

操作和保养手册

2506F-E15TA 和 2506J-E15TA 工业用发动机

PP5 (发动机)

重要安全信息

产品操作、保养和修理中发生的大多数事故,都是由于不遵守基本安全规则或预防措施而引起的。 若能在事故发生前认识到各种潜在危险,事故往往可以避免。 人员必须对潜在的危险保持警惕,其中包括可能影响安全的人为因素。 还必须进行必要的培训,以掌握正确执行各种功能的技能和工具。

对该产品进行不正确的操作、润滑、保养或修理可能引发危险,甚至可能会造成人员伤亡。

在确认已经获得执行此工作的授权并且阅读和了解了操作、润滑、保养和修理信息前,不要操作本产品或 者对本产品执行任何润滑、保养或修理工作。

本手册中及产品上均提供有安全预防措施和警告。 如果对这些危险警告不加以注意,可能会导致自身或他 人伤亡。

危险由 "安全警告符号" 标识,跟随 "信号语言" 如 "危险","警告" 或 "小心注意"。 安全警告的 "警告" 标签如下所示。

WARNING

此安全警告符号的含义如下:

注意! 提高警惕! 事关您的安全。

该警告下面的信息说明具体危险情况,或以文字书写,或以图形表示。

对于可能造成产品损坏的片面操作,在产品上和本手册中均以"注意"标志表示。

Perkins 无法预料到可能发生危险的每一种情况。 因此,本手册和产品上的警告并不包罗所有情况。 请务必首先考虑在使用场所操作本产品所适用的所有安全守则和预防措施,包括具体地点的规定以及适用于现场的预防措施,不得超出本手册的范畴使用本产品。 如果采用了并非 Perkins 公司专门推荐的工具、流程、工作方法或操作技术,必须确保该工具、流程、工作方法或操作技术对您自己和他人是安全的。 您还应当确保已经获得执行此工作的授权,并且产品不会由于您将采用的操作、润滑、保养或修理程序而损坏或者变得不安全。

本手册中的信息、技术参数和图表均以编写手册时现有的资料为依据。 所列举的技术参数、扭矩、压力、测量值、调整值、图表和其它项目随时都可能变更。 这些变更会影响到产品的维修。 因此,在进行各项作业前,必须获得完整的最新资料。 Cat 代理商可提供这些最新资料。

注意

要求为本产品使用更换零件时,Perkins 建议使用原装 Perkins® 更换零件。

其他零件可能不符合某些原始设备技术规格。

安装更换零件时,机主/用户应确保机器符合所有适用要求。

在美国,排放控制装置和系统的保养、更换或修理可根据所有人的选择,由任何修理机构或个人来进行。

目录	保养章节
前言 4	加注容量49
安全部分	保养建议62
安全标志5	保养周期表 64
附加标志6	保修部分
一般危险信息7	保修信息资料92
防止烫伤10	参考资料部分
防火与防爆11	参考资料93
防止压伤和割伤12	索引部分
上、下设备 12	索引95
起动发动机前12	
发动机起动 13	
发动机停机 13	
电气系统13	
发动机电子装置13	
产品信息资料部分	
机型视图说明15	
产品识别信息资料20	
操作章节	
起吊和贮存 22	
功能部件和控制装置27	
发动机诊断 37	
发动机起动 38	
发动机运行 42	
发动机停机45	

寒冷天气操作......47

前言

前言

加利福尼亚州 65 号提案中的警告

加利福尼亚州认为,柴油发动机排气及其中 的某些成份会致癌,引起生育缺陷和其他生 殖方面的危害。

警告 - 本产品可能使您接触到包括 乙二醇在内的化学物质,加利福尼亚 州已知这些化学物质会导致出生缺陷 或其他生殖危害。 有关更多信息,请转至:

www.P65Warnings.ca.gov

不要摄入此化学物。 处理后请洗手,以避免 意外摄入。

警告 - 本产品可能会使您接触到包括铅和铅化合物在内的化学物质,加利福尼亚州已知这些化学物质会导致出生缺陷或其他生殖危害。 有关更多 信息,请转至:

www.P65Warnings.ca.gov

处理可能含铅的化合物后请洗手。

文献资料

本手册包含安全事项、操作说明、润滑和保养资料。 本手册应存放在发动机上或靠近发动机区域的一个文 件夹内或文件存放处。 阅读、研究并保留手册中的文 献和发动机信息。

英语是所有 Perkins 出版物的主要语言。 使用英语有 助于翻译和一致性。

本手册中部分照片或插图所呈现的细节或附件可能与您的发动机有所不同。为了表示清楚,一些护罩和盖板可能已经拿掉。本手册中可能并未说明因产品设计的不断改进和升级对发动机所进行的改动。 当您的发动机或本手册出现问题时,请咨询您的 Perkins 代理商或 Perkins 分销商,以获取最新信息。

安全

安全部分列出了基本的安全防范措施。 此外,本部分还指认了各种危险和警告情况。 在操作、润滑、保养和修理本产品以前,要阅读和理解列在安全章节中的 基本注意事项。

操作

本手册概述的操作方法均为基本的操作技巧。 操作方法有助于开发更有效和更经济地操作发动机所需的技能和技术。 操作员的技术及技能将随其对于发动机及 其性能认识的深化而提高。

操作部分供操作人员参考。 各种照片和插图指导操作 人员按正确的程序进行发动机的检查、启动、运行和 停机。 本部分还包含电子诊断信息的论述。

保养

保养部分是对发动机维护的指南。 附带插图的逐步说明按工作小时和/或日历时间将保养周期分类。 保养周期表中的项目参阅后面的详细说明。

应根据保养周期表中的相应间隔执行建议维修。 发动机的实际工作环境也会影响保养周期表。 因此,在极度恶劣、多尘、潮湿或结冰的寒冷条件下运转,所需的润滑和保养次数要多于保养周期表中的规定。

保养计划中的保养项目组成了一个预防性保养管理程序。 如果遵照预防性保养管理程序进行保养,那就不需要进行定期调整。 履行预防性保养管理程序,由于减少了计划外停机和故障造成的费用损失,将使运行成本降到最低。

保养周期

执行最初要求的多级保养项目。 根据具体保养实践、操作和用途,每一级和/或每一级中的每个保养项目应该适当提前或推迟。 Perkins 建议复制一份保养计划表并展示在发动机附近,以便于提醒。 Perkins 还建议将保养记录留作发动机永久记录的一部分。

您的 Perkins 授权代理商或 Perkins 分销商可以帮助 您调整保养计划,以满足您的操作环境需求。

大修

除保养时间间隔和保养周期中规定的项目以外,主要的发动机大修细节不包含在操作和保养手册内。 最好由训练有素的人员或 Perkins 授权分销商或代理商执行大修。 您的 Perkins 代理商或 Perkins 分销商提供有关大修计划的各种选项。 如果您遇到严重的发动机故障,也可以使用多种故障后大修选项。 有关这些选致商信息,请咨询您的 Perkins 代理商或 Perkins 分

安全部分

i07201970

安全标志

您的发动机上可能会有几处特定的安全标志。 本部分 回顾这些安全标志的确切位置和描述。 请熟悉所有的 安全标志。

请确保所有的安全标志都很清晰易读。 如果安全标志的说明文字或插图无法辨识,请清洁或更换。 用布、水和肥皂来清洁这些安全标志。 不要使用溶剂、汽油或腐蚀性化和其它刺激性化学制品。 这些溶剂、汽油或腐蚀性化学制品,可能会使固定安全标志用的粘着剂丧失粘性。 松动的安全标志可能会从发动机上脱落下来。

更换任何损坏或丢失的安全标志。 如果有安全标志贴在了被更换的零件上,应在更换零件上粘贴新的安全标志。 您的 Perkins 经销商可能会提供新的安全标志。

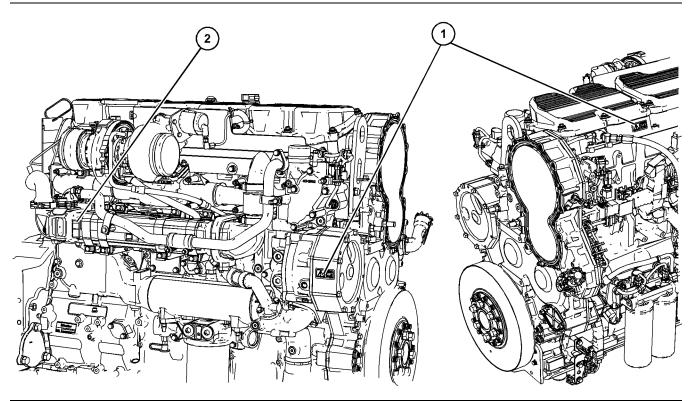


图 1

g06129232

典型示例

(1) 通用警告标签

(2) 硫酸烧伤标签

普适警告(1)

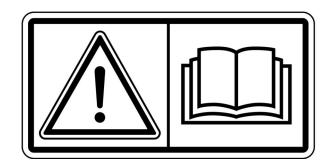


图 2

g01370904

一个安全标志位于气门机构盖左侧。 一个安全标志位于发动机齿轮箱右侧。

▲ 警告

在阅读和了解《操作和保养手册》中的指示和警告之 前,请勿操作机器。 不遵守这些警告,可能会导致人 身伤亡。

硫酸燃烧危险(2)

图 3

g01382725

硫酸烧伤的安全标志位于排气冷却器的侧面。

▲警告

硫酸烧伤危险可能导致严重的人身伤亡。

废气冷却器中可能含有少量硫酸。 使用硫含量大于15 ppm 的燃油会增加生成的硫酸量。 对发动机进行保养时,硫酸可能会从冷却器中溅出。 接触硫酸全烧伤眼睛、皮肤和衣服。 一定要佩戴硫酸材料安全数据表 (MSDS) 上规定的适用个人防护设备 (PPE)。 一定要遵照硫酸材料安全数据表 (MSDS) 上规定的急救说明。

i07813061

附加标志

本发动机上有一些特殊标志。 本章将介绍这些标志的 确切位置并说明标志中的内容。 熟悉所有的安全标 志。

请确保所有的安全标志都很清晰易读。 如果无法辨识,清洁或更换安全标志。 如果无法辨识图示,更换图示。 清洁安全标志时,可使用布、水和肥皂。 切勿使用溶剂、汽油或其他强烈的化学药品来清洗标志。 这些清洁溶剂可能会使固定标志用的粘着剂失去粘性。 失去粘性的粘着剂会使标志脱落。

更换所有损坏或丢失的安全标志。 如果需要更换贴有标志的零件,请在更换零件上贴上标志。 可从 Perkins 经销商那里获取更换用标签。

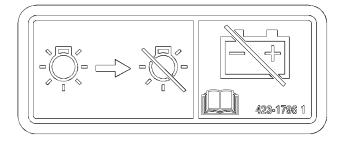
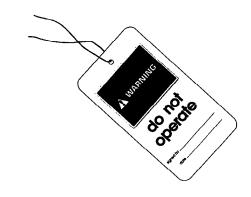


图 4


g03422039

净化通知消息

该通知应位于蓄电池断路开关旁。

注意 在指示灯熄灭之前,不要关闭蓄电池电源断开开关。 如果指示灯点亮时开关关闭,则 DEF 系统将不会净 化并且 DEF 可能会冻结并导致泵和管路损坏。 i08394976

一般危险信息

5

g00104545

维修或修理发动机以前,在起动开关或控制装置上挂一个"不准操作"的警告标签或类似的警告标签。在发动机和每个操作员操控台上都挂上警告标签。必要时,断开起动控制装置。

当保养发动机时,任何未经许可的人员不得在发动机 上或发动机周围。

- 篡改发动机的装置或篡改 OEM 提供的接线是危险的。可能会引起人身伤害、财物损坏或造成发动机损坏。
- 当发动机运行在封闭场所时,应将发动机排气排放 到室外。
- 如果发动机不在运转状态,不要释放辅助制动或停车制动系统,除非车辆被阻塞或限制而无法移动。
- 请按要求戴上安全帽、护目镜和其他保护装备。
- 当在发动机周围工作时,发动机不得运转。您只能 靠近正在运转的发动机执行需要发动机运转的保养 步骤。
- 不要穿宽松的衣服或佩带首饰,因为它们可能勾住 控制装置或发动机的其他零件。
- 请确保所有护板和罩盖都固定在发动机的正确位置 上。
- 切勿将保养液体倒入玻璃容器内。因为玻璃容器容易破碎。
- 小心使用所有清洗溶液。
- 报告所有必要的修理。

除非另有说明,否则应在下列情况下进行保养:

- 发动机停机。确保发动机不能被起动。
- 保护锁定装置或控制装置应处于起作用位置。

- 接合辅助制动器或停车制动器。
- 进行保养或维修之前,阻塞或限制住车辆,使其不能移动。
- 在进行保养时或维修电气系统时,要断开蓄电池。 断开蓄电池接地导线。为了防止打火,将导线用胶 带包上。如有配备,在断开蓄电池之前排空柴油机 排气处理液。
- 如有配备,断开位于气门室盖底座上的单体喷油器 接头。此动作将有助于防止单体喷油器的高电压对 人身造成伤害。发动机运转时,不要接触单体喷油 器接线端子。
- 不要试图在发动机运转时进行任何维修或调整。
- 不要试图修理您不了解的东西。使用适当的工具。 更换或修理损坏的设备。
- 对于初次起动的新发动机或维修后的发动机,应做 好发生超速时的进行停机操作的准备。可通过断开 燃油供给和/或空气供给关闭发动机。确保只有供 油管切断。确保回油管打开。
- 应从操作员操作台(驾驶室)起动发动机。决不要 靠短接起动马达端子或蓄电池来起动发动机。此动 作会旁通发动机空档起动系统和/或电气系统可能 会受到损坏。

发动机排气含有可能对人体有害的燃烧产物。一定要在通风良好的地方起动和运行发动机。如果发动机处于封闭区域,应将发动机废气排到外面去。

小心拆卸下列零件。为了防止压力液体的喷溅,拿一 块布盖在被拆零件上。

- 加注口盖
- 黄油嘴
- 测压口
- 呼吸器
- 排放螺塞

拆卸盖板时要小心。逐渐松开但不拆卸位于盖板或装置上相对两端的最后两个螺栓或螺母。在拆下最后两个螺栓或螺母之前,将盖撬松,以释放所有弹簧压力或其他压力。

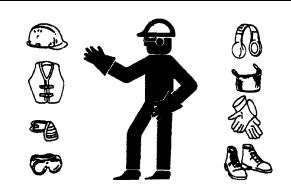


图 6 g00702020

- 请按要求戴上安全帽、护目镜和其他保护装备。
- Perkins 建议不要站在暴露在外且正在运转的发动机旁边,除非在执行日常检查或保养步骤时有这个必要。站在暴露在外且正在运转的发动机旁边时,必须穿戴适当的个人防护设备 (PPE)。
- 不要穿宽松的衣服或佩带首饰,因为它们可能勾住 控制装置或发动机的其他零件。
- 请确保所有护板和罩盖都固定在发动机的正确位置上。
- 切勿将保养液体倒入玻璃容器内。因为玻璃容器容易破碎。
- 小心使用所有清洗溶液。
- 报告所有必要的修理。

除非另有说明,否则应在下列情况下进行保养:

- 发动机停机。确保发动机不能被起动。
- 在进行保养时或维修电气系统时,要断开蓄电池。
 断开蓄电池接地导线。为了防止打火,将导线用胶带包上。
- 不要试图修理您不了解的东西。使用适当的工具。 更换或修理损坏的设备。

压缩空气和加压水

压缩空气和/或加压水可能导致碎屑和/或热水喷出。 这种行为可能会导致人身伤害。

使用压缩空气和/或加压水进行清洗时,请穿戴防护 衣、防护鞋和眼部护具。眼部护具包括护目镜及防护 面罩。

清洁用的最高气压必须低于 205 kPa (30 psi)。清洁用的最高水压必须低于 275 kPa (40 psi)。

液体穿透

即使发动机已经熄火很久,液压回路中仍可能滞留压力。如果没有正确地释放压力,会导致液压油或管塞之类的物体高速射出。

在释放压力之前,不可拆卸任何液压零部件,否则会 造成人身伤害。在释放压力之前,不可拆解任何液压 零部件,否则会造成人身伤害。有关释放液压压力所 需的任何步骤,请参阅 OEM 资料。

