

G3606 with ADEM™4 GAS ENGINE

1417 bkW (1900 bhp) & 1540 BKW (2065 bhp) 0.3 and 0.5 g/bhp-hr NOx (NTE)

Shown with optional equipment.

FEATURES AND BENEFITS

Engine Design

- ADEM™4 engine control system provides complete engine control, monitoring, and protection while maintaining emissions.
- Widest fuel tolerance in the industry for application flexibility.
- Proven reliability and durability with the lowest owning and operating costs.

Emissions

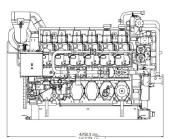
Meets U.S. EPA Spark Ignited Stationary NSPS emissions for 2010 with the use of an oxidation catalyst

Advanced Digital Engine Management

ADEMTM4 (A4) engine management system integrates speed control, air/fuel ratio control, and ignition/detonation controls into a complete engine management system. The ADEMTM4 (A4) has an improved: user interface, display system, shutdown controls, and system diagnostics.

Full Range of Attachments

Large variety of factory-installed engine attachments reduces packaging time.


Testino

Every engine is full-load tested to ensure proper engine performance.

SPECIFICATIONS

In-Line 6, 4 -Stroke-Cycle	
Serial Prefix	XSF
Bore	300 mm (11.8 in)
Stroke	300 mm (11.8 in)
Displacement	127.2L (7762cu.in)
Aspiration	
Digital Engine Management	
Governorand Protection	Electronic (ADEM™4)
Combustion	LowEmission(LeanBurn)
Cooling System Capacity	
Total	420 L (111 gal)
JW	340 L (90 gal)
SCAC	80 L (21 gal)
Lube Oil System(refill)	708L(187gal)
Oil Change Interval	5000 hrs
Rotation (from flywheel end)	Counterclockwise
Flywheel Teeth	255

DIMENSIONS

	[167.33 111.]	F0041 III.1	10047 11.3	
Length		4250.3 mm	167.33 in	
Width		2188.8 mm	86.17 in	
Height		2950.6 mm	116.16 in	
Weight (wet)	16,730 kg	36,883lb	

Note: Do not use for installation design. See general dimension drawings for detail. Weights and dimensions are approximations.

Full listing of equipment (standardandoptional), along with additional features and benefits can be found at **www.cat.com/oilandgas** or through your local dealer.

TECHNICAL DATA

Performance Number	EM6489-02	EM6490-02	EM6487-02	EM6488-02
Rating	0.3 g NOx NTE	0.5 g NOx NTE	0.3 g NOx NTE	0.5 g NOx NTE
Engine Power	1417 bkW (1900 bhp)	1417 bkW (1900 bhp)	1540 bkW (2065 bhp)	1540 bkW (2065 bhp
Engine Speed	1000 rpm	1000 rpm	1000 rpm	1000 rpm
Max Altitude @ Rated Torque and 38° C (100°F)	2760 m (9055 ft)	2730 m (8957 ft)	1970 m (6463 ft)	1930 m (6332 ft)
Aftercooler Temperature				
Stage 1 (JW)	88 °C (190 °F)			
Stage 2 (SCAC)	54 °C (130 °F)			
Emissions (NTE)*	g/bkW-hr (g/bhp-hr)	g/bkW-hr (g/bhp-hr)	g/bkW-hr (g/bhp-hr)	g/bkW-hr (g/bhp-hr)
NOx	0.4 (0.3)	0.67 (0.5)	0.4 (0.3)	0.67 (0.5)
CO	2.89 (2.15)	2.26 (1.68)	2.26 (1.68)	2.89 (2.15)
CO ₂	593 (443)	593 (442)	593 (443)	586 (437)
VOC**	0.26 (0.19)	0.22 (0.17)	0.25 (0.19)	0.22 (0.16)
Fuel Consumption @ 100% load ***	9.53 MJ/bkW-hr (6739 Btu/bhp-hr)	9.39 MJ/bkW-hr (6637 Btu/bhp-hr)	9.41 MJ/bkW-hr (6653 Btu/bhp-hr)	9.27 MJ/bkW-hr (6552 Btu/bhp-hr)
Heat Balance @ 100% Load	bkW (Btu/min)	bkW (Btu/min)	bkW (Btu/min)	bkW (Btu/min)
Heat Rejection to Jacket Water	407 (23152)	389 (22137)	439 (24974)	420 (23898)
Heat Rejection to Oil Cooler	204 (11587)	204 (11628)	206 (11728)	207 (11782)
Heat Rejection to Aftercooler				
Stage 1 (JW)	266 (15131)	253 (14388)	319 (18163)	306 (17426)
Stage 2 (SCAC)	141 (8045)	135 (7681)	163 (9296)	106 (6019)
Heat Rejection to Exhaust LHV to 25°C (77°F)	1247 (70891)	1230 (69942)	1294 (73584)	1274 (72452)
Heat Rejection to Atmosphere	110 (6274)	116 (6022)	111 (6285)	106 (6019)
Exhaust System				
Exhaust Stack Temperature	429 °C (805 °F)	436 °C (817 °F)	413 °C (775 °F)	418 °C (785 °F)
Gas Pressure	400-485 kPag (58.0-70.3 psig)	400-485 kPag (58.0-70.3 psig)	485-552 kPag (70.3-80.1 psig)	485-552 kPag (70.3-80.1 psig)

