 | 0,11-0,21 | 0,14-0,24 | 0,16-0,26 |
|   | 6             | 40   | _                          | 70                | mm/U                                        | 0,05-0,11 | 0,08-0,14 | 0,11-0,17 | 0,13-0,21 | 0,15-0,24 | 0,17-0,27 | 0,19-0,33 | 0,22-0,36 |
|   | 1             | 50   | _                          | 90                | mm/U                                        | 0,05-0,13 | 0,06-0,14 | 0,08-0,16 | 0,10-0,18 | 0,12-0,20 | 0,13-0,21 | 0,16-0,24 | 0,18-0,26 |
| M | 2             | 50   | _                          | 80                | mm/U                                        | 0,05-0,13 | 0,06-0,14 | 0,08-0,16 | 0,10-0,18 | 0,12-0,20 | 0,13-0,21 | 0,16-0,24 | 0,18-0,26 |
|   | 3             | 50   | _                          | 70                | mm/U                                        | 0,05-0,13 | 0,06-0,14 | 0,08-0,16 | 0,10-0,18 | 0,12-0,20 | 0,13-0,21 | 0,16-0,24 | 0,18-0,26 |
|   | 1             | 20   | _                          | 30                | mm/U                                        | 0,03-0,06 | 0,04-0,08 | 0,06-0,10 | 0,08-0,12 | 0,09-0,13 | 0,10-0,14 | 0,12-0,16 | 0,14–0,18 |
|   | 2             | 10   | _                          | 30                | mm/U                                        | 0,02-0,04 | 0,03-0,06 | 0,05-0,08 | 0,07-0,10 | 0,08-0,11 | 0,09-0,12 | 0,10-0,14 | 0,11-0,16 |
| S | 3             | 10   | -                          | 40                | mm/U                                        | 0,02-0,04 | 0,02-0,05 | 0,04-0,07 | 0,06-0,09 | 0,07-0,10 | 0,08-0,11 | 0,09-0,13 | 0,10-0,15 |
|   | 4             | 10   | _                          | 40                | mm/U                                        | 0.02-0.04 | 0,03-0,06 | 0.05-0.08 | 0,07-0,10 | 0.08-0.11 | 0.09-0.12 | 0.10-0.14 | 0,11-0,16 |

<sup>\*</sup> D1 > 20 mm gemäß Werksnorm

<sup>\*\*</sup> gemäß Werksnorm

# Symbolerklärung

#### Symbole für das Fräsen mit Wendeschneidplatten



#### Symbole für das Vollhartmetall- und Vollkeramik-Schaftfräsen



#### Symbole für die Bohrungsbearbeitung



DIN – Deutsches Institut für Normung ISO – Internationale Normenorganisation

# Kunden-Anwendungssupport (CAS)

# Sie erhalten schnelle und zuverlässige Lösungen für Ihre schwierigsten Aufgaben im Bereich der Metallzerspanung!

Unser Kundenanwendungs-Support-Team (CAS-Team) ist der branchenweit führende Beratungs-Service für Werkzeuganwendungen und Problemlösungen.

- Einfacher Zugriff auf bewährte Anwendungsexpertisen der Metallbearbeitung.
- · Höchstes Serviceniveau.
- Herausragende Technologien zur Anwendungsunterstützung.

#### Einfacher Zugriff auf bewährte Anwendungsexpertisen der Metallbearbeitung.

Die WIDIA™ Customer Application-Ingenieure unterstützen Kunden und Ingenieur-Teams weltweit mit Werkzeug- und Anwendungsempfehlungen für das gesamte WIDIA Programm von Zerspanungswerkzeugen und Werkzeugsystemen.

#### Höchstes Serviceniveau:

- Kurze Reaktionszeiten per Telefon
- Kurzfristige Bereitstellung technischer Lösungen
- Effizientes Problemmanagement

#### Serviceangebot:

- Werkzeugauswahl
- Bearbeitungsdaten
- Fehlersuche und -behebung
- Prozessoptimierung
- Zubehör-Support