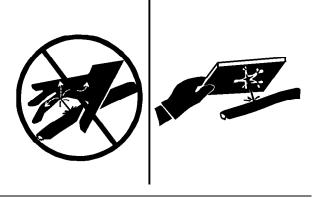


图 7

g00687600

请务必使用木板或硬纸板來检查泄漏。在压力下所喷出的液体可能会穿透人体组织。液体穿透进入身体造成严重的人身伤害,甚至可能导致死亡。即使是一个针孔大小的泄漏,也可能导致严重的人身伤害。如果油液喷射进您的皮肤,必须立刻治疗。要找熟悉这类创伤的医生来治疗。

盛装泄漏的液体

在检验、保养、测试、调整及维修产品时,必须小心 以确保收集好排放出的液体。在打开任何舱室或拆卸 任何含有油液的部件前,请准备好盛接液体用的适当 容器。

按照本地法规和要求处置所有油液。

用超低硫柴油加注时会出现静电危害

▲ 警告

供油时,要避免静电危险。 相比早先的较高含硫量柴油配方,超低硫柴油(**ULSD**)会造成较大的静电点火危害。 避免火灾或爆炸造成严重的伤亡事故。 咨询您的燃油或柴油系统供应商,确保输油系统符合正确接地和搭接方法的供油标准。

吸入

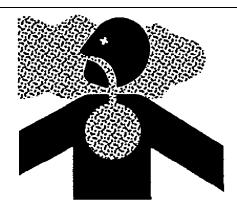


图 8 g00702022

排气

请小心谨慎。排气烟气可能会对健康有害。如果您在 封闭区域操作该设备,有必要进行适当的通风。

六价铬

Perkins 设备和替换零件符合最初销售时适用的法规和要求。Perkins 建议只使用正宗的 Perkins 替换零件。

在 Perkins 发动机的排气和隔热系统上偶尔检测到六价铬。虽然实验室测试是确定六价铬是否存在的唯一准确的方法,但在高温区域(例如,排气系统部件或排气隔热层)存在黄色沉积物就表示可能存在六价铬。

如果怀疑存在六价铬,请务必小心。处理疑似含有六价铬的物品时,请避免皮肤接触,并避免吸入可疑区域的任何灰尘。吸入或皮肤接触六价铬粉尘可能危害您的健康。

如果在发动机、发动机部件或相关设备或包装上发现此类黄色沉积物,Perkins 建议在处理设备或零件时遵循当地的健康和安全法规和指南,遵循良好的卫生习惯,并遵守安全工作惯例。Perkins 还建议采取以下措施:

- 佩戴合适的个人防护设备 (PPE)
- 在就餐、饮水或吸烟之前,以及在休息室休息时, 用肥皂和水洗手和洗脸,以防止摄入任何黄色粉末
- 切勿使用压缩空气清洁疑似含有六价铬的区域
- 避免刷洗、研磨或切割疑似含有六价铬的材料

- 处理可能含有或曾接触到六价铬的所有材料时,应遵守环境法规
- 远离空气中可能含有六价铬颗粒的区域。

有关石棉的信息

从 Perkins 发动机有限公司出厂的 Perkins 设备和更 换零件不含石棉。Perkins 建议只使用正宗的 Perkins 替换零件。当您处理任何含有石棉的更换零件或石棉 碎屑时,请遵循下列指导原则。

请小心谨慎。处理含有石棉纤维的部件时,避免吸入可能产生的粉尘。处理含有石棉纤维的部件时,避免吸入能含有石棉纤维的部件包括:制动器对块、制动器力片材料、离合器盘和一些密封垫。在这些零件中的石棉纤维,通常是浸渍在树脂中或是用某种方法处理起来的。除非产生了含有石棉的浮尘,否则正常处理这些材料是无害的。

如果出现可能含有石棉的粉尘,应该遵循下列几项指 导原则:

- 切勿使用压缩空气来清理。
- 避免刷洗含有石棉的材料。
- 避免打磨含有石棉的材料。
- 以湿法来清理石棉材料。
- 也可使用配备有高效微粒滤清器 (HEPA) 的真空吸 尘器来清理。
- 在固定位置作机械加工工作时,应使用排气通风装置。
- 如果没有其他方法控制粉尘,应戴上经认证的防尘面具。
- 遵守适用于工作场所的条例和规则。在美国,请遵 守请遵守职业安全与健康署 (OSHA) 的要求。这些 职业安全与健康管理局(OSHA)的要求可在 29 CFR 1910.1001 中找到。
- 请遵守环保法规处置石棉废弃物。

• 远离空气中可能有石棉微粒的场所。

适当地处置废弃物

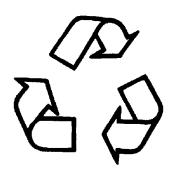


图 9

g00706404

不适当地处理废弃物会对环境造成威胁。请根据当地 法规处理可能有害的液体。

排出液体时务必使用防漏容器。切勿将废弃物倾倒在 地面上、排水管中或任何水源里。

柴油机排气处理液

▲ 警告

DEF 是尿素的水溶液,可以释放氨水蒸汽。 一定要佩戴柴油机排气处理液 (DEF) 材料安全数据表 (-MSDS) 上规定的适用个人防护设备 (PPE)。

- 不要吸入氨蒸气或雾
- 不要在有 DEF 的情况下进食、饮水或吸烟
- 避免 DEF 与眼睛、皮肤和衣物接触
- 处理 DEF 后应彻底清洗
- 一定要遵照柴油机排气处理液 (DEF) 材料安全数据表 (MSDS) 上规定的急救说明。

遵循建议的使用说明时,预计 DEF 不会产生明显的不良健康影响。

· 必须在通风良好的区域排放 DEF。

• 不要让 DEF 溅到热表面上。

i07201983

防止烫伤

冷却液

发动机处于工作温度时,发动机的冷却液是热的,而且处于压力下。 水箱和通向加热器或发动机的所有管道内都有热的冷却液。 触摸热的冷却液或蒸汽都会造成严重烫伤。 泄放冷却系统以前,让冷却系统部件先冷却下来。

在发动机停机和冷却后,检查冷却液液位。 确保加液口盖冷却后再将其打开。 盖温必须达到徒手可以触摸的温度。 慢慢拆下加注口盖,以便释放压力。

冷却系统添加剂含碱。 碱性物质会造成人身伤害。 不要让碱接触皮肤,也不要让其进入眼睛或嘴。

机油

反复或长时间接触矿物油和合成基础油之后,皮肤可能会过敏。 请参阅供应商的材料安全数据表,了解详细信息。 高温的机油和润滑部件会造成人身伤害。 不要让炽热的机油接触皮肤。 应佩戴适当的个人防护装备。

柴油

柴油可能会刺激眼睛、呼吸系统和皮肤。 长期接触柴油可能导致各种皮肤状况。 应佩戴适当的个人防护装备。 请参阅供应商的材料安全数据表,了解详细信息。

蓄电池

蓄电池中的液体是电解液。 电解液是可能导致人身伤害的酸性液体。 避免电解液接触皮肤或眼睛。

检查蓄电池电解液液位时不要吸烟。 蓄电池释放的易 燃蒸气会引起爆炸。

对蓄电池作业时一定要戴护目镜。 接触蓄电池后请洗 手。 建议使用手套。

发动机和后处理系统

不要触摸正在运转的发动机或发动机后处理系统的任何部位。对发动机或发动机后处理系统执行任何保养前,先让发动机或发动机后处理系统冷却。 在拆开任何管路、管接头或相关零部件之前,释放相应系统内的所有压力。

后处理系统和柴油机排气处理液

正常发动机操作期间,柴油机排气处理液(DEF)温度可达到 65° to 70°C(149.° to 126°F)。 停止发动机。 执行保养或修理前,等待 15 分钟,以使 DEF 系统净化,并使 DEF 冷却。

i06043784

防火与防爆

图 10

g00704000

所有的燃油、大多数的润滑油和某些冷却液混合物都 是易燃品。

易燃液体渗漏或溅到炽热表面或电器部件上时,可能 引起火灾。 火灾会引起人身伤害和财产损失。

操作紧急停止按钮后,务必等待 15 分钟,然后才能 取下发动机罩。

确定发动机是否在可燃气体可被吸入进气系统的环境 下运行。 这些气体会造成发动机超速。 这可能会导 致人身伤害、财产损失或发动机损坏。

如果应用类型涉及存在可燃气体的情况,请咨询您的 Perkins 代理商和/或 Perkins 分销商,以获得关于适 当防护装置的更多资料。

清除发动机上的所有易燃或导电材料,例如燃油、机油和碎屑。 禁止在发动机上堆积任何易燃或导电材料。

将燃油和润滑剂装入正确标记的容器内,并存放在远离未经授权人员的位置。 将油布和其他易燃物存放在保护性的容器内。 切勿在存放易燃物的场所吸烟。

不得让发动机暴露在任何明火之下。

如果管路、管道和密封件损坏,排气管隔热板(如有配备)可以保护热的排气管部件不被机油或燃料的喷射到。 排气隔热板必须正确安装。

禁止在装有易燃液体的管路或油箱上进行焊接。 禁止在装有易燃液体的管路或油箱上进行火焰切割。 在焊接或火焰切割这些管路或油箱前,先用不可燃的溶剂彻底将其清洗。

导线必须保持在良好状态。 确保所有电线正确安装并且牢固连接。每天检查所有的电线。 请在运转发动机之前修复松动或磨损的电线。 清洁并紧固所有线路接头。

去掉所有无关的或不必要的导线。 不要使用比推荐规 格小的导线或电缆。 不得将任何保险丝和/或断路器 旁通短接。

电弧或火花会引起火灾。 牢固连接、按照推荐布设的 线路和正确保养的蓄电池电缆有助于防止产生电弧和 火花。

确保发动机停转。 检查所有的管路和软管有无磨损或 老化。 确保软管布设正确。 管路和软管必须有适当 的支撑或牢固的管夹。

机油滤清器和燃油滤清器必须安装正确。 滤清器壳体必须拧紧到正确的扭矩。 有关更多信息,请参阅拆解和装配手册。

图 11

a00704059

向发动机加燃油的时候要小心谨慎。 不要在向发动机加燃油的时候吸烟。 也不要在靠近明火或火花的地方向发动机加燃油。 切记加燃油前将发动机熄火。

供油时,要避免静电危险。 相比早先的较高含硫量柴油配方,超低硫柴油(ULSD 燃油)会造成较大的静电点火危害。 避免火灾或爆炸造成严重的伤亡事故。咨询您的燃油系统供应商,确保输油系统符合正确接地和搭接方法的供油标准。

图 12

g00704135

蓄电池散发出来的气体能引起爆炸。 让明火或火花远离蓄电池的顶部。 不要在蓄电池充电的场所吸烟。

不得采用将金属物体跨接在接线端子上的办法来检查 蓄电池的充电情况。 必须使用电压表或比重计。

跨接电缆连接不当可能会引起爆炸,造成人身伤害。 有关具体的说明,请参考本手册的操作部分。

不得给冻结的蓄电池充电。 冻结的蓄电池可能会导致 爆炸。

蓄电池必须保持清洁。 每个电池栅格单元都必须盖好盖子(如有配备)。 在发动机运转时,要使用推荐的电缆、接头和蓄电池箱盖。

灭火器

确保备有灭火器供使用。 要熟悉灭火器的使用方法。 经常检修灭火器。 遵从指示板上的说明。

乙醚

乙醚是有毒且易燃的物质。

更换乙醚罐或使用乙醚喷射装置时切勿吸烟。

不要将乙醚罐存放在生活区或发动机舱室中。 也不要将乙醚罐存放在太阳光直射的地方,或者温度超过49°C (120°F)的地方。 使乙醚罐远离明火或火花。

管路、管道和软管

请勿将高压管线弯折。 请勿敲击高压管线。 请勿安 装任何受损的管路。

泄漏会造成火灾。 请与您的 Perkins 代理商或 Perkins 分销商联系以获取更换零件。

若出现下列任何一种情况,请更换零件:

• 端接头损坏或渗漏。

- 外层有磨损或割伤。
- 金属线暴露在外。
- 外层鼓包隆起。
- 软管的弹性零件扭曲。
- 铠装护套嵌入外层。
- 端接头移位。

确保所有管夹、防护板和隔热罩安装正确。 正确的安装有助于防止发动机工作时的振动、零部件间的相互摩擦以及过量生热。

i03018585

防止压伤和割伤

在部件下面工作时,部件应有可靠的支撑。

如果没有提供另外的保养说明,在发动机运转时,切 勿试图进行调整。

避开所有转动部件和运动部件。 直到进行保养时再拿掉保护罩。 保养结束后重新装上护罩。

将物件远离转动的风扇叶片。 风扇叶片会抛出或切割物件。

敲击物件时,要戴护目镜,以免伤及眼睛。

在敲击物件时,碎片或其它碎屑会四处飞散。 敲击物件之前,应确保周围无人会被飞出的碎屑击伤。

i06565701

上、下设备

不要爬上发动机或发动机后处理系统。 发动机和后处理系统未设计有上下位置。

请参阅 OEM 信息以了解在具体应用中手和脚应抓住哪些位置。

i04384340

起动发动机前

注意

初次起动新发动机或大修过的发动机和起动已经维修 过的发动机时,要作好出现超速时的停机准备。 这可 以诵过切断发动机的空气和/或燃油供应来实现。

▲ 警告

发动机排气含有对人体有害的燃烧产物。 必须在良好通风的场所起动和运转发动机,如果在封闭场所,要将废气排到外面去。

检查发动机有无潜在危险。

如果起动开关或操纵装置上系有一个 "不准操作" 警告标签或类似警告标签,切勿起动发动机或移动任何操控装置。

启动发动机前,确保发动机上面、下面或周围附近无 人。 确保附近没有任何人员。

如有配备,确保用于发动机的照明系统适合于工况条 件。 确保所有照明灯工作正常。

如果进行维修作业必须启动发动机,必须安装好所有 保护罩、盖。 为了预防旋转件引起事故,在旋转件周 围工作要小心。

调速器拉杆断开时不要起动发动机。

不要旁通自动关断电路。 不要停用自动关断电路。 这种电路的设置是为了防止人身伤害, 同时也可防止 发动机损坏。

i07941094

发动机起动

▲ 警告

▲ 警告

发动机排气含有对人体有害的燃烧产物。 必须在良好通风的场所起动和运转发动机,如果在封闭场所,要将废气排到外面去。

如果发动机起动开关或操控装置上系有一个警告标 签,切勿起动发动机或扳动操作装置。 在起动发动机 前,要向挂警告标签的人咨询。

如果必须起动发动机进行维修程序时,那么必须安装 好所有保护罩、盖。 为了预防旋转件引起事故,在旋 转件周围工作要小心。

从驾驶室或用发动机起动开关起动发动机。

一定要按照操作和保养手册,发动机起动(操作部分)中所叙述的步骤起动发动机。 了解正确启动步骤有助于防止发动机零部件的重大损坏。 了解正确启动步骤有助于防止人身伤害。

为确保水套水加热器(如有配备)正常工作,在加热 器操作期间,检查水温表和/或油温表。

注:发动机可能配备有冷起动设备。 如果发动机将在 严寒下运转,那么可能需要严寒辅助起动装置。 通 常,发动机将配备有适合于作业地区的辅助起动装 置。 i07201985

发动机停机

发动机负载运转时,不要立即停止发动机。 突然停止发动机可导致过热和发动机部件加速磨损。 在停机前允许发动机运转 5 分钟。 发动机运行可使发动机的高温区域逐渐冷却。

i06245650

电气系统

充电器正在工作时,切勿从蓄电池上断开任何充电器 电路或蓄电池电路电缆。 否则,由某些蓄电池产生的 易燃气体可能被火花点燃。

为了帮助防止火花点燃某些蓄电池产生的可燃气体,负极 "-" 跨接起动电缆应最后从外接电源连接到起动 马达的负极 "-" 接线端。 如果起动马达未配备负极 "-" 接线端,应将跨接起动电缆连接到发动机缸体。