^{*} at 100% load and speed, listed as not to exceed

STANDARD EQUIPMENT

Air Inlet System

Air cleaner - standard duty

Inlet air adapter

Cooling System

Compressor Oil cooler connections

Jacket Water pump

Aftercooler/oil cooler pump

Jacket Water thermostats and housing

Two-stage aftercooler

Jacket Water heater connections

Standard ANSI connections

Starting System

Single turbine starting motors

Exhaust System

Dry exhaust manifolds

Single vertical outlet adapter

Dual layer heat shields

Layer 1: stainless steel foil

Layer 2: carbon steel

Fuel System

Gas admission valves - electronically controlled fuel supply pressure

Instrumentation

8 inch HMI Engine Control Panel Interconnect Harness

Lubrication System

Crankcase breather- top mounted Oil pan drain valve- front and rear

LEHW0258-05

Caterpillar: Confidential Green

OPTIONAL EQUIPMENT

Air Inlet System

Heavy-duty air cleaner with precleaners

Charging Alternator

35 Amp & 65 Amp charging alternators - CSA approved

Exhaust System

Flexible bellows adapters

Fuel System

Fuel filter

Gas pressure regulator

Flexible connection

Lubrication System

Air or electric motor-driven prelube

Duplex oil filter

Oil level regulator

Rating Definitions and Conditions

Engine performance is obtained in accordance with SAE J1995, ISO3046/1, BS5514/1, and DIN6271/1 standards.

Transient response data is acquired from an engine/generator combination at normal operating temperature and in accordance with ISO3046/1 standard ambient conditions. Also in accordance with SAE J1995, BS5514/1, and DIN6271/1 standard reference conditions.

Conditions: Power for gas engines is based on fuel having an LHV of 33.74 kJ/L (905 Btu/cu ft) at 101 kPa (29.91 in Hg) and 15°C (59°F). Fuel rate is based on a cubic meter at 100 kPa (29.61 in Hg) and 15.6°C (60.1°F). Air flow is based on a cubic foot at 100 kPa (29.61 in Hg) and 25°C (77°F). Exhaust flow is based on a cubic foot at 100 kPa (29.61 in Hg) and stack temperature.

© 2023 Caterpillar. All Rights Reserved. CAT, CATERPILLAR, LET'S DO THE WORK, their respective logos, "Caterpillar Corporate Yellow", the "Power Edge" and Cat "Modern Hex" trade dress as well as corporate and product identity used herein, are trademarks of Caterpillar and may not be used without permission.

^{**} Volatile organic compounds as defined in U.S. EPA 40 CFR 60, subpart JJJJ

^{***} ISO 3046/1