## Application Bulletin

## **UltraFlex™ Radiant Return Bends for Delayed Coker Furnaces**

### Stay on-line longer with more confidence!

Decoking operations, such as on-line spalling, can have a significant impact on the life of radiant return bends in delayed coker furnaces. UltraFlex technology delivers a Stellite<sup>™</sup> 720 cladding designed to significantly reduce the risk of return bend wall thinning and rupture.

#### **The UltraFlex Cladding Process**



 UltraFlex cladding material is prepared in slurry form. Stellite 720 is used for return bend applications.



2. Proprietary flow-coating methods are used to apply an even "green" cladding, typically .020-.030" thick.



 Cladding is fused to the substrate in a vacuum furnace, creating a dense, uniform, and metallurgically bonded coating.

# 338

**Clad Return Bends Ready for Sintering** 



**Return Bend Ready for Installation** 

#### **Metallurgical Bond**

- No flaking or spalling even in extreme conditions.
- Thermal fatigue testing simulating 20 years of service confirms no defects or spallation.

#### A "Pure" Coating

- Small diffusion zone (<.010") compared to hard facing.
- Consistent wear properties from bond through to surface.
- Typical thickness is .020-.030"

#### **High Surface Quality**

- Smooth surface accommodates pigging operations.
- Crack-free coatings possible with many substrates.



Hard Facing vs. UltraFlex Cladding



#### Stellite™ 720 • Cladding Material Designed for Radiant Return Bends

- The UltraFlex<sup>™</sup> process delivers this very hard Stellite alloy for radiant return bends, which is not possible with casting or weld overlay.
- Excellent high-temperature erosion- and corrosion-resistance.
- Compatible with standard return bend substrates such as 347 and 9Cr1Mo.

|              | Nominal Composition (mass %) |       |    |       |         |       |      | Hardness |
|--------------|------------------------------|-------|----|-------|---------|-------|------|----------|
|              | Co                           | Fe    | Cr | Мо    | Nb      | Ni    | C    | HRC      |
| Stellite 720 | Bal.                         | 3 Max | 33 | 18    | _       | 3 Max | 2.5  | 55–60    |
| 9Cr-1Mo      | _                            | Bal.  | 9  | 1     | _       | 0.5   | 0.1  | 20–25    |
| 347          | _                            | Bal.  | 18 | 1 Max | 0.8 Min | 11    | 0.08 | <10      |

- High chrome and moly content in Stellite 720 offers significant corrosion resistance benefits.
- Higher bulk hardness offers considerable erosion benefits over unprotected return bends.



• Stellite 720 maintains better wear properties at high temperatures experienced during on-line spalling.

#### **ASTM G65-B Abrasion Wear Resistance**



#### Erosion at 700°C at 60° Angle

with an Al<sub>2</sub>O<sub>3</sub> catalyst used for fluidized catalytic cracking



Stellite 720 Offers
Superior Erosion Resistance

#### **CONTACT US**

Order Support: k-nalb.cs@kennametal.com | +1 888 289 4590

Kennametal Conforma Clad 501 Park East Blvd. New Albany, IN 47150 USA