每天检查电线有无松动或擦破。 在起动发动机之前,拧紧所有松动的电线。 发动机起动之前,要修理好所有擦破的电线。 有关具体的起动说明,请参考本操作和保养手册的"发动机起动"部分。

接地方法

为获得最佳的发动机性能和可靠性,必须使发动机电气系统正确接地。 不正确的接地会造成电路不可控制和不可靠。

不受控制的电路会对主轴承、曲轴轴颈表面和铝质部 件造成损坏。

未安装发动机至机架接地带的发动机可能因电气放电 而损坏。

为确保发动机和发动机电气系统工作正常,必须使用 发动机至机架接地带,此接地带与蓄电池之间具有直 连途径。 此途径可通过起动马达接地、起动马达至机 架接地或直接的发动机至机架接地来提供。

所有接地装置必须紧固和无腐蚀现象。 发动机交流发电机必须通过一根足以承受其满载充电电流的导线接地到蓄电池的负极 "-" 端子。

i06245633

发动机电子装置

▲ 警告

擅自改动电子系统或原始设备制造商(OEM)的接线安 装是危险的,可能导致人身伤亡和/或发动机损害。

本发动机具有全面的、可编程的发动机监控系统。 发动机控制模块 (ECM) 将监控发动机工作状况。 如果任何发动机参数超出容许范围,ECM 将立即采取行动。

发动机监控控制可采取以下行动:警告, 减额 和 停机。 这些发动机监控模式可能限制发动机转速和/或发动机功率。

可以根据发动机监控功能对由 ECM 监控的许多参数进行编程。作为发动机监控系统的一部分,以下参数可以被监控:

- 工作海拔
- 发动机冷却液液位
- 发动机冷却液温度
- 发动机机油压力
- 发动机转速
- 燃油温度
- 进气歧管空气温度
- 系统电压

发动机监控程序包可能会因发动机型号和应用差异而变化。 但是,对所有发动机来说,监控系统和发动机 监控控制将是相似的。

注:许多可用于 Perkins 发动机的发动机控制系统和显示模块将与发动机监控系统协调工作。 这两种控制系统将一起提供为特定发动机应用所需的发动机监控功能。 有关更多信息,请参考故障诊断与排除手册。

产品信息资料部分

机型视图说明

i07201976

机型视图

发动机视图

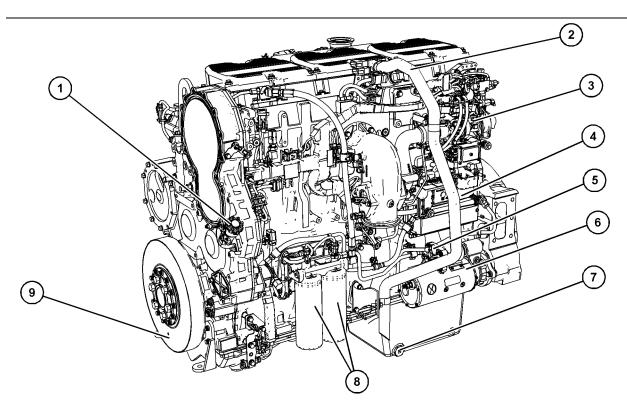


图 13 g06134993

- (1) 加油口 (2) 呼吸器软管 (3) NRS 阀

- (4) 安装在发动机上的 ECM (5) 机油表(油尺) (6) 起动马达

- (7) 放油塞 (8) 双燃油滤清器 (9) 减振器

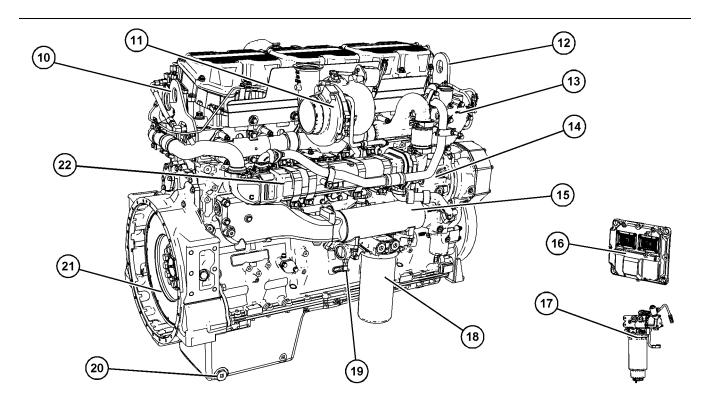


图 14 g06135026

- (10) 后吊耳 (11) 涡轮增压器 (12) 前吊耳 (13) 水温调节器壳体(节温器壳体) (14) 冷却液泵

- (15) 机油冷却器 (16) 后处理 ECM
- (17) 燃油粗滤器/注油泵 (18) 机油滤清器 (19) 机油取样阀

- (20) 放油塞 (21) 飞轮 (22) 排气冷却器

提供的 ECM (16) 松动。

后处理系统

Perkins 提供的后处理部件松动。

清洁排放模块

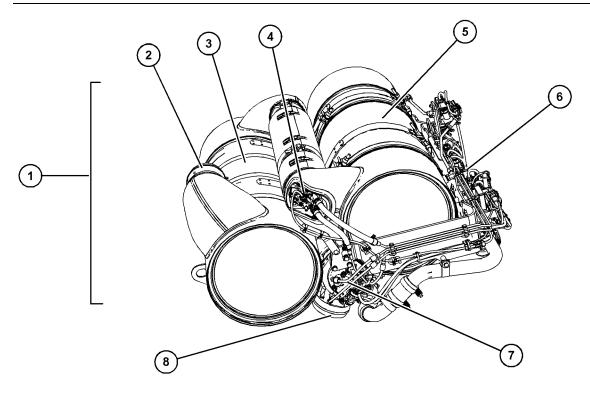


图 15 g06044166

- (1) 清洁排放模块 (CEM) (2) 废气出口 (3) 选择性催化还原(SCR)

- (4) DEF 喷油器 (5) 柴油微粒滤清器 (DPF) (6) CEM 传感器和燃油系统
- (7) 后处理再生装置(ARD) (8) 排气进口

泵电子箱装置 (PETU)

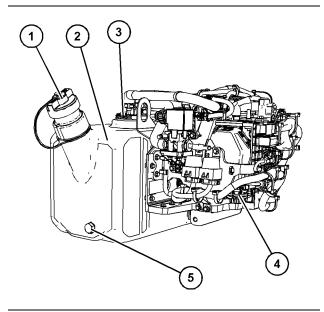


图 16 g06129412

典型示例

- (1) DEF 加注口盖 (2) DEF 罐

- (3) DEF 罐集管 (4) DEF 泵滤清器 (5) DEF 罐排放

NOx 传感器和 DEF 加热管路

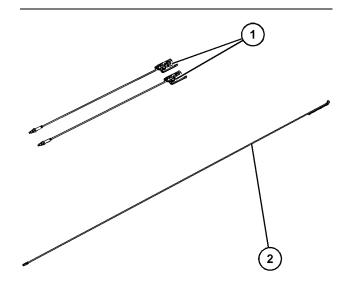


图 17 g06044238

典型示例

- (1) NOx 传感器 (2) DEF 加热管路

i07201966

设备描述

Perkins 2506F-E15TA 工业用发动机具有以下特性:

- 4 冲程循环
- 机械驱动电子控制的喷油系统
- 涡轮增压式
- 空-空增压冷却式
- 后处理系统

清洁排放模块 (CEM) 由四个主要部件组成:柴油机后处理再生设备 (ARD) 氧化催化剂、柴油微粒滤清器和选择性催化还原 (SCR)。 SCR 要求将柴油机排气处理液 (DEF) 喷入系统中,以降低发动机的排量。 由泵电子格尼尼 符 安装 DEF 箱。

发动机规格

注:发动机的前端与发动机飞轮端相对。 在飞轮端处 看去,确定发动机的左侧和右侧。 1 号气缸是最前端 的气缸。

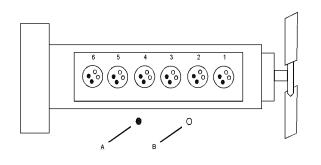


图 18

g01387009

气缸和气门的位置

- (A) 排气门 (B) 进气门

表 1

发动机规格	
发动机	2506F-E15TA
布置和缸数	直列6缸
缸径	137 mm (5.4 inch)
冲程	171 mm (6.7 inch)
进气方式	ATAAC(1)
排量	15.2 L (927 cubic inch)
点火顺序	1-5-3-6-2-4
旋向(飞轮端)	逆时针

(1) 空对空后冷

电控发动机特性

发动机是针对电子控制而设计的。 一体化的机载计算机控制发动机的操作。 该计算机亦监控发动机当前的工作状况。 电子控制模块(ECM)控制发动机对这些状况和操作员要求作出反应。 这些状况和操作员要求决定了 ECM 对喷油的精确控制。 电子发动机控制系统具有以下功能:

- 发动机调速器
- 空燃比自动控制
- 扭矩曲线绘制
- 喷油正时控制
- 系统诊断
- 后处理再生控制
- 氮氧化物还原系统控制

额外特点

下列额外特点改善了的发动机的燃油经济性和可维修

- 冷起动能力
- 滥用检测
- 诊断

发动机诊断

发动机具有内置的诊断功能,用以确保所有部件都工作正常。 在某些情况下,发动机的马力和车速会受到限制。 可以利用电子维修工具来显示诊断代码。

有两类代码:诊断代码和事件代码。 这两类代码可能 处于两个不同阶段:激活和被记录

大多数诊断代码被记录和存储在 ECM 中。 详细内容,请参阅操作和保养手册, 发动机诊断主题(操作部分)。

发动机使用寿命

发挥发动机的效率和最大程度利用发动机的性能取决于对正确的操作和保养建议的遵守程度。 此外,也应使用建议的燃油、冷却液和润滑剂。 将操作和保养手册用作发动机所需进行的保养的指南。

发动机的预期使用寿命通常可由需求的平均功率预测出来。需求的平均功率是基于一段时间内发动机的燃油消耗量来确定的。减少全油门运转小时数和/或在减低了的油门设置下运转可导致较低的平均功率需求。减少运转小时数将会延长发动机需要大修之前的运转时间。更多有关资料,请参阅操作和保养手册,大修考虑因素专题。

售后产品和 Perkins 发动机

Perkins 对非 Perkins 油液和滤清器的质量或性能不提供任何保证。

在 Perkins 产品上使用其他制造商生产的辅助设备、附件或消耗品(滤清器、添加剂、催化剂)时,不会仅因这种使用而影响 Perkins 保修。

但是,安装和使用其他制造商的设备、附件或消耗品而导致的故障不属于 Perkins 产品缺陷。 因此,这些缺陷不在 Perkins 保修范围之内。

产品识别信息资料

i07201974

铭牌位置和膜片位置

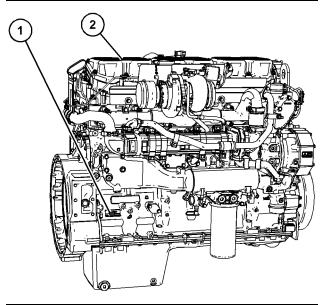


图 19 g06129791

- (1) 序列号铭牌
- (2) 信息铭牌

发动机序列号铭牌位于发动机缸体右侧,朝向后部。

Perkins Engine Company Ltd England		
🛞 PERKINS		
Engine No.		
Designation.		
Engine Rating. For spares quote Engine No.		

图 20

g01403841

序列号铭牌

序列号标牌上压印有以下信息:发动机序列号、型号 和配置总成编号。 发动机信息标牌位于气门室盖顶部,靠近发动机中 间。

信息铭牌上带有以下信息:发动机序列号、发动机型号、发动机配置总成编号、达到额定功率所需的发动机最大海拔、马力、高怠速、满载转速、燃油设置和其他信息。

清洁排放模块 (CEM) 识别标牌位于 CEM 的托架组件上。

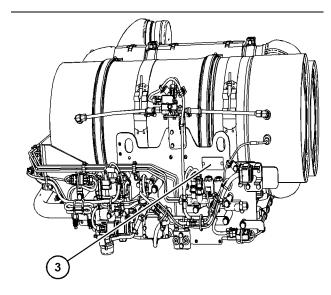


图 21 g06040627

(3) CEM 识别标牌

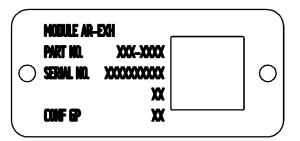


图 22

g02236574

CEM 识别标牌

CEM 识别标牌包含以下信息:零件号、序列号、变更级别和配置 ID 码。 查询 CEM 时,Perkins 经销商可能需要该信息。

泵电子箱装置 (PETU) 和泵电子装置 (PEU)

注:有些应用的电子装置上可能没有安装柴油机排气处 理液箱。

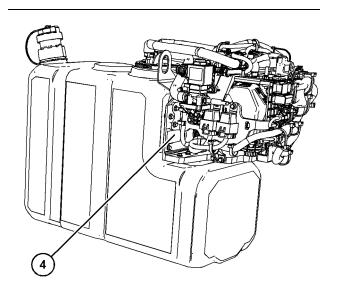


图 23 g06040642

典型示例

(4) PETU 标牌位置

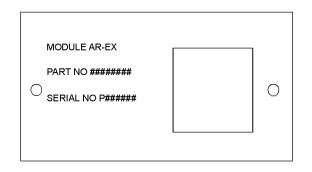


图 24

g03049116

PETU 序列号标牌的典型示例

记录 CEM 和 PETU 序列号标牌上的信息。 Perkins 经销商需要使用这些信息来识别替换件的零件号。

i06043750

排放认证贴膜

注:此信息适用于美国、加拿大及欧洲。 排放标签位于气门机构盖顶部。

操作章节

起吊和贮存

i07941088

设备起吊



图 25 g00103219

注意 执行任何起吊前,务必检查吊环螺栓和所有其它提升 设备有无损坏。 千万不要折弯吊环螺栓和支架。 如 果部件损坏,切勿执行设备起吊。 吊环螺栓和支架只 能承受张力负荷。 要记住当支承构件和物体之间的角 度小于 90°时,吊环螺栓的承载能力变小。

使用起重机搬移重的部件。 使用一个可调的吊粱起吊 发动机。 所有的支承构件(链条和钢丝绳)应互相平 行。 链条和钢丝绳与被吊物的顶面尽可能保持垂直。

有些搬移工作要求用吊装工具吊装,以确保平衡和安 全。

只在拆卸发动机时,要使用发动机上的吊耳。

吊耳是为特定的发动机装置设计和安装的。 更换吊耳和/或发动机会使吊耳和吊具不能使用。 如果更换了吊环螺栓和/或发动机,则应确保提供合适的起吊装置。 有关正确起吊发动机的吊具信息,请向 Perkins 经销商咨询。

发动机起吊

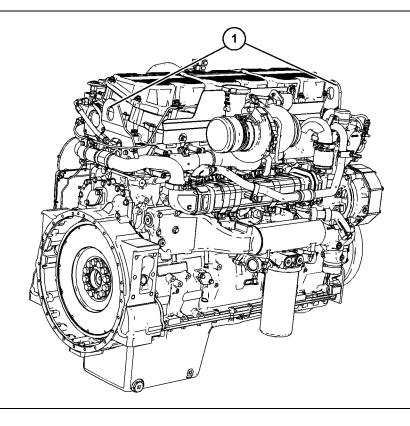


图 26

典型示例

(1) 发动机吊耳

可以使用认可的撑杆通过发动机吊耳提升配备出厂前安装 CEM 和散热器(或者相关组合)的发动机,假设可以保持小于 5 度的倾斜角。对于大多数组件,Perkins 建议将撑杆设置为 142 cm (56 inch)。 吊钩位置应朝向发动机前部,离撑杆止动块大约 25 mm (1 inch)。

g06129841

拆下所有 ATAAC 管路、空气滤清器或者可能会干扰提升链或者其他提升装置的附件。 发动机组件的重心将随发动机附件而变化。 必要时调节撑杆和链条,以将升降机在所有方向上的水平角保持在 5 度范围内。

