Solar Turbines

A Caterpillar Company

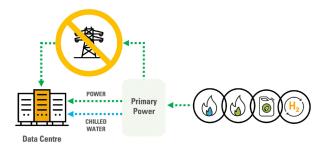
Powering the Future Through Sustainable, Innovative Energy Solutions

DATA CENTER OPERATIONS CASE STUDY Combined Cooling and Power to Decrease Power Usage Effectiveness

Case Study 3: Combined cooling and power in hot ambient to decrease power usage effectiveness (PUE) and operating expenses (OPEX).

For data centers operating in hot climates or needing high cooling capacity, the need for chilled water results in high PUE and can significantly increase OPEX. To reduce cost, installing an absorption or steam turbine driven compression chiller to generate chilled water while producing electricity can be a cost-effective solution, particularly when the price differential between gas and electricity is substantial.

Some regions have started to regulate the data center growth and its energy consumption. In high temperature ambients, it is sometimes done by putting a maximum limit on PUE. Installing a primary combined chilling and power plant, sometimes called trigeneration, can relieve the power grid and decrease the PUE by producing electricity on site and using a non-electrical cooling system, enabling data center growth in high ambient PUE regulated areas or providing various cooling options to data center tenants. Additionally, trigeneration often results in a decrease in CO2 in countries where the utility grid is dominated by coal power generation.


Combined Cycle Modules Incl Chiller	From Max Elec Power	To Max Chilling H20	From Max Elec Power	To Max Chilling H20
Based on PGM60	15 MWe	12 MWe + 6000 RT	30 MWe	24 MWe + 12,000 RT
Based on PGM70	20 MWe	16 MWe + 8000 RT	40 MWe	32 MWe + 16,000 RT
Based on PGM130	40 MWe	33 MWe + 15,000 RT	80 MWe	66 MWe + 30,000 RT

Caterpillar is a registered trademark of Caterpillar Inc. Solar is a trademark of Solar Turbines Incorporated. © 2024 Solar Turbines Incorporated. All rights reserved. Specifications subject to change without notice. DSDC-CS3/0524/E0

Chilled water, high power density primary power plant.

Solar Turbines' scalable combined cooling and power solution includes:

- Modular PGM (Power Generation Module) including continuous rated gas turbine
- Chilled water produced either in absorption chillers (direct exhaust and water/steam) or steam turbinedriven compression chillers
- Maintaining the benefit of high power density, dual fuel, low NOx emissions, lower PUE, and green fuel ready (H2, HVO, biogas)
- Total thermal efficiency of 80%+
- Reliable paralleling ability to run in island mode or parallel to the grid
- Ability to take 100% load blocks without BESS