#### Herausragende Optimierungstechnologien für den Support:

- Werkzeug-Leistungsoptimierung
- Werkstoffdatenbanken
- Anwendungsberechnungen

| LAND                    | SPRACHE              | TEL.               | FAX                 | E-MAIL-ADRESSE             |
|-------------------------|----------------------|--------------------|---------------------|----------------------------|
| Australien              | Englisch             | 001-724-539-6921 * | 001-724-539-6830 *  | ap.techsupport@widia.com   |
| Österreich              | Deutsch              | 0800 291630        | 0049-911-9735-429 * | eu.techsupport@widia.com   |
| Belgien                 | Englisch/Französisch | 0800 80410         | 0049-911-9735-429 * | eu.techsupport@widia.com   |
| China                   | Chinesisch           | 400-889-2237       | +86-21-58999985 *   | w-cn.techsupport@widia.com |
| Dänemark                | Englisch             | 808 89295          | 001-724-539-6830 *  | na.techsupport@widia.com   |
| Finnland                | Englisch             | 0800 919413        | 001-724-539-6830 *  | na.techsupport@widia.com   |
| Frankreich              | Französisch          | 080 5540 379       | 0049-911-9735-429 * | eu.techsupport@widia.com   |
| Deutschland             | Deutsch              | 0800 1015774       | 0911-9735-429 *     | eu.techsupport@widia.com   |
| Indien                  | Englisch             | 1 800 103 5227     | _                   | in.techsupport@widia.com   |
| Israel                  | Englisch             | 1809 449907        | 001-724-539-6830 *  | na.techsupport@widia.com   |
| Italien                 | Italienisch          | 800 916568         | 02 89512146 *       | eu.techsupport@widia.com   |
| Japan                   | Englisch             | 001-724539-6921 *  | 001-724-539-6830 *  | ap.techsupport@widia.com   |
| Südkorea                | Englisch             | 001-724539-6921 *  | 001-724-539-6830 *  | ap.techsupport@widia.com   |
| Malaysia                | Englisch             | 001-724539-6921 *  | 001-724-539-6830 *  | ap.techsupport@widia.com   |
| Niederlande             | Englisch             | 0800 0201131       | 001-724-539-6830 *  | na.techsupport@widia.com   |
| Neuseeland              | Englisch             | 001-724539-6921 *  | 001-724-539-6830 *  | ap.techsupport@widia.com   |
| Norwegen                | Englisch             | 800 10081          | 001-724-539-6830 *  | na.techsupport@widia.com   |
| Polen                   | Polnisch             | 00800 4411943      | 06166 56504 *       | eu.techsupport@widia.com   |
| Russland (Festnetz)     | Russisch             | 8800 5556395       | 0048 6166 56504 *   | eu.techsupport@widia.com   |
| Russland (Mobiltelefon) | Russisch             | +7 8005556395      | 0048 6166 56504 *   | eu.techsupport@widia.com   |
| Singapur                | Englisch             | 001-724539-6921 *  | 001-724-539-6830 *  | ap.techsupport@widia.com   |
| Südafrika               | Englisch             | 0800 981644        | 001-724-539-6830 *  | na.techsupport@widia.com   |
| Schweden                | Englisch             | 020798794          | 001-724-539-6830 *  | na.techsupport@widia.com   |
| Taiwan                  | Englisch             | 001-724539-6921 *  | 001-724-539-6830 *  | ap.techsupport@widia.com   |
| Thailand                | Englisch             | 001-724539-6921 *  | 001-724-539-6830 *  | ap.techsupport@widia.com   |
| Großbritannien          | Englisch             | 0800 028 2996      | 001-724-539-6830 *  | na.techsupport@widia.com   |
| Ukraine                 | Russisch             | 800502665          | 0048 6166 56504 *   | eu.techsupport@widia.com   |
| USA                     | Englisch             | 888 539 5145       | 001-724-539-6830 *  | na.techsupport@widia.com   |

 $<sup>^{\</sup>star}$ Die angegebenen Telefon- und Faxnummern sind nicht gebührenfrei.