仅限散热器

分离发动机前支架处的散热器和安装支架。 在标记用 于提升的螺纹孔上安装吊环螺栓或者提升支架。

清洁排放模块 (CEM) 提升

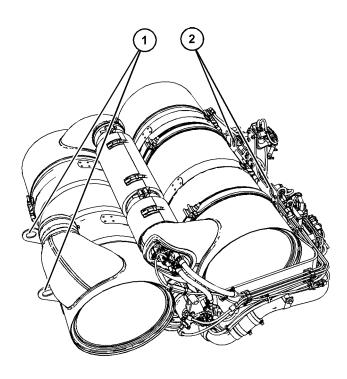


图 27 典型示例

(1) CEM 吊耳 (2) CEM 吊耳 确保提升 CEM 时使用 4 个吊耳。 仅使用吊耳 (1) 和 吊耳 (2) 提升 CEM 时,参考图 27 。

泵电子箱装置 (PETU)

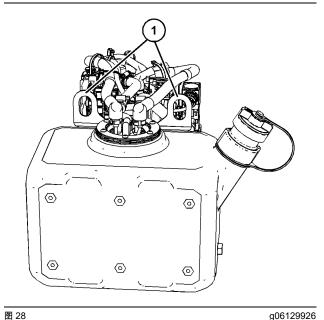


图 28

g06042325

典型示例 (1) PETU 吊耳

i07201977

设备贮存 (发动机和后处理)

您的 Perkins 经销商可以帮助您准备发动机,以延长存放时间。

某些机型上,发动机可以配备发动机停机延迟。 停止发动机后,等待至少 2 分钟,然后再关闭蓄电池断路开关。 发动机停机后,过快断开蓄电池电源会阻止净化 DEF 液体管路。 另外,在 2 分钟内发动机电子控制模块会激活以存储来自发动机和后处理传感器的信息。

存放条件

遵循所有建议,发动机可存放长达6个月。

发动机

- 1. 清洁发动机上的任何污垢、锈迹、润滑脂和机油。 检查外观。用优质的油漆喷涂油漆损坏的区域。
- 2. 去除空气滤清器上的污垢。 检查所有密封件、密封 垫和滤清器滤芯是否损坏。
- 3. 对操作和保养手册, 保养周期表中的所有点加注润 滑剂。

- 4. 排空曲轴箱机油。 替换曲轴箱机油并更换机油滤清器。 关于正确的步骤,请参阅操作和保养手册。
- 5. 向曲轴箱机油中添加挥发性阻蚀剂 (VCI) 油。 曲轴 箱机油中的 VCI 油容量应是百分之 3 至 4。

注:如果发动机曲轴箱已充满,应排出足够的发动机机油,以便添加混合液。

6. 拆下空气滤清器滤芯。 油门控制处于 FUEL OFF (断油)位置时,以起动转速转动发动机。 使用喷 头向空气进口或涡轮增压器进口中添加 50% VCI 油和 50% 发动机机油的混合液。

注:可拆下用于检查涡轮增压器增压压力的螺塞,以添加 VCI 油的混合液。 VCI 机油混合液的最低喷洒量是发动机排量的 5.5 mL per L (3 oz per 1000 cu in)。

- 7. 使用喷头向排气开孔中添加 50% VCI 油和 50% 曲轴箱机油的混合液。 机油混合液的最低喷洒量是发动机排量的 5.5 mL per L (3 oz per 1000 cu in)。 密封排气管并密封消音器中的任何排放孔。
- 8. 从燃油细滤器壳体上去除燃油。 交替地排空和重新 安装旋入式燃油滤清器滤芯,以去除任何污垢和 水。 排空任何套筒计量燃油泵。

清洁粗滤器。 加注校正油或煤油。 安装燃油粗滤 器并运行充油泵。 此步骤将向细滤器和发动机输送 清洁机油。

打开燃油箱排放阀以排空燃油箱的任何水和污垢。 为了防止燃油箱生锈,按照 30 mL per 30 L (1 oz per 7.50 gal US) 的燃油箱容量比率喷射标定 数量的油液或煤油。 向燃油添加 0.15 mL per L (.02 oz per 1 gal US) 的市售生物杀虫剂,如 Biobor JF。

向燃油箱加油器管颈上的螺纹加注少量机油并安装 盖帽。 密封油箱的所有开口,以防止燃油挥发并作 为防腐剂。

9. 拆下燃油喷油器。 向每个油缸中加注 30 mL (1 oz) 的机油混合液(50% VCI 机油和 50% 发动机机油)。

使用杆或盘车工具缓慢转动发动机。 该步骤可将机油加在气缸壁上。 安装所有喷油器并拧紧至正确的 扭矩。 有关更多信息,请参阅拆解和装配手册。

- **10.** 将少量机油混合液(50% VCI 油和 50% 发动机机油)喷到以下部件上:飞轮、齿圈轮齿和起动机小齿轮。 安装盖以防止 VCI 油的蒸汽蒸发。
- **11.** 向所有活动的外部零件,如连杆螺纹、球形接头和连杆等加注大量多用途润滑脂。

注:安装所有盖。 确保在所有开口、空气进口、排气 开孔、飞轮壳、曲轴箱呼吸器和油尺管上安装胶带。

确保所有盖均是气密的和防风雨的。 请使用防水耐候性胶带如 Kendall No. 231 或同等产品。 不要使用大力贴。 大力贴仅会在短时间内起密封作用。

12. 大多数情况下,拆下电池是最佳程序。 作为替代 方案,应将电池存放起来。 根据需要,定期对存放 中的电池充电。

如果没有拆下电池,清洗干净电池顶部。 对电池进 行充电以获得 1.225 的比重。

断开蓄电池接线柱。用塑料盖罩住电池。

- 13. 从发动机上卸下驱动皮带
- **14.** 在发动机上装上防水盖。 确保发动机罩牢固。 盖 应足够松动,以使空气在发动机周围循环,以防由 于冷凝造成的损坏。
- 15. 在发动机上系上带有存放日期的标签。
- **16.** 每隔 2 个月或 3 个月拆下一次防水盖,以检查发动机有无腐蚀。 如果发动机有腐蚀迹象,则重复进行保护程序。

冷却液系统

存放前对冷却系统进行完全加注。

有关冷却液的更多资料,请参阅操作和保养手册, 油 液建议。

后处理

关闭蓄电池断路开关前,必须使发动机执行柴油机排气处理液 (DEF) 净化。 某些机型上,发动机可以配备发动机停机延迟。 发动机停机后等待 2 分钟,然后再断开蓄电池断路开关。

必须盖住后处理的排气出口。 为防止存储期间损坏排 气出口连接,CEM 的重量不得作用到排气出口上。

- 1. 确保发动机正常停机期间可净化 DEF。 切勿断开 蓄电池断路开关,钥匙关闭 2 分钟后再断开。
- **2.** 将符合 ISO 22241-1 中所有要求的 DEF 加注到储 液箱内。
- 3. 确保所有 DEF 管路和电气连接已连接,防止形成结晶。
- 4. 确保正确安装 DEF 加注口盖。

拆卸发动机以进行存放

- 1. 卸下所有外部保护盖。
- 2. 更换机油和滤清器。
- 3. 检查风扇和交流发电机皮带的状况。 如有必要,更换皮带。 关于正确的程序,请参阅操作和保养手册, 皮带 检查/调整/更换。
- 4. 更换燃油滤清器滤芯。
- 5. 拆下空气滤清器滤芯的塑料盖。

- **6.** 使用杆或盘车工具以正常旋转方向转动发动机。 该步骤确保不会存在液压阻塞或电阻。
- 7. 起动发动机前,拆下气门室盖或盖。 向凸轮轴、凸 轮随动件和气门机构加注大量发动机机油,以防止 机构的损坏。

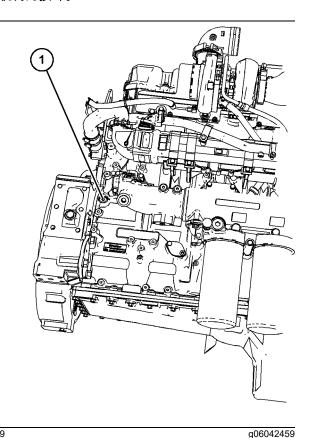


图 29 典型示例

(1) 塞

8. 如果发动机存放时间超过 1 年,Perkins 建议预润滑发动机,以避免干起动。 使用合适的泵,将发动机机油注入发动机机油系统。

泵将需要在发动机内建立最小为 0.25 bar (3.6 psi) 的压力。 此压力需要持续 15 秒,以便润滑内表面。

拆下图 29 中所示的其中一个螺塞,以连接发动机机油系统。 所需的连接为 9/16" x 18 tpi。 确保使用正确的机油技术规格,请参阅本操作和保养手册,油液建议,了解更多信息。 润滑发动机内部表面后,拆下接头并安装塞 (1)。 拧紧螺塞至扭矩30 N·m (265 lb in)。 Perkins 建议必须在至少10° C (50° F) 的环境温度下执行该步骤。

- 9. 检查所有橡胶软管的状况。 更换任何磨损软管。 更换所有损坏的软管。
- **10.** 起动前,测试冷却液调节剂 3% 至 6% 浓度下的 冷却系统。 添加液态冷却液添加剂或冷却液添加剂 滤芯,如有配备。

测试冷却液混合液是否有正确的亚硝酸盐水平。 如有需要,调整冷却液混合液。

起动前,用清洁的柴油充注发动机。

- **11.** 确保冷却系统是清洁的。 确保系统已注满。 确保 系统具有补充冷却系统调节剂的正确的量。
- **12.** 运行的第一天,应多次检查整个发动机是否泄漏 和正确运转。

使用存贮状态的后处理

DEF 的寿命有限,请参考表 2 ,了解时间和温度范围。 必须更换超出该范围的 DEF。

使用存贮状态的 DEF 时,必须用折射计测试储液箱内的 DEF 质量。 储液箱中的 DEF 必须满足 ISO 22241-1 中的要求,符合表 2 。

- **1.** 如有必要,排空储液箱并加注满足 ISO 22241-1 要求的 DEF。
- 2. 更换 DEF 滤清器,请参考本操作和保养手册, 柴油 机排气处理液滤清器 - 清洁/更换。
- 3. 确保正确安装传动带。 确保所有发动机冷却液和发动机机油的规格和等级均正确。 确保冷却液和发动机机油的液位正确。 起动发动机。 如果出现故障,关闭发动机,留出 2 分钟来净化 DEF 系统,然后重新起动发动机。
- **4.** 如果故障继续保持激活状态,参考故障诊断与排除,了解更多信息。

表 2

DEF 存贮		
温度	持续时间	
10° C (50° F)	36 个月	
25° C (77° F)	18 个月	
30° C (86° F)	12 个月	
35° C (95° F) ⁽¹⁾	6 个月	

(1) 温度为 35° C 时,会发生明显退化。 使用前对各个批次进行检查。

功能部件和控制装置

i07201965

监测系统

监控系统设计用于警告操作员监控到的任何即将发生的发动机系统故障。 监控系统也用于警告操作员所监测到的任何发动机系统即将发生的问题。 可以用电子维修工具检修监控系统。 有关电子维修工具的更多信息,参考故障诊断与排除, 电子工具。

监控系统指示灯

- 发动机故障 当发动机或后处理系统有故障时,此指示灯将点亮。
- 发动机停机 当监控系统检测到 3 级警告故障时,此指示灯将一直点亮。
- 柴油微粒滤清器 (DPF) 指示灯将亮起,以 指示需要进行再生循环。
- 再生激活 **—** 该指示灯将点亮,以表示再生激活,排气温度升高。
- 柴油机排气处理液(DEF)液位 该表指示 DEF 罐中的 DEF 量。
- 排放故障指示灯 与 DEF 或 SCR 相关的排放系统出现故障时,该指示灯将点亮。 有关更多信息,请参阅操作和保养手册, 选择性催化还原警告系统。

i07201986

传感器和电气部件

以下章节中的图示显示工业发动机传感器或电气部件 的典型位置。 由于应用不同,特定发动机也可能会有 所不同。

注:为清楚起见,发动机上的某些零件已拆下。

发动机

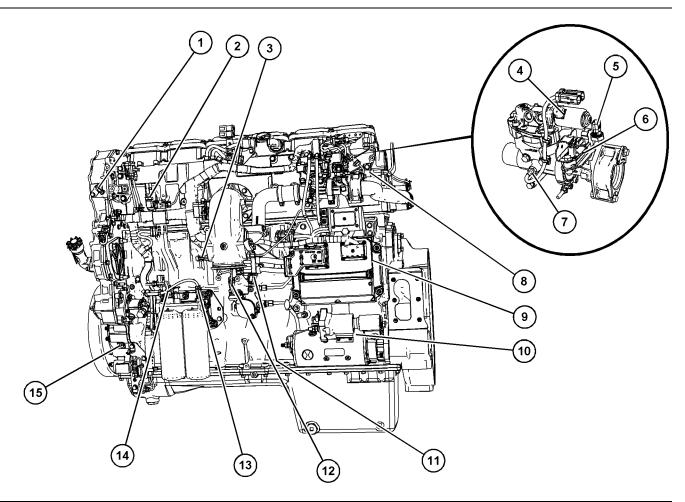


图 30 g06130474

- (1) 辅助转速/正时传感器

- (2) 增压压力传感器 (3) 进气温度传感器 (4) NOx 还原系统 (NRS) 电磁阀 (5) NRS 压力传感器

- (6) NRS 压差传感器
- (9) NRS 压左传恩器 (7) NRS 温度传感器 (8) 空气控制电磁阀 (9) 电子控制模块

- (10) 起动机电磁阀和起动马达
- (11) 机油压力传感器
- (12) 大气压力传感器 (13) 燃油压力传感器

- (14) 燃油温度传感器 (15) 主转速 / 正时传感器

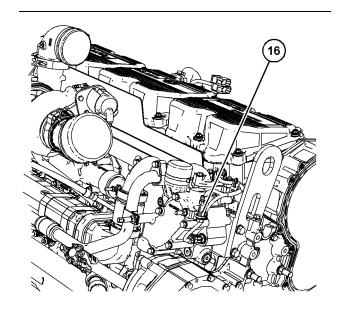


图 31

g06130477

典型示例

(16) 冷却液温度传感器

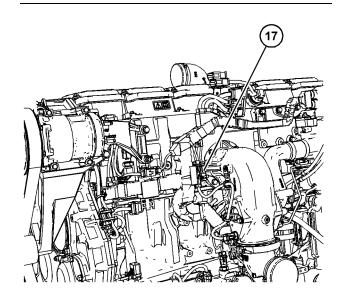


图 32 g06130480

典型示例

(17) 上止点 (TDC) 探头位置

后处理系统

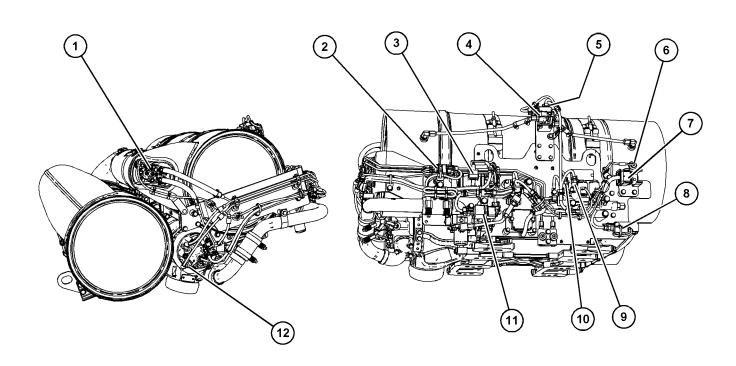


图 33 g06048751 典型示例

(1) 柴油机排气处理液 (DEF) 喷射器 (2) 温度传感器 (3) 火花塞线圈

- (4) 柴油微粒滤清器(DPF)压差传感器 (5) DPF 压力传感器 (6) 温度发送器

g06130516

- (7) 40 针接头 (8) 选择性催化还原 (SCR) 温度传感器
- (9) 燃油先导压力传感器 (10) 燃油主压力传感器

- (11) 标识符模块 (12) 后处理再生设备 (ARD) 的温度发送器

泵电子箱装置 (PETU)

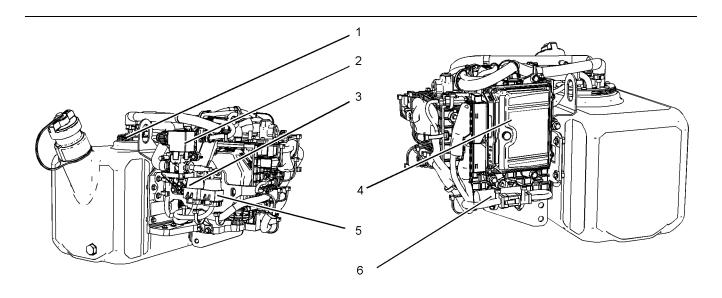


图 34

- (1) DEF 集管 (2) 冷却液分流器阀 (3) 客户连接 (4) 定量控制模块

- (5) 继电器 (6) 电压限制保护模块

蓄电池断路开关

DEF 集管 (1) 包含液位传感器、温度传感器和质量传

i06245637

蓄电池断路开关 (如有配备)

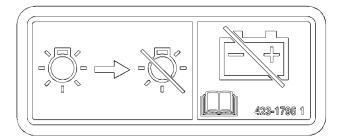


图 35 g03422039

注意 在指示灯熄灭之前,不要关闭蓄电池电源断开开关。 如果指示灯点亮时开关关闭,则柴油机排气处理液 (DEF)系统将不会净化 DEF。 如果 DEF 没有净 化,DEF 可能会冻结并损坏泵和管路。

注意 发动机运转时决不可将蓄电池断路开关转到断开 (OFF)位置。否则会导致电路系统严重损坏。

路开关。

蓄电池断路开关 = 蓄电池断路开关用来将蓄 电池从发动机电气系统上断开。 在蓄电池 断路开关转动前,必须将钥匙插入蓄电池断

接通 = 若要启动电气系统,应插入断路开关 钥匙,然后将蓄电池断路开关顺时针转动。 在起动发动机之前,必须将蓄电池断路开关 转到接通位置。

断开 - 若要停用电气系统,将蓄电池断路开 关逆时针转到断开位置。

电池断路开关和发动机起动开关具有不同的功能。 将蓄电池断路开关转至断开位置时,整个电气系统 不起作用。 在将发动机起动开关转至断开位置时, 电池与电气系统依然保持接通。

当维修电气系统或任何其他发动机部件时,应把蓄电 池断路开关转到断开位置,并取下钥匙。

在发动机操作完成后,将蓄电池断路开关转至断开位置,并取下断路开关钥匙。 这样可以防止蓄电池放电。 以下故障会使蓄电池放电:

- 短路
- 从其它部件抽电
- 人为破坏

i07507902

选择性催化还原警告系统

选择性催化还原 (SCR) 系统用于降低发动机的氮氧化 物排放。 柴油机排气处理液 (DEF) 从 DEF 罐泵出,并喷入排气流中。 DEF 与 SCR 催化剂反应以还原氮氧化物,并生成氮气和水蒸气。 废气再循环 (EGR)系统冷却、测量并将经过重新计算的废气引入进气歧管,以帮助还原氮氧化物。

应按照提供给最终用户的说明操作、使用和维护发动机与排放控制系统,以确保发动机的排放性能符合适用的发动机类别要求。 不应故意篡改或误用发动机排放控制系统。 特别是关于停用或不维护 SCR 系统。

注意 发动机负载运行后立即关闭发动机会导致 SCR 部件 过热。

请参阅操作和保养手册, 发动机熄火步骤,以允许发动机冷却,并防止涡轮增压器壳体和 DEF 喷射器中的温度过高。

注意 注意 关闭发动机后,等待至少 2 分钟,然后再断开蓄电池 断路开关。 关闭发动机后,过快断开蓄电池电源会阻 止净化 DEF 管路。

定义

遵循以下定义。

自修正 – 故障状况不再存在。 现行故障代码将不再处于激活状态。

通知 – 系统采取的行动,用于警示操作员即将开始的 诱导。

诱导 – 发动机减额、车速限制或其他行动,旨在提示 操作员维修或保养排放控制系统。

诱导类别 - 诱导分为多个类别。 DEF 液位有属于自己的诱导故障代码,独立于其他诱导类别。 DEF 液位诱导仅基于 DEF 液位,而其他诱导类别基于上升时间。 上升时间诱导始终具有相关的故障代码以及诱导故障代码。 相关故障为根本原因。 上升时间诱导故障代码只指示发动机所处的诱导等级以及到达下一诱导等级所剩余的时间。 有三种会触发上升时间诱导故障代码的诱导类别(两种用于欧盟)。

注:可以在故障诊断与排除指南中的 SCR 警告系统故 障下找到各上升时间类别的相关代码。

首次发生 – 上升时间诱导故障代码首次激活时。

重复发生 – 任何上升时间诱导故障代码在首次发生的 40 小时内再次激活时。 可以在首次发生时间内恢复

前,发动机必须运转 40 小时,而未触发任何上升时间诱导故障。

声明模式(全球) – 声明模式是发动机达到 3 级诱导后可以全功率运行的 20 分钟运行时段。 进入 3 级诱导后,操作员可以执行钥匙循环,发动机将进入声明模式。 声明模式只能实施一次。 声明模式不适用于采用全球配置的 DEF 液位诱导。

声明模式(欧盟) - 声明模式是发动机达到3级诱导后可以全功率运行的30分钟运行时段。进入3级诱导后,操作员可以执行钥匙循环,发动机将进入声明模式。声明模式最多只能实施三次。

注意 据以下页面所列警告指出的整改措施,迅速采取措 纠正排放 SCR 控制系统的任何错误操作、使用或 护至关重要。

图 36

DEF 液位正常

g03676102

DEF 液位诱导策略(欧盟)

图 37

a03676107

如果 DEF 液位降至 20% 以下,则仪表板上 DEF 液位表旁的淡黄色指示灯将点亮。 为了避免进一步诱导,将钥匙开关转到断开位置,然后向 DEF 罐中添加 DEF。

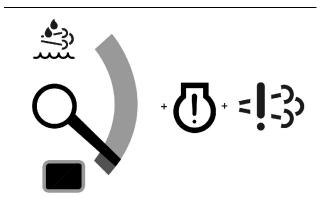


图 38

g03676111

如果 DEF 液位低于 13.5%,则将会出现 1 级诱导事件。发动机检查灯和排放故障指示灯将点亮。仪表板上 DEF 液位表旁的淡黄色指示灯将保持点亮。

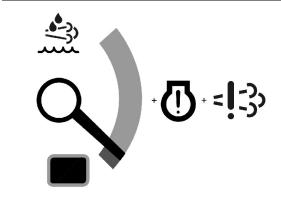


图 39

g03676123

降低性能

当 ECM 配置为 "Reduced Performance(降低性能)" 且 DEF 液位低于 1% 时,发动机将进入 2 级诱导状态。 发动机检查灯和排放故障指示灯将点亮并缓慢闪烁。 DEF 液位表黄色指示灯将保持亮起。 发动机将减额 50%。 当 DEF 罐已排空所有 DEF 时,发动机将减额 100% 并被限制为 1000 rpm 或低怠速,以更大者为准。 对于 "Reduced Performance(降低性能)" 配置,将不会发生额外的诱导行动。 声明模式允许用于 3 个钥匙循环。

减少时间

当 ECM 配置为 "Reduced Time(缩短时间)" 且 DEF 液位低于 7.5% 时,发动机将进入 2 级诱导状 态。 发动机检查灯和排放故障指示灯将点亮并缓慢闪 烁。 DEF 液位表黄色指示灯将保持亮起。

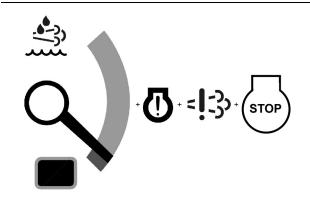


图 40 g03676127

减少时间

注:将钥匙开关转到断开位置,并向 DEF 罐内添加 DEF,以使 DEF 液位诱导复位。

上升时间诱导故障的诱导策略(欧 盟)

图 41 g03677836

降低性能

发生 1 级诱导相关故障时,发动机检查灯和排放故障指示灯将点亮。 有两种诱导类别。 如果诱导是类别 1 故障导致的结果,则发生 1 级诱导的持续时间为 36 小时。 如果诱导是类别 2 故障导致的结果,则发生 1 级诱导的持续时间为 10 小时。 不会重复发生 1 级故障。

减少时间

发生 1 级诱导相关故障时,发动机检查灯和排放故障指示灯将点亮。 有两种诱导类别。 如果诱导是类别 1 故障导致的结果,则发生 1 级诱导的持续时间为 18 小时。 如果诱导是类别 2 故障导致的结果,则发生 1 级诱导的持续时间为 5 小时。 不会重复发生 1 级故障。

图 42 q03676138

降低性能

如果故障状况在1级诱导的整个持续时间内都存在则策略将进化为2级诱导。发动机检查灯和排放故障指示灯将点亮并缓慢闪烁。如果诱导是类别1故障导致的结果,则首次发生2级诱导的持续时间为64小时。对于重复发生,类别1的2级诱导故障持续时间为5小时。

如果诱导是类别 2 故障导致的结果,则发生 2 级诱导的持续时间为 10 小时。对于重复发生,类别 2 的 2 级诱导故障持续时间为 2 小时。

发动机将减额 50%。 如果在诱导持续时间结束前没有排除故障,发动机将减额 100% 并被限制为 1000 rpm 或低怠速,以更大者为准。 对于 "Reduced Performance(降低性能)" 配置,将不会发生额外的诱导。 声明模式允许用于 3 个钥匙循环。

减少时间

如果故障状况在 1 级诱导的整个持续时间内都存在则策略将进化为 2 级诱导。 发动机检查灯和排放故障指示灯将点亮并缓慢闪烁。 如果诱导是类别 1 故障导致的结果,则首次发生 2 级诱导的持续时间为 18 小时。 对于重复发生,类别 1 的 2 级诱导故障持续时间为 108 分钟。

如果诱导是类别2故障导致的结果,则发生2级诱导的持续时间为5小时。对于重复发生,类别2的2级诱导故障持续时间为1小时。

图 43 q03676141

减少时间

注:如果出现故障,请联系您的 Perkins 代理商进行修理。

DEF 液位诱导策略(全球)

图 44

g0367616

如果 DEF 液位降至 20% 以下,则仪表板上 DEF 液位表旁的淡黄色指示灯将点亮。 为了避免诱导,将钥匙开关转到断开位置,然后向 DEF 罐中添加 DEF。

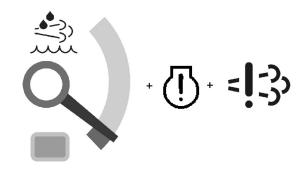


图 45

g03676169

如果 DEF 液位低于 13.5%,则将会出现 1 级诱导事件。 发动机检查灯和排放故障指示灯将点亮。 仪表板上 DEF 液位表旁的淡黄色指示灯将保持点亮。

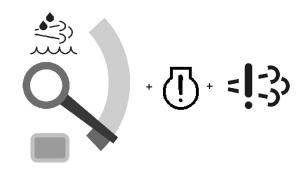


图 46

g03676174

如果 DEF 液位低于 7.5%,则将会出现 2 级诱导事件。 发动机检查灯和排放故障指示灯将点亮并缓慢闪烁。 仪表板上 DEF 液位表旁的淡黄色指示灯将保持点亮。 如果 ECM 配置为 "Reduced Performance(降低性能)",且 DEF 液位达到 1%,则机器将被限制为 75% 的扭矩。

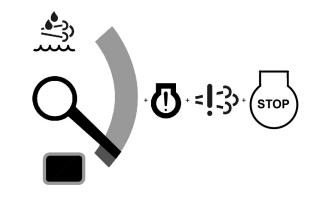


图 47

g03676210

如果 ECM 配置为 "Reduced Performance(降低性能)",且 DEF 罐中的所有 DEF 都已耗尽,则发动机将进入 3 级最终诱导状态。如果 ECM 配置为 "Reduced Time(减少时间)",且 DEF 液位为 3%,则发动机将进入 3 级最终诱导状态。 发动机检查灯和排放故障指示灯将快速闪烁,红色制动灯将一直点亮。 发动机将变为低怠速转速或者将会停机。一旦停机,则可以以降低的转速和扭矩重新起动发低机 5 分钟。 如果设置为怠速,则发动机将会以降低的扭矩进入无限期怠速状态。 仪表板上 DEF 液位表旁的淡黄色指示灯将保持点亮。

操作章节 选择性催化还原警告系统

注:将钥匙开关转到断开位置,并向 DEF 罐内添加 DEF,以使 DEF 液位诱导复位。

上升时间诱导故障的诱导策略(全球)

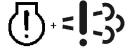


图 48 g03676215

降低性能

发生 1 级诱导相关故障时,发动机检查灯和排放故障指示灯将点亮。 有三种诱导类别。 如果诱导是类别 1 故障导致的结果,则首次发生 1 级诱导的持续时间为 2.5 小时。 对于重复发生,类别 1 的 1 级诱导故障持续时间为 5 分钟。

如果诱导是类别 2 故障导致的结果,则发生 1 级诱导的持续时间为 10 小时。 不会重复发生类别 2 的 1 级诱导故障。

如果诱导是类别 3 故障导致的结果,则发生 1 级诱导的持续时间为 36 小时。 不会重复发生类别 3 的 1 级诱导故障。

缩短时间:发生1级诱导相关故障时,发动机检查灯和排放故障指示灯将点亮。有三种诱导类别。如果诱导是类别1故障导致的结果,则首次发生1级诱导的持续时间为2.5小时。对于重复发生,类别1的1级诱导故障持续时间为5分钟。

如果诱导是类别 2 故障导致的结果,则发生 1 级诱导的持续时间为 5 小时。 不会重复发生类别 2 的 1 级诱导放障。

如果诱导是类别 3 故障导致的结果,则发生 1 级诱导的持续时间为 18 小时。 不会重复发生类别 3 的 1 级诱导故障。

图 49 q03676215

降低性能:如果 1 级诱导的整个持续时间内都存在故障状况,则策略将进化为 2 级诱导。 发生 2 级诱导相关故障时,发动机检查灯和排放故障指示灯将点亮并缓慢闪烁。 发动机将减额 50%。 如果诱导是类别 1 故障导致的结果,则首次发生 2 级诱导的持续时间为 70 分钟。 对于重复发生,类别 1 的 2 级诱导故障持续时间为 5 分钟。

如果诱导是类别 2 故障导致的结果,则发生 2 级诱导的持续时间为 10 小时。 对于重复发生,类别 2 的 2 级诱导故障持续时间为 2 小时。

如果诱导是类别 3 故障导致的结果,则发生 2 级诱导的持续时间为 64 小时。 对于重复发生,类别 3 的 2 级诱导故障持续时间为 5 小时。

减少时间

发生诱导相关故障时,发动机检查灯和排放故障指示灯将点亮。 有三种诱导类别。 如果诱导是类别 1 故障导致的结果,则首次发生 1 级诱导的持续时间为 2.5 小时。 对于重复发生,类别 1 的 1 级诱导故障持续时间为 5 分钟。

如果诱导是类别 2 故障导致的结果,则发生 1 级诱导的持续时间为 5 小时。 不会重复发生类别 2 的 1 级诱导故障。

如果诱导是类别 3 故障导致的结果,则发生 1 级诱导的持续时间为 18 小时。 不会重复发生类别 3 的 1 级诱导故障。

图 50 g03676218

如果故障状况在 2 级诱导的整个持续时间内都存在则策略将进化为 3 级诱导。 3 级诱导与所有类别的 3 级诱导与所有类别的 100% 并被限制为 1000 rpm 或低意速,以更大者为准。 如果 ET 中的最终诱导行动设置为 "怠速降档",则发动机发展形分的,则是不够以减额状况怠速运行。如果设置为"停机",以对机分,是有一个人。 如果设置为"停机",以为机将在 5 分钟后,明显循环后,发动机将可以引发。 只允许一次。 如果设置为"停机",以为对机,明入 3 级新线动,但将在减额状况。 5 分钟,然后会有,该行动将停止。