# Werkstoffübersicht • DIN

DIN





S Hochwarmfeste Legierungen
H Gehärtete Werkstoffe

| Werk-<br>stoff-<br>gruppe | Beschreibung                                                                                 | Inhalt    | Zug<br>festigkeit<br>RM (MPa)* | Härte<br>(HB) | Härte<br>(HRC) | Werkstoff-<br>nummer                                                               |
|---------------------------|----------------------------------------------------------------------------------------------|-----------|--------------------------------|---------------|----------------|------------------------------------------------------------------------------------|
| P0                        | Kohlenstoffarme Stähle, langspanend                                                          | C <0,25%  | <530                           | <125          | -              | -                                                                                  |
| P1                        | Kohlenstoffarme Stähle, kurzspanend,<br>leicht zerspanbar                                    | C <0,25%  | <530                           | <125          | -              | C15, Ck22, ST37-2, S235JR, 9SMnPb28, GS38                                          |
| P2                        | Stähle mit mittlerem und hohem Kohlenstoffgehalt                                             | C >0,25%  | >530                           | <220          | <25            | ST52, S355JR, C35, GS60, Cf53                                                      |
| P3                        | Legierte Stähle und Werkzeugstähle                                                           | C >0,25%  | 600–850                        | <330          | <35            | 16MnCr5, Ck45, 21CrMoV5-7, 38SMn28                                                 |
| P4                        | Legierte Stähle und Werkzeugstähle                                                           | C >0,25%  | 850–1400                       | 340–450       | 35–48          | 100Cr6, 30CrNiMo8, 42CrMo4, C70W2, S6525, X120Mn12                                 |
| P5                        | Ferritische, martensitische und nicht rostende<br>PH-Stähle                                  | -         | 600–900                        | <330          | <35            | 100Cr6, 30CrNiMo8, 42CrMo4, C70W2, S6525, X120Mn12                                 |
| P6                        | Hochfeste ferritische, martensitische und PH-Edelstähle                                      | -         | 900–1350                       | 350-450       | 35–48          | X102CrMo17, G-X120Cr29                                                             |
| M1                        | Austenitischer, nicht rostender Stahl                                                        | -         | <600                           | 130–200       | -              | X5CrNi 18 10, X2CrNiMo 17 13 2, G-X25CrNiSi18 9,<br>X15CrNiSi 20 12                |
| M2                        | Hochfeste austenitische, nicht rostende<br>Stähle und Edelstahlguss                          | -         | 600–800                        | 150-230       | <25            | X2CrNiMo 13 4, X5NiCr 32 21, X5CrNiNb 18 10,<br>G-X15CrNi 25-20                    |
| M3                        | Duplex-Edelstahl                                                                             | -         | <800                           | 135–275       | <30            | X8CrNiMo27 5, X2CrNiMoN22 5 3, X20CrNiSi25 4,<br>G-X40CrNiSi27 4                   |
| K1                        | Grauguss                                                                                     | -         | 125–500                        | 120–290       | <32            | GG15, GG25, GG30, GG40, GTW40                                                      |
| K2                        | Duktiles Gusseisen (Sphäroguss) mit niedriger<br>bis mittlerer Festigkeit und Vermikularguss | -         | <600                           | 130–260       | <28            | GGG40, GTS35                                                                       |
| КЗ                        | Hochfeste Gusseisen und bainitisches<br>Gusseisen mit Kugelgraphit (ADI)                     | -         | >600                           | 180–350       | <43            | GGG60, GTW55, GTS65                                                                |
| N1                        | Aluminium-Knetlegierungen                                                                    | -         | -                              | -             | -              | AlMg1, Al99.5, AlCuMg1, AlCuBiPb, AlMgSi1, ALMgSiPb                                |
| N2                        | Aluminiumlegierungen mit geringem Siliziumgehalt und Magnesiumlegierungen                    | Si <12,2% | -                              | -             | -              | GAISiCu4, GDAISi10Mg                                                               |
| N3                        | Aluminiumlegierungen mit hohem Siliziumgehalt und Magnesiumlegierungen                       | Si >12,2% | -                              | -             | -              | G-ALSi12, G-AlSi17Cu4, G-AlSi21CuNiMg                                              |
| N4                        | Kupfer-, Messing- und Zink-Basis mit einem<br>Zerspanbarkeitsindex von 70–100                | -         | -                              | -             | -              | CuZn40, Ms60, G-CuSn5ZnPb, CuZn37, CuSi3Mn                                         |
| N5                        | Nylon, Kunststoffe, Gummi, Phenole und Glasfaser                                             | -         | -                              | -             | -              | Lexan <sup>®</sup> , Hostalen <sup>™</sup> , Polystyrol, Makralon <sup>®</sup>     |
| N6                        | Kohlefaser- und Graphit-Verbundwerkstoffe, CFRP                                              | -         | -                              | -             | -              | CFK, GFK                                                                           |
| N7                        | Metall-Matrix-Verbundwerkstoff (MMC)                                                         | -         | -                              | -             | -              | -                                                                                  |
| S1                        | Warmfeste Legierungen auf Eisenbasis                                                         | -         | 500–1200                       | 160–260       | 25–48          | X1NiCrMoCu32 28 7, X12NiCrSi36 16, X5NiCrAITi31 20,<br>X40CoCrNi20 20              |
| S2                        | Warmfeste Legierungen auf Kobaltbasis                                                        | -         | 1000–1450                      | 250-450       | 25–48          | Haynes <sup>®</sup> 188, Stellite <sup>®</sup> 6,21,31                             |
| S3                        | Warmfeste Legierungen auf Nickelbasis                                                        | -         | 600–1700                       | 160-450       | <48            | INCONEL® 690, INCONEL 625, Hastelloy®, Nimonic® 75                                 |
| <b>S</b> 4                | Titan und Titanlegierungen                                                                   | -         | 900–1600                       | 300-400       | 33–48          | Ti1, TiAl5Sn2, TiAl6V4, TiAl4Mo4Sn2                                                |
| H1                        | Gehärtete Werkstoffe                                                                         | -         | -                              | -             | 44–48          | GX260NiCr42, GX330NiCr42, GX300CrNiSi952,<br>GX300CrMo153, Hardox <sup>®</sup> 400 |
| H2                        | Gehärtete Werkstoffe                                                                         | -         | -                              | -             | 48–55          | -                                                                                  |
| Н3                        | Gehärtete Werkstoffe                                                                         | -         | -                              | -             | 56–60          | -                                                                                  |
| H4                        | Gehärtete Werkstoffe                                                                         | -         | -                              | -             | >60            | -                                                                                  |

# Finden Sie den nächstgelegenen autorisierten WIDIA-Handelspartner

Die Zerspanungswerkzeuge von WIDIA™ werden ausschließlich über ein spezialisiertes Netzwerk autorisierter Handelspartner erhältlich, von denen Sie mehr als nur die Produkte selbst erwarten können. Unsere Handelspartner kennen uns und – was noch viel wichtiger ist – sie kennen Sie. Sie wissen am besten, wie Sie die Leistung von WIDIA in Ihrer Branche, in Ihrer Region und für Ihr Unternehmen optimal nutzen können.

WIDIA Handelspartner bieten technische Kompetenz, auf die Sie sich verlassen können. Unsere Partner unterstützen Sie bei:

- Deutlichen Reduzierungen der Bearbeitungszeiten
- Besserer Auslastung der Werkzeugmaschinen
- Realisierung von messbaren Produktivitätssteigerungen
- Realisierung von messbaren Produktivitätssteigerungen
- Zugriff auf lokale Lagerbestände und dem überlegenen technischen Kundendienst
- Anfragen zu Vorführungen der neuesten Werkzeugtechnologie bei Ihnen vor Ort

Mit den Tausenden von Werkzeugen und Werkzeugsystemen zum Drehen, Fräsen, Bohren und Gewindebohren von WIDIA erhalten Sie alle benötigten Lösungen aus einer Hand.



Finden Sie Ihren nächstgelegenen autorisierten WIDIA-Handelspartner in unserer Händlersuche auf widia.com.

WICHTIGE SICHERHEITSANWEISUNGEN: LESEN SIE BITTE DIESEN ABSCHNITT, BEVOR SIE DIE PRODUKTE IN DIESEM KATALOG VERWENDEN.

## SICHERHEIT BEI DER METALI ZERSPANUNG

#### Gefährdung durch Spanflug und Absplitterungen

Moderne Metallbearbeitungstechniken arbeiten mit hohen Spindel- und Fräserdrehzahlen sowie hohen Temperaturen und Schnittkräften. Heiße Metallspäne können sich während der Metallbearbeitung vom Werkstück lösen. Obwohl moderne Schneidwerkzeuge so ausgelegt und gefertigt sind, dass sie den Schnittkräften und Temperaturen standhalten, können sie manchmal splittern, insbesondere wenn sie Überbeanspruchung, schweren Stoßbelastungen oder anderen Formen der unsachgemäßen Anwendung ausgesetzt werden.

Beachten Sie Folgendes, um Verletzungen zu vermeiden:

- Tragen Sie immer Ihre persönliche Schutzausrüstung einschließlich Schutzbrille, wenn Sie mit Metallbearbeitungsmaschinen oder in deren Nähe arbeiten.
- Stellen Sie immer sicher, dass alle Maschinenabdeckungen angebracht sind.