注:如果出现故障,请联系您的 Perkins 代理商进行修理。

发动机诊断

i06245674

自诊断

Perkins 电控发动机有进行自诊断测试的能力。 当系统检测到现行故障时,诊断灯会点亮。 诊断代码将被储存在电子控制模块(ECM)的永久性存储器中。 可以使用 Perkins 电子维修工具检索诊断代码。

某些发动机安装了电子显示屏,可以直接阅读发动机诊断代码。关于检索发动机诊断代码的详细资料,请参阅原设备制造厂提供的手册。

现行代码代表目前存在的故障。 应该首先查明这些故障。

记录的代码表示出现下列情况:

- 间歇故障
- 记录的事件
- 性能历史记录

自代码被记录后,故障可能已经被排除。 这些代码并不意味着需要进行修理。 这些代码是存在某一状况的指南或信号。 代码可能对故障诊断与排除有帮助。

当排除这些故障后,应清除相应的记录的故障代码。

i07201979

故障记录

系统提供故障记录的能力。 当电子控制模块 (ECM) 产生一个活动诊断代码时,此代码将被记录到 ECM 的存储器中。 通过电子维修工具可以识别 ECM 记录的代码。 当故障排除或故障不再为现行状态时,将会清除记录的现行代码。 如果没有出厂密码,将无法从 ECM 的存储器中清除以下故障:超速、发动机机油压力低、发动机冷却液温度高和后处理代码。

发动机起动

i02857641

发动机起动前

在发动机起动之前,进行所需的日常保养和其它的定期保养内容。 检查发动机室。 此项检查可以帮助防止且后太的修理。 详细资料请参考 操作和保养手册, 葆养周期表 。

- 为使发动机达到其最大使用寿命,起动发动机之 前,请做彻底检查。 查找以下项目: 机油泄漏, 冷 却液泄漏, 螺栓松动 和 废物堆积。清除堆积的废 物,安排需要进行的维修。
- 检查后冷器是否有松动的连接和碎屑堆积。
- 检查冷却系统软管是否有裂纹和松动的夹箍。
- 检查交流发电机和附属传动皮带是否有裂纹,断裂 和其它损坏。
- 检查线路和线束是否连接松动,导线是否磨损或擦
- 检查燃油供油。 放掉油水分离器(如有配备)中的积 水。打开燃油箱供油阀。

注意 在发动机运行之前和期间必须打开燃油回油管上的所 有阀门,以便防止燃油压力过高。 燃油压力高可能导 致滤清器壳体故障或其它损坏。

如果发动机数周未起动过,燃油可能从燃油系统中泄掉。空气可能进入滤清器底座。 并且更换燃油滤清器时,一些气泡将被困在发动机燃油系统中。 在这些情况下,请泵注燃油系统。 更多有关泵注燃油系统的信息资料,请参考 操作和保养手册, 燃油系统 - 泵注

发动机排气含有对人体有害的燃烧产物。 必须在良好通风的场所起动和运转发动机,如果在封闭场所,要将废气排到外面去。

- 如果发动机启动开关或操纵装置上系有一个 "不准 操作"警告标签或类似的警告标签,切勿起动发动 机或移动任何操控装置。
- 确保运转部件的周围无异物。
- 所有护罩必须到位。 检查是否有损坏或遗失的护 罩。 修理任何损坏的护罩。 更换损坏和/或遗失的 护罩。
- 断开未对接合电起动马达(如有配备)时产生的高 耗用电流加以保护的蓄电池充电器。 检查电缆 检查蓄电池是否有连接得当和是否有腐蚀的地方。
- 复位所有关停装置或报警部件。

- 检查发动机润滑油油位。 保持油位在油尺的 "加 (ADD)"标记和"满(FULL)"标记之间。
- 检查冷却液位。 观察在冷却液回缩箱(如有配备)中 的冷却液液位。 保持冷却液回缩箱中的冷却液液 位在 "满(FULL)" 标记。
- 如果发动机没有配备冷却液回缩箱,保持冷却液液 位在加注管底部以下13毫米(mm) (0.5英寸(inch)) 之内。 如果发动机配备观察孔,保持冷却液液位 在观察孔内。
- 检查空气滤清器维护指示器(如有配备)。 当黄膜 片进入红色区或红色活塞锁止在可视位置时,要维 护空气滤清器。
- 确保脱开任何被驱动设备。 最大限度降低电气负 载和卸掉任何电气负载。

i06245658

发动机起动

发动机排气含有对人体有害的燃烧产物。 必须在良好通风的场所起动和运转发动机,如果在封闭场所,要将废气排到外面去。

起动发动机

请参阅针对您控制类型的 OEM 用户手册。 使用下述 程序来起动发动机。

- 1. 将变速箱置于空档。 分离飞轮离合器以使发动机更 快起动,同时减少蓄电池放电。
- 2. 将点火开关转到 ON(接通)位置。

钥匙接通期间,所有警告灯将点亮几秒,以测试电 路。 如果任何灯不点亮,检查灯泡并根据需要更 换。

注意 当飞轮正在转动时,不要合上起动马达。 不要带负载 起动发动机。

如果发动机没有在30秒内起动,松开起动开关或起动按钮并等待2分钟,在再次起动发动机以前,让起动马达先冷却下来。

3. 按下起动按钮或将点火开关转到起动位置以盘动发

转动发动机时,不要下推油门或一直踩下油门。 系 统将自动提供起动发动机所需的正确燃油量。

4. 如果发动机在 30 秒内未能起动,松开点火按钮或 点火开关。 等待 2 分钟,以便在再次试图起动发 动机之前让起动马达冷却。

注意

机油压力应该在发动机起动后15秒内升上来。 不要提高发动机转速,直到机油压力表指示正常为止。 如果机油压力表在15 秒钟内没有机油压力指示,不要操作发动机。 停止发动机并检查原因。

5. 让发动机怠速运转约 3 分钟。 怠速运转发动机,直 到水温表读数开始升高。 在暖机期间,检查所有仪 表。

注:仪表板上的机油压力和燃油压力应处在正常范围内。配备"警报"灯的发动机没有工作范围。在发动机盘车期间,"警报和诊断"灯(如有配备)会闪烁。发动机达到正确的机油压力或燃油压力之后,灯应熄灭。在机油压力表指示最低正常压力以前,不要向发动机加负载或提高发动机转速。检查发动机有无泄漏和/或异常噪音。

在低负荷下操作的发动机比无负荷低速运转的发动机 达到正常工作温度要快。 当发动机在寒冷天气下怠速 时,将发动机转速提高至大约 1000 至 1200 rpm,以 提高发动机温度。 不要超过建议转速来加快暖机速 度。 将不必要的怠速时间限制在 10 分钟之内。

起动故障

偶然出现的起动故障可能是由下列项目之一引起的:

- 蓄电池充电不足
- 缺少燃油
- 接线线束故障

如果发动机燃油系统燃油用尽,加注燃油箱,并向燃油系统充油。 请参阅操作和保养手册, 燃油系统 - 充油专题(保养部分)。

如果怀疑有其它问题,应执行适当步骤来起动发动 机。

接线线束故障

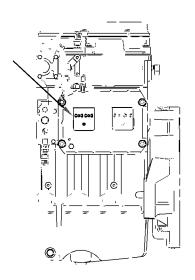


图 51

g01248812

ECM 接头 J2/P2

定位 ECM。 检查接头以确保接头牢固可靠。 轻轻拉动底盘线束的每一根导线。

- 1. 使用大约 4.5 kg (10 lb)的力来拉动每一根导线。 导线应保持在接头内不动。
- 如果有导线松动,应将其推回接头内。 再次拉动该导线以确保该导线牢固可靠。
- 3. 起动发动机。 如果发动机不起动,检查有无诊断代码,并咨询当地 Perkins 分销商。

i05660538

寒冷天气起动

使用缸体冷却液加热器或其它加热曲轴箱油的方法会改善温度低于 10°C(50°F)时的发动机起动性能。 某些发动机应用使用水套水加热器改善起动性能。 使用水套水加热器有助于减少寒冷天气中起动时的白烟和缺火。

注:如果发动机已经有几个星期没有运行,则燃油可能已经排出。 空气可能会进入滤清器壳体。 此外,在更换燃油滤清器后,滤清器壳体中会留有部分空气。有关燃油系统充注的更多信息,请参阅操作和保养手册,燃油系统 - 充注(保养部分)。

操作章节 用跨接起动电缆起动

乙醚喷射系统(如有配备)

乙醚喷射系统由 ECM 控制。 ECM 监控冷却液温度、进气温度、大气温度和大气压力以确定何时需要喷射乙醚。 在海平面上,如果任一温度不能超过 0°C(32°F),则使用乙醚。 大气压力上升时,温度随之上升。

▲ 警告

酒精或起动液会造成人身伤害或财产损坏。

酒精或起动液是高度易燃品并且有毒,如果储存不 当,会造成人身伤害或财产损坏。

遵循本操作和保养手册, 起动发动机中的步骤。

i08250277

用跨接起动电缆起动 (不要在存在爆燃性空气的危险场 所中使用本步骤)

▲ 警告

在蓄电池上连接或拆开蓄电池电缆时可能引发爆炸 进而导致人身伤亡。连接和拆开其它电气设备有可能 会引发爆炸,进而导致人身伤亡。蓄电池电缆和其它 电气设备的连接和拆开程序只应在非爆炸性的环境下 进行。

▲ 警告

不正确的跨接起动电缆连接会引起爆炸,造成人身伤 害。

防止在蓄电池周围产生火花。 火花会引起气体爆炸。 不要让跨接起动电缆端部互相接触或与发动机接触。

注:如有可能,首先诊断无法起动的原因。更多信息,请参阅故障排除,发动机无法盘车和发动机盘车但不起动。进行任何必要的修理。如果发动机无法起动仅是由于蓄电池的状况,给蓄电池充电,或者通过跨接起动电缆使用其他蓄电池起动发动机。在发动机关闭后,还可再次检查蓄电池的状况。

注意 切勿试图使用外部电源(如电焊设备)起动发动机, 因为外部电源的电压不适合发动机起动,并且会损坏 电气系统。

对于 904D-E28T 工业用发动机,使用 12 VDC 蓄电池电源起动发动机。

对于 904D-E36TA 工业用发动机,确保使用 12 VDC 或 24 VDC 蓄电池电源起动发动机。 注音

使用一个与电起动马达<u>有相同</u>电压的蓄电池电源。 跨接起动只允许使用相同电压。 使用更高电压会损坏电气系统。

不要反向连接蓄电池电缆。 否则交流发电机可能损坏。 接地电缆要在最后连接并要最先断开。

在连接跨接起动电缆之前,将所有电气附件关闭。

在将跨接起动电缆连接到被起动发动机之前,确保主 电源开关是在断电(OFF)位置。

- 1. 把停转的发动机的起动开关旋转至断开位置。关闭 所有发动机附件。
- 2. 将跨接起动电缆的一个正极端连接到已放电蓄电池 的正极电缆端子上。将跨接起动电缆的另一正极端 连接到电源的正极电缆端子上。
- 将跨接起动电缆的一个负极端连接到电源的负极端子。将跨接起动电缆的另一负极端连接到发动机缸体或底盘接地上。该步骤有助于防止潜在火花点燃某些蓄电池产生的易燃气体。

注:起动马达运转前,发动机 ECM 必须通电,否则将造成损坏。

- **4.** 按正常的操作步骤起动发动机。参阅操作和保养手册, 起动发动机。
- 5. 发动机起动之后,立即按与连接相反的顺序拆下跨接起动电缆。

跨接起动后,交流发电机可能不会把严重放电的蓄电池重新充足电。发动机停止后,必须更换蓄电池或使用充电器将蓄电池充电到正确电压。许多被认为已不可用的蓄电池仍是可以再充电的。请参阅操作和保养手册,蓄电池 - 更换以及测试和调整手册,蓄电池 - 测试。

i05660523

发动机起动后

注:温度在 0 - 60 °C (32 - 140 °F) 时,暖机时间约为 3 分钟。 温度低于 0 °C (32 °F) 时,可能需要更长的暖机时间。

暖机期间发动机怠速运转时,观察以下情况:

- 带负载运转发动机前,在怠速转速和半最高转速 (发动机无负载)下检查是否有油液或空气泄漏。 某些条件下无法不带负载在怠速转速和半最高转速 下运转发动机。
- 低怠速运行发动机,直到所有系统达到工作温度。 在暖机期间,检查所有仪表。

注:发动机运行时,应观察仪表读数,经常记录数据。 比较长期数据将有助于确定每一个仪表的正常读数。 比较长期数据也将有助于发觉非正常运行的发展变 化。 应调查读数中的明显变化。

低温环境下的怠速延时

发动机在低温环境(通常低于 0° C (32° F)) 下延时 怠速运行时,可能自动改变转速。 自动转速改变的目 的有三个方面:保持所需的氮氧化物减少系统运行, 保持所需的再生系统运行 和 保持发动机冷却液温 度。 发动机转速可升高到 1600 rpm 长达 20 分钟。

排气系统温度高指示灯可能在延时怠速条件下点亮。 该灯点亮表明正在进行柴油微粒滤清器(DPF)再 生。 低温环境延时怠速下的再生只能持续 10 分钟。

发动机运行

i07201968

发动机运行

正确的运转和保养是获得发动机最大寿命和经济性的 关键因素。 如果按照操作和保养手册中的指示去做, 使用费用可以降至最低,使用寿命可以最大限度地延 长。

使发动机达到正常工作温度需要的时间可能会少于进 行绕行检查所需要的时间。

发动机起动并达到工作温度之后,发动机就可在额定转速下操作。 发动机在低发动机转速和低功率需求时达到正常工作温度将会快些。 此程序比发动机无负荷总速运转的情况要更有效率。 发动机应在数分钟内达到工作温度。

避免长时间怠速运转。 长时间怠速运转导致积碳、发动机渗液以及柴油微粒滤清器 (DPF) 产生烟尘负载。 这些对发动机是有害的。

发动机运行时,应观察仪表读数,经常记录数据。 比较长期数据将有助于确定每一个仪表的正常读数。 比较长期数据也将有助于发觉非正常运行的发展变化。 应调查读数中的明显变化。

发动机运转情况和后处理系统

发动机排出的废气和碳氢化合物颗粒首先经过柴油氧化催化剂 (DOC)。部分废气和碳氢化合物颗粒在经过DOC 时发生氧化反应。然后,气体流过柴油微粒滤清器 (DPF)。DPF 收集烟尘和发动机燃烧产生的灰分。再生期间,烟尘转换成气体,灰分仍保留在DPF 中。最后,气体流过选择性催化还原 (SCR)。在气体流经 SCR 前,柴油机排气处理液 (DEF) 被喷入气流中。由泵电子装置(PEU)控制 DEF。DEF和废气混合物流经 SCR,从而减少了废气排放中的NOx 含量。

发动机软件将控制保持废气排放标准所需的 DEF 量。 该 DPF 设计要求维修保养间隔。 有关详细信息、请参考本操作和保养手册, 保养周期表。 依据相关法规、保养要求规定,在发动机的有效使用寿命(耐久排放周期)内,DPF 应正常发挥功能。

i07941087

柴油微粒滤清器再生

再生

再生用于增加给定时间的排气温度。 后处理再生设备 (ARD) 产生热量,从而可进行再生。 再生过程用于清除 DPF 中的烟灰,并加热选择性催化还原 (SCR) 系统。 DPF 收集器可用于清理灰尘和烟灰。 烟灰通式手动清洁步骤清除。 请参阅操作和保养手册, 清洁柴油微粒滤清器章节,以了解关于 DPF 保养的更多信息。

再生指示灯

再生激活 = 当点亮时,此指示灯显示系统激活。 该指示灯表明排气温度可能升高。 完成再生循环后,指示灯将熄灭。

DPF – 本指示灯将亮起,以指示需进行再生。 当 "距离再生时间" 少于预定的时间时,此指示灯将点亮。

再生循环停用 **–** 指示灯将亮起,以指示再生循环已停用。

再生开关

强制再生 – 按住开关顶部 **2** 秒,以便开始再 生。

停用再生 **–** 按住开关底部 **2** 秒,以便停用再 牛。

注:如果配备有摇臂式开关,则再生开关的中间位置为 自动再生的默认位置。

注:如果循环通断发动机起动开关钥匙或按下"强制再生"开关超过2秒,则系统将不再停用。 当"强制再生"开关按下且"距离再生时间"少于8小时时,如果机器处于低怠速或驻车状态,则将开始再生。

注:通过 "停用再生" 开关停用再生系统时,如果循环 通断发动机起动开关钥匙,则按住 "停用再生" 开关 2 秒以重新启动再生。

再生模式

自动:电子控制模块 (ECM) 利用来自发动机和机器的多项输入确定执行自动再生的最佳时间。 自动再生可在发动机的整个工作循环内随时发生。 执行再生时,再生激活指示灯将点亮。 允许出现再生中断。 如果再生正在进行且需要停止,允许按下 "停用再生" 开关。

注:再生过程中可能会自动调整发动机转速。 如果发 生再生并且发动机处于低怠速状态,发动机转速可能 持续升高以保持再生。

注:自动再生激活时,如果机器恢复工作,则可能停止 再生。 ECM 将继续监测输入以确定重新开始再生的 最佳时间。

手动:按下"强制再生"开关可启动手动再生。 只有当"距离再生时间"少于 8 小时时,才允许手动再生。 如果在"距离再生时间"少于 8 小时前按下"强制再生"开关,则将显示"不需要再生"。 机器必须静止、必须施加停车制动并且发动机必须处于低怠速,以执行手动再生。

停用:当再生系统处于停用模式时,将无法进行自动 再生。 如果需要手动再生,则 DPF 指示灯将点亮。 性能屏幕上显示的 "距离再生时间" 将指示需要进行下 一次再生前的时间。 但是,显示器上仍显示有时间 时,DPF 指示灯也可能点亮。 当 DPF 指示灯点亮 时,操作员必须执行手动再生。

再生触发

由于以下原因,可能需要进行再生:

烟灰:DPF 将收集发动机产生的烟灰。 自动再生将 会激活,以便降低烟灰含量。

起动再生:发动机冷起动后,ECM 将会启用起动再生。执行此再生是为了将系统加热到开始柴油机排气处理液 (DEF) 喷射所需的温度。

SCR 保养:将会执行再生,以便保养 SCR 系统。 ARD 保养:将会执行再生,以便保养 CRS 系统。

再生系统警告指示灯

图 52

g02117258

如果需要再生,则 DPF 指示灯将一直点亮。 此时应 尽快进行再生循环。

注:有些情况下,当再生结束后,DPF 指示灯仍点 亮。 亮起的 DPF 指示灯表示尚未执行完整再生。 完 整再生是指烟灰耗尽,或者已满足其中一种其他类型 再生的所有标准。 如果 DPF 指示灯保持点亮,执行 再生,不得中断。完成再生时, DPF 指示灯将熄

如果烟灰负载高于阈值或 "距离再生时间" 为 0 小时,则将需要进行再生。 DPF 指示灯将点亮并缓慢闪烁。 发动机功率将轻微减额。 如果机器在没有再生的情况下继续操作,则减额将最终达到 100%。 把机器停下,再施加停车制动。 发动机处于低怠速时,启用手动再生。

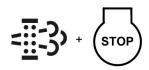


图 53

q03679876

当 DPF 中收集的烟灰量达到阈值或者 "距离再生时间" 在预定时间内为 0 小时,则 DPF 指示灯将点亮并快 速闪烁。 红色制动灯一直点亮。

DPF 指示灯和红色制动灯点亮 10 分钟后,发动机将停机。 通过循环通断发动机起动开关钥匙,可以重新起动发动机。 停机前,发动机将恢复之前的减额状

一旦收集的烟灰量达到阈值水平,或者红色制动灯点亮后的运行时间达到 6.4 小时,且没有成功再生,则发动机将会减额 100%。

一旦收集的烟灰量达到临界阈值水平,就会锁定再 生。 现在,只能使用电子维修工具 (ET) 执行再生。 发动机可以重新起动,但将仅运转 3 分钟,之后会再 次停机。

对于任何与 DPF 系统相关的问题,都将有故障代码 处于活动状态。 按照故障诊断与排除指南解决此问

如果 DPF 失去作用或遭到任意方式的篡改,则检查发动机指示灯和淡黄色行动灯(如有配备)将亮起。同时也将发布故障代码。 问题得到解决之前,指示灯和故障代码将保持激活。

应按照提供的说明操作、使用和保养发动机和排放控制系统。不遵守说明可能导致排放性能不符合适用于发动机类别的要求。 不应故意篡改或误用发动机排放控制系统。 及时采取措施对纠正排放控制系统的任何不正确操作、使用或保养至关重要。

二氧化碳(CO₂)排放声明

排放法规要求将 CO。排放值报告给最终用户。 对于该发动机,在欧盟型式批准过程中,将 760 g/kWh 确定为 CO。值。 该值记录在欧盟型式批准证书中。 该 CO。测量结果来自在实验室条件下通过代表发动机系列的母发动机在固定测试循环上进行的测试。 该值不得暗示或表示对特定发动机性能的任何保证。

i05660539

接合被驱动设备

- 1. 如有可能,使发动机以半额定转速运转。
- 2. 如有可能,在设备无负载的情况下接合驱动设备。

中断起动会使传动系承受过大应力。 中断起动也会浪费燃油。 为使驱动设备运转,应在驱动设备不带负载的情况下平缓接合离合器。 这种方法会使起动平稳且轻易。 发动机转速不应增加,离合器不应打滑。

- 3. 发动机以半额定转速运转时,确保仪表显示处于正常范围。 确保所有仪表工作正常。
- **4.** 将发动机转速提高到额定转速。 务必在施加负载前 将发动机转速提高到额定转速。
- 5. 施加负载。 开始低负荷运行发动机。 检查仪表和 设备是否正常工作。 在达到正常油压且温度表开始 移动后,发动机即可满负载运转。 发动机带负载运 转时,应频繁检查仪表和设备。

在低怠速或在减负载下长时间运转,可能造成机油 消耗量增加并在油缸中形成积碳。 积碳导致功率损 失和/或性能变差。

i07941097

燃油省油准则

发动机的效率会影响燃油经济性。 Perkins 的设计和制造工艺可为所有应用类型带来最高的燃油效率。 遵循建议的步骤以便获得发动机寿命期的最佳性能。

• 避免燃油溢出。

燃油会在预热时膨胀。 燃油可能会从燃油箱溢出。 检查燃油管路是否有泄漏。 对燃油管路进行所需的维 修。

- 知道不同燃油的特性。 只使用推荐的燃油。 有关 更多信息,请参阅操作和保养手册, 燃油建议。
- 避免不必要的怠速运转。

关闭发动机,而不是让发动机长时间怠速运转。

- 经常观察保养指示器。 保持空气滤清器清洁。
- 确保涡轮增压器正常工作。 有关更多信息,请参阅本操作和保养手册, 涡轮增压器 检查。
- 保持电气系统处于良好状态。

一个坏的蓄电池单元将使交流发电机过度工作。 该故 障将导致功率和燃油消耗过多。

- 皮带应处于良好状况。有关更多信息,请参阅系统操作、测试和调整, V 形皮带测试。
- 确保所有软管连接紧密。 连接处不应泄漏。
- 确保从动设备状况良好。
- 冷发动机消耗过多的燃油。尽可能利用来自水套水系统和排气系统的热量。保持冷却系统部件清洁和得到良好维护。决不能运转未安装水温调节器的发动机。所有这些项目将有助于保持工作温度。

发动机停机

i07201999

发动机停机

在发动机一直带着负荷运转的情况下立即停机,会引 起过热并加快发动机零部件的磨损。

参考以下步骤,让 发动机冷却,并防止涡轮增压器壳体(如有配备)出现 过高温度而引起油的焦化问题。

1. 机器停止后,低怠速运转发动机 5 分钟。 怠速运转 发动机可使发动机的高温区域逐渐冷却。

注:如果"主动再生"指示灯点亮,不要关闭发动机。 有关指示灯的更多信息,请参阅操作和保养手册, 监 控系统。 (如有配备)

2. 把发动机起动开关转到断开位置,拔出钥匙。

注:发动机在完全停机前可能有所延迟。 发动机停机 延迟有助于冷却发动机和后处理系统(如果配备)部 件。

发动机停机延迟(如果启用)

将发动机起动开关转到断开位置后,延迟发动机停机 将允许发动机运行一段时间以冷却发动机和系统部 件。 可取下发动机起动开关钥匙。

注:DEF 净化过程将在发动机停机后运行 2 分钟并且 必须完成。 延迟发动机停机期间可能会发生净化过 程。 净化过程期间不要关闭蓄电池断路开关。 在蓄 电池断路开关指示灯熄灭之前,不要关闭蓄电池电源 断开开关。 如果未完成净化过程,诊断代码将变为激 活状态。

注:可能有在发动机运转时确定操作员要求和/或支持 人员在场的法规。

发动机运转时机器无人照管可能造成人身伤害或死亡。 离开机器操作台前,使行驶控制器处于空档位置,将作业机具降落至地面并使所有作业机具停止工作,并将液压锁定控制操纵杆置于 LOCKED(锁定)

注:出现故障时,如果对运转的发动机置之不理,则可 能导致财产损失。

将发动机起动开关转到断开位置。

延迟发动机停机 = 发动机停机延迟指示灯将 点亮或者将显示以下文字:ENGINE COOLDOWN ACTIVE (发动机冷却启

用)。

当排气温度高于发动机停机阈值时,发动机将运行。发动机停机延迟将运行至少 76 秒续运行,直到发动机和系统部件冷却。 默认时间为 7 分钟。

注:授权代理商可以更改最大运行时间值,最长达 30 分钟,但默认设置为7分钟。

注:为超越发动机停机延迟并关闭发动机,将发动机起 动开关转到停机位置。 超越发动机停机延迟可能会降 低发动机和系统部件的使用寿命。 将出现发动机异常 停机的警告信息和/或声音警报,并且记录相关故障代 码。

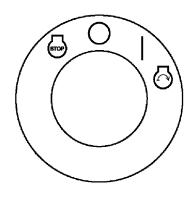


图 54

g02362719

注:发动机停机延迟期间,可随时将发动机起动开关转 到接通位置。 然后可使发动机返回到工作状态。

i06245656

手动停机程序

注意 发动机带负荷运转后立即停机会引起过热并加快发动 机零部件的磨损。

如果发动机已在高速和/或大负荷下持续运转过,使发动机停机之前,至少在低怠速运转发动机3分钟以降低和稳定发动机内部温度。

避免发动机热态停机可增加涡轮增压器轴和轴承的寿 命。

注:应用不同,控制系统也会不一样。 确保理解停机 程序。 运用以下一般性准则以便使发动机停机。

- 1. 从发动机上卸掉负载,使发动机功率不超过 30%。
- 2. 以编程设定的低怠速运转发动机至少 3 分钟。
- 3. 冷却时间结束后,把起动开关旋转到断开位置。

i02940085

发动机停机后

注:检查发电机机油之前,停止运行发动机至少10分钟 以便使发动机机油有充分时间回到油底壳。

- 检查曲轴箱的机油油位。 将油位保持在机油尺的 "加(ADD)" 标记和 "满(FULL)" 标记之间。
- 如有必要,进行小的调整。修理每一处渗漏并拧紧任何松动的螺栓。
- 记下工时计的读数。 按本操作和保养手册, 保养部分的保养周期表所述进行保养。
- 加满燃油箱以便于防止油箱中积聚湿气。 燃油箱 不要加油过满。

注意 只使用操作和保养手册冷却液规格中建议使用的防冻 剂/冷却液混合液。 不这样做会造成发动机损坏。

- 使发动机冷却。 检查冷却液位。
- 如果预期发动机会在冰冻温度下运转,检查冷却液 是否具有正确的防冻保护。对预料到的最低外部 温度,必须保护冷却系统以防结冻。如果必要, 添加合适的冷却液/水混合液。
- 对所有被传动的设备进行必需的定期保养。此保 养会在原始设备制造商(OEM)的使用说明书中述 及。

寒冷天气操作

i07941095

散热器气流限制

Perkins 不鼓励使用安装在散热器前部的气流限制装 置。 气流阻力可能导致以下情况:

- 排气温度高
- 功率损失
- 风扇使用过度
- 燃油经济性降低

减少经过部件的气流也会影响发动机罩内的温度。 减小空气流量可升高后处理再生期间的表面温度,可能会影响部件可靠性。

如果必须使用气流限制装置,此装置应该具有一个与风扇轮毂正对的永久开口。 此装置必须具有至少770 cm² (120 in²) 的开口尺寸。

与风扇轮毂正对的中心设有开口,以便防止阻断流向 风扇叶片的气流。 流向风扇叶片的气流受到阻断可能 导致风扇损坏。

Perkins 建议使用进气歧管温度报警装置和/或安装进气温度表。 进气歧管温度的报警装置应设为 75 °C (167 °F)。 进气歧管空气温度应不能超过 75 °C (167 °F)。 超过此界限的温度可能导致功率损失和潜在的发动机损害。

i08083890

燃油和寒冷天气的影响

注:仅使用 Perkins 推荐的燃油等级。请参阅本操作和保养手册, 油液建议。

柴油的性能可能会对发动机冷启动能力有显著的影响。重要的是,柴油低温属性必须符合发动机操作中 预期会出现的最低环境温度。

以下属性用于定义燃油低温性能:

- 浊点
- 倾点
- 滤清器冷阻塞点(CFPP)

燃油浊点是指天然存在于柴油中的蜡开始形成结晶的 温度。燃油的熔点必须低于最低环境温度以防止滤清 器堵塞。

倾点是燃油停止流动及开始析蜡前的最后温度。

冷滤堵塞点 (CFPP) 是特定燃油将通过一个标准化的 过滤装置的温度。此 CFPP 给出估计的燃油最低可操 作温度 购买燃油时,请注意这些特性。考虑发动机应用的平 均环境温度。在一种气候条件下加油运转良好的发动 机,装运到较冷气候下时可能无法正常工作。引起问 题的原因可能是温度变化。

如果冬季中发动机功率过低或性能太差,进行故障检 修之前先检查燃油是否析蜡

以下部件可将寒冷天气下燃油析蜡问题出现的几率降 到最低。

- 燃油加热器,可能为 OEM 选装件。
- 燃油管绝缘件,可能为 OEM 选装件。

冬季和北极级柴油可用于冬季严寒的国家和地区。有 关更多信息,请参阅操作和保养手册, 寒冷天气工作 用油

可影响冷起动和柴油发动机操作的另一重要燃油属性是十六烷值。此属性的详细信息和要求见于操作和保养手册,油液建议。

i06245651

寒冷天气下与燃油有关的部件

燃油箱

未注满的燃油箱会出现凝结。 在您运行发动机后请加 满燃油箱。

燃油箱应包括一些从底部排放水和沉积物的措施。 某 些燃油箱使用补充管让水和沉淀物沉淀在供油管末端 的下部。

一些燃油箱使用的供油管路能够直接从燃油箱底部汲取燃油。 如果发动机配备了这种系统,定期保养燃油系统滤清器相当重要。

在以下情况下从燃油储油箱中放掉水和沉淀物:

- 毎周
- 更换机油时
- 向燃油箱加油时

此排放将有助于防止将水和/或沉淀物从储油箱抽吸到 发动机燃油箱。

燃油加热器

在寒冷天气时,燃油加热器帮助防止燃油滤清器因燃油结蜡而堵塞。应安装燃油加热器,以便在燃油进入燃油粗滤器之前被加热。

选择一种结构简单且适用的燃油加热器。 燃油加热器 还应防止燃油过度加热。 燃油温度高会降低发动机性 能和可利用的发动机功率。 选择具有较大加热表面积 的燃油加热器。 燃油加热器的尺寸应符合实际要求。 小加热器可能会因其表面积有限而过热。

温暖天气时断开燃油加热器。

操作章节 寒冷天气下与燃油有关的部件

注:此发动机上应使用由水温调节器控制的燃油加热器或自动调节的燃油加热器。 不受水温调节器控制的燃油加热器可能把燃油加热到超过 65°C (149°F)。如果供油温度超过 37°C (100°F),发动机便可能发生功率损失。