#### Gefahren durch Einatmen und Hautkontakt

Beim Schleifen von Hartmetall oder anderen fortschrittlichen Schneidwerkstoffen entsteht Staub oder Sprühnebel, der Metallpartikel enthält. Das Einatmen dieses Staubs oder Sprühnebels, — insbesondere über einen längeren Zeitraum, — kann zu vorübergehenden oder permanenten Lungenkrankheiten führen oder vorhandene Erkrankungen verschlimmern. Der Kontakt mit Staub oder Sprühnebel kann Augen, Haut oder Schleimhäute reizen und eventuell bestehende Hautkrankheiten verschlimmern.

Beachten Sie Folgendes, um Verletzungen zu vermeiden:

- Tragen Sie beim Schleifen immer Atemschutz und Schutzbrille.
- Sorgen Sie für eine ordnungsgemäße Absauganlage, fangen Sie Staub, Sprühnebel oder Schlamm, der beim Schleifen entsteht, auf, und entsorgen Sie ihn.
- Vermeiden Sie Hautkontakt mit Staub oder Sprühnebel.

Weitere Informationen entnehmen Sie dem Sicherheitsdatenblatt, das Ihnen von WIDIA zur Verfügung gestellt wird, und konsultieren Sie die allgemeinen Sicherheits- und Gesundheitsbestimmungen, Teil 1910, Titel 29, der Bundesgesetzsammlung.

Diese Sicherheitsanweisungen stellen allgemeine Richtlinien dar. In der spanenden Fertigung spielen viele Variablen eine Rolle. Es ist daher nahezu unmöglich, jede spezielle Situation abzudecken. Die in diesem Katalog enthaltenen technischen Informationen und Empfehlungen für die Zerspanungspraxis finden eventuell keine Anwendung auf Ihre spezielle Bearbeitung.

Weitere Informationen finden Sie in der WIDIA Broschüre zur Metallzerspanungssicherheit, die kostenlos bei WIDIA erhältlich ist (Tel. +1 724 539 5747 oder Fax +1 724 539 5439). Bei Anfragen zur Produktsicherheit oder zum Umweltschutz wenden Sie sich bitte telefonisch unter +1 724 539 5066 oder per Fax unter +1 724 539 5372 an unser Corporate Environmental Health and Safety Office.

AluSurf, ArCut, ERICKSON, TOP DRILL S, VariDrill, VariMill, IVariMill III, Victory, VSM11, VSM17, VSM490, VSM490-10, VSM490-15, WavCut, WIDIA, WIDIA-Hanita und X-Feed sind eingetragene Warenzeichen / Marken der Kennametal, Inc. und werden hierin als solche verwendet. Das Fehlen eines Produkt- oder Dienstleistungsnamens oder Logos in dieser Auflistung stellt keinen Verzicht auf die Rechte an der Marke oder sonstigem geistigen Eigentum im Zusammenhang mit der Bezeichnung oder dem Logo durch Kennametal dar.

DUO-λοCK® ist eine eingetragene Marke der Haimer GmbH und Duo-Lock™ ist eine Marke der Haimer GmbH. Weldon® ist eine eingetragene Marke der Weldon Tool Company.



### **WELTWEITE ZENTRALE WIDIA Products Group** Kennametal Inc. 1600 Technology Way Latrobe, PA 15650 USA Tel.: +1 800 979 4342 w-na.service@widia.com **EUROPA-ZENTRALE WIDIA Products Group** Kennametal Europe GmbH Rheingoldstrasse 50 CH 8212 Neuhausen am Rheinfall Schweiz Tel.: +41 52 6750 100 w-ch.service@widia.com HAUPTSITZ ASIEN-PAZIFIK **WIDIA Products Group** Kennametal (Singapur) Pte. Ltd. 3A International Business Park Unit #01-02/03/05, ICON@IBP Singapore 609935 Tel.: +65 6265 9222 w-sg.service@widia.com HAUPTSITZ INDIEN **WIDIA Products Group** Kennametal India Limited CIN: L27109KA1964PLC001546 8/9th Mile, Tumkur Road Bangalore - 560 073 Tel.: +91 80 2839 4321 w-in.service@widia.com

METRISCH 2018

# **ADVANCES**