注:热交换器型燃油加热器应该有旁通设施以便防止温 暖天气工作时发生过热现象。

有关燃油加热器的更多信息,请咨询您的 Perkins 分销商。

保养章节

加注容量

i07490664

油液建议 (一般燃油资料)

•	词汇表	
•	ISO	国际标准组织
•	ASTM	
•	HFRR 往复移动式装置	_用于对柴油进行润滑性测试的高频 【
•	FAME	脂肪酸甲酯
•	CFR	
•	ULSD	
•	RME	油菜甲基酯
•	SME	大豆甲酯
•	EPA	美国环保署
•	PPM	
•	DPF	
•	v/v	(溶质体积)/(溶液体积)
•	CFPP	冷滤清器堵塞点
•	BTL	生物质到油液
•	GTL	
•	CTL	
•	HVO	
_	-般信息	

注意 我们尽一切努力提供准确、及时的信息。 使用此文档,即表示您同意 Perkins Engines Company Limited 对其中的错误和疏漏不承担任何责任。

注意 这些建议随时可能改变,恕不另行通知。 请与本地 Perkins 经销商联系以获得最新建议。

柴油要求

Perkins 不负责持续评估和监测全球各地区政府和技术协会发布的馏出柴油技术规格。

"Perkins 馏出柴油技术规格"提供已知的可靠基准,以 便对由常规能源制成的馏出柴油的预估性能进行评 判。

令人满意的发动机性能取决于使用的优质燃油。 使用优质燃油将可产生以下效果:发动机使用寿命长以及可接受的废气排放水平。 燃油必须满足表3 中所规定的最低要求。

注意 脚注是 Perkins"馏出柴油技术规格"表的重要部分。 请阅读全部脚注。

表 3

		"Perkins 馏出柴油技术规	见格"	
特性	单位	要求	ASTM测试	ISO/其他测试
芳香族化合物	体积百分比	最高 35%	D1319	ISO 3837
灰分	重量百分比	最高 0.01%	D482	ISO 6245
10% 的底部区域内的碳残 渣	重量百分比	最高 0.20%	D524	ISO 4262
十六烷值(1)	-	北美最低 40 欧盟最低 45	D613 或 D6890	ISO 5165
浊点	°C	浊点绝不能超过最低预期环 境温度。	D2500	ISO 3015
铜带腐蚀	-	最高3号	D130	ISO 2160
蒸馏	°C	50% @ 250° C (482° F) 最 小	D86	ISO 3405
		90% @ 350° C (662° F) 最 大		
在 15 °C (59 °F) 下的密度	kg/M³	最低 800,最高 860	无同等测试	ISO 3675ISO 12185
闪点	°C	法定限度	D93	ISO 2719
热稳定性	-	在 150 °C (302 °F) 下老化 180 分钟后,最低反射率为 80%	D6468	无同等测试
倾点	°C	6 °C (42.8 °F)最小低于环境 温度	D97	ISO 3016
硫(3)	质量百分比	最高 0.0015%	D5453	ISO 20846
运动粘度 ⑷	MM2/S (cSt)	输送到喷油泵的燃油粘度。 最低 1.4,最高 4.5	D445	ISO 3405
水和沉淀物	重量百分比	最高 0.05%	D1796	ISO 3734
水	重量百分比	最高 0.02%	D1744	无同等测试
沉淀物	重量百分比	最高 0.05%	D473	ISO 3735
胶质物和树脂 ⑸	mg/100ml	最大 10 mg/100 mL	D381	ISO 6246
在 60 °C (140 °F) 下经润滑性修正后的磨痕直径。	mm	最高 0.52	D6079	ISO 12156-1
燃油清洁度 (7)	-	ISO 18/16/13	D7619	ISO 4406
痕量金属 (8)	mg/mg	最高1或未检测到	D7111	
氧化稳定性	g/m^3	最高 25	D2274	ISO 12205
	小时(9)	最低 20		EN 15751

- (1) 建议使用十六烷值高于 45 的燃油,以在高海拔地区的寒冷天气中运行
- (2) 允许的密度范围包括夏季和冬季柴油等级。
- ③ 必须使用含硫量小于 0.0015% 15 PPM(mg/kg)的超低硫柴油。 在这些发动机中使用含硫量超过 15 PPM 限值的柴油将会损害或永久损坏排放控制系统。 此外,使用含硫量超过 15 PPM 限值的柴油可能会缩短使用寿命。
- (4) 燃油粘度的数值是燃油输送到燃油喷射泵时的数值。 燃油还应达到最低粘度要求,并达到在 40 °C (104 °F) 条件下使用 ASTM D445 测试方法或 ISO 3104 测试方法测得的最大粘度要求。 如果使用了低粘度的燃油,可能需对其进行冷却,以便将喷油泵处的燃油粘度保持在不低于 "1.4 cSt"。 对于高粘度的燃油,可能需要在喷油泵处加装燃油加热器以便将粘度降到 "1.4 cSt"。
- (5) 请遵循针对汽油(马达)的测试条件和程序。
- (6) 燃油润滑性是低硫和超低硫燃油可能出现的问题。 磨痕直径高于 0.52 mm (0.0205 inch) 的燃油将导致使用寿命减少,以及燃油系统过早故障。 有关更多信息,请参阅本操作和保养手册油液建议的润滑性部分。
- ⑺ 按照 ISO 4406,分配至机器或发动机燃油箱的建议燃油清洁度等级为 ISO 18/16/13 或更高等级。 参考有关燃油的污染控制建议。
- ⑻ 痕量金属的实例包括但不限于 Cu、Fe、Mn、Na、P、Pb、Si 和 Zn。 不允许使用金属基添加剂。
- (9) 含 FAME 燃油的附加限制。 含超过 2% v/v FAME 的燃油必须满足这两个测试。

注:发动机用户和操作员有责任使用 EPA 及其他相应 管理机构规定的燃油。

注意 使用不符合 Perkins 推荐规程的燃油可引起以下后 果:难以起动、缩短燃油滤清器使用寿命、燃烧不 果:难以起动、缩短燃油滤清器使用寿命、燃烧不 果、喷油器积碳、显著缩短燃油系统使用寿命。此 外、燃烧室中会产生沉积物,从而缩短发动机的使用 寿命。

注意 Perkins 2000 系列柴油发动机必须使用超低硫柴油运转。 该燃油含硫量必须低于 15 PPM。 该燃油符合美国环保署规定的排放法规的要求。

法规要求经欧洲非公路 Stage V 型式认证的非公路发动机要使用欧洲 ULSD 0.0010% (≤10ppm (mg/kg))的硫燃料。此外,十六烷值应低于 45 标准要求,生物柴油含量应超过 20% 的体积百分比。

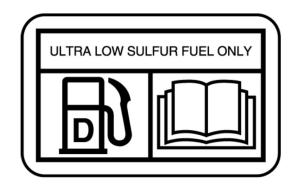


图 55 g02157153

插图 55 是标签的演示,该标签安装在应用的燃油箱 的燃油加注口盖旁边。

表 4 中列出的燃油技术规格可发布用于所有 2000 系列发动机。

表 4

2000 系列发动机可用燃油技术规格⑴			
燃油技术规格	注释		
EN590	欧洲汽车柴油(DERV)		
ASTM D975 等级 1D S15	"北美轻馏出柴油含硫量低于 15 PPM"		
ASTM D975 等级 2D S15	"北美中馏产生的通用柴油含硫量低于 15 PPM"		
JIS K2204	"日本柴油"必须满足本操作和保养手册油液建议中润滑性部分所述的要求。		
BS 2869:2010 级 A2 或 EU 同等产品	UK 非公路柴油		
CEN TS15940	"合成或加氢处理的石蜡柴油"、"生物质制油"(BTL)、"气制油"(GTL),称 为加氢处理植物油 (HVO)。 有关更多信息,请参阅本操作和保养手册 油液建议的可再生燃料和替代燃料部分。		
B20 生物柴油混合物	有关更多信息,请参阅本操作和保养手册油液建议中有关生物柴油和使用 B20 的建议部分。		

⁽¹⁾ 所有的燃油必须符合 Perkins 馏出柴油技术规格表中的技术规格。

一般燃油资料

柴油特性

十六烷值

十六烷值是衡量柴油点火质量的指标。 十六烷值越高的燃油,点火延迟越短,点火质量越好。 燃油的十六烷值由标准 CFR 发动机中燃油的十六烷和七甲基壬烷配比得出。 请参阅 ISO 5165 以了解测试方法。

在欧洲,非公路 Stage V 排放法规要求最低十六烷值 为 45。 在北美,要求最低十六烷值为 40。

十六烷值影响发动机的冷起动能力、废气排放、燃烧 噪音和海拔性能。 推荐使用十六烷值较高的燃油。 这对于寒冷天气和高海拔地区的操作尤为重要。

粘度

粘度是对剪切或流动形成阻力的液体性质。 随着温度升高,粘度将会降低。对于普通的矿物燃油,粘度下降符合对数关系。 通常涉及的是运动粘度。 运动粘度为动态粘度与密度之商。 运动粘度一般通过标准温度下重力流量式粘度计的读数确定。 请参阅 ISO 3104 以了解测试方法。

燃油粘度很重要,因为燃油对燃油系统部件起着润滑剂的作用。燃油必须达到足够的粘度,以便在极冷和极热的温度条件下润滑燃油系统。如果喷油泵处的燃油运动粘度低于"1.4 cSt",则可能会损坏喷油泵。 这种损坏可能包括过度刮擦和卡塞。 低粘度可能会导致难以热重新起动、失速和性能下降。 高粘度可能会导致泵卡塞。

Perkins 建议输送到喷油泵的燃油运动粘度为 1.4 到 4.5 mm2/sec。 如果使用了低粘度的燃油,可能需要 加以冷却,以便在喷油泵处保持不低于 1.4 cSt 的燃油粘度。 高粘度的燃油可能需要在喷油泵处加装燃油加热器以便将粘度降到 4.5 cSt。

密度

密度是特定温度下单位体积的燃油质量。 此参数对发动机的性能和排放都会产生直接影响。 该类影响决定了燃油喷射量的热输出。 此参数在 15 °C (59 °F)下在以下 kg/m³ 中引出。

Perkins 建议使用密度为 841 kg/m³ 的燃油以获得正确的功率输出。 更轻的燃油可以接受,但是那些燃油的输出达不到额定功率。

硫

含硫量水平通过排放法规管理。 地区法规、全国法规或国际法规可能会要求燃油达到特定的含硫量限制。 燃油的含硫量和燃油质量必须符合现有的当地排放法规。

Perkins 2000 系列柴油发动机的设计仅适用于超低硫柴油 (ULSD) 燃料。 使用 ASTM D5453 或 ISO 20846 测试方法时,ULSD 燃油的含硫量必须低于 15 PPM (mg/kg) 或 0.0015%。

在美国,EPA 法规要求使用含硫量低于 0.0015% (15 PPM) (mg/kg) 的 ULSD 燃料。

在欧洲,按照排放法规的要求,必须在经欧盟非公路 Stage V 排放认证的发动机中使用含硫量低于 0.0010% (10 PPM) (mg/kg) 的无硫柴油。

注意

这些发动机使用高于 15 PPM 硫限制的柴油时,会损伤或永久性损坏排放控制系统和/或缩短维修周期。

润滑性

润滑性指燃油防止泵磨损的能力。 油液的润滑性描述了油液降低承载表面之间摩擦的能力。 这种能力可减少由于摩擦造成的损坏。 燃油的润滑属性关系到燃油喷射系统的运作。 在颁布燃油含硫量限制之前,普遍认为燃油的润滑性是燃油粘度的一个函数。

润滑性对现用的超低含硫量燃油和低芳烃化石燃料特 别重要。 生产这些燃油是为了达到严苛的尾气排放要 求。

这些燃油的润滑性不得超过 0.52 mm (0.0205 inch) 的磨痕直径。 燃油润滑性测试必须在 HFRR 上进行,操作条件为 60°C (140°F)。 请参阅 ISO 12156-1。

注意 使用合格燃油的燃油系统经 ISO 12156-1 测试,具有 高达 0.52 mm (0.0205 inch) 磨痕直径的润滑性。 磨 痕直径高于 0.52 mm (0.0205 inch) 的燃油将导致使 用寿命减少,以及燃油系统过早故障。

燃油添加剂可增强燃油的润滑性。 有关需要使用燃油添加剂的环境条件,请联系您的燃油供应商。 您的燃油供应商会针对添加剂的使用和恰当处理给出相关建议。

蒸馏

蒸馏表示燃油中不同碳氢化合物的混合比例。 高比例 的轻质碳氢化合物会影响燃烧性能。

生物柴油和使用 B20 的建议

生物柴油是一种可定义为脂肪酸单烷基酯的燃油。 生物柴油可使用各种原料制成。 欧洲最常见的生物柴油是菜籽油甲酯 (RME)。 这种生物柴油使用菜籽油制成。 大豆油甲酯 (SME) 是美国最常见的生物柴油。这种生物柴油使用大豆油制成。 主要原料是大豆油或菜籽油。 这些燃油都称为脂肪酸甲酯 (FAME)。

任何浓度的生植物油都不能作为燃油用于压缩发动机。若不经过酯化作用,这些生物柴油会凝胶在曲轴箱和燃油箱中。这些燃油可能与如今生产的发动机中使用的许多人造橡胶部件不兼容。 这些植物油的原形不适合用在压缩发动机中作为燃油。 生物柴油的替代原料包括动物油脂、废食用油和各种其它原料。 为将列出的各种产品用作燃油,这些油类必须酯化。

由 100% FAME 制成的燃油一般称为 B100 生物柴油 或纯生物柴油。

生物柴油可以与馏出柴油燃料混合使用。 这种混合物可作为燃油使用。 最常用的混合生物柴油是由 5% 的生物柴油和 95% 的馏出柴油混合而成的 B5。 B20,由 20% 的生物柴油和 80% 的馏出柴油混合而成。

注:上述百分比是容积百分比。

美国 馏出柴油技术规格 ASTM D975 包括最高为 B5 (5%) 的生物柴油。

欧洲馏出柴油技术规格 EN590 包括最高为 B7 (7%) 的生物柴油。

注:Perkins 制造的发动机通过了美国环保署 (EPA) 和欧洲认证体系规定的燃油使用认证。 Perkins 不授权发动机使用其它任何燃油。 发动机用户负责使用制造商推荐并得到 EPA 及其它相应管理机构许可的正确燃油。

技术规格要求

清洁的生物柴油必须符合最新的 EN14214 或 ASTM D6751(在美国)。 生物柴油仅可与符合最新版的 EN590 或 ASTM D975 S15 指示的合格矿物柴油混合,混合体积比达到 20%。

在美国,B6 至 B20 混合生物柴油必须符合最新版 ASTM D7467 中所列的要求(B6 至 B20),并且 API 重度必须为 30-45。

在北美,生物柴油和混合生物柴油必须从经过 BQ-9000 认可的制造商和经过 BQ-9000 认证的经销商购买。

欧洲馏出柴油技术规格 EN 16709:2015 包括最高为B20(20%)的生物柴油。 任何欧洲柴油可能包含最高为B20的生物柴油。

在世界其他地区,要求使用经过 BQ-9000 认可和认证的生物柴油,或者使用经过同等生物柴油质量机构认可和认证且符合类似生物柴油质量控制标准的生物柴油。

发动机的维修要求

生物柴油具有腐蚀性,可能会导致燃油箱和燃油管路中产生碎屑。 生物柴油的腐蚀性将可清洁燃油箱和燃油管路。 对燃油系统的这种清洁作用可能会使燃油滤清器过早堵塞。 Perkins 建议在首次使用 B20 混合生物柴油后,第 50 个小时必须更换燃油滤清器。

生物柴油中存在的甘油酯也会导致燃油滤清器更快地 堵塞。 因此,定期保养周期应缩短为 250 小时。

使用生物柴油时,可能会影响曲轴箱机油和后处理系统。 产生这种影响的原因是生物柴油的化学成分和特性,例如密度和挥发性;以及此类燃油中可能含有的化学杂质,例如碱和碱金属(钠、钾、钙和镁)。

- 使用生物柴油或混合生物柴油时,曲轴箱机油的燃油稀释程度可能会更高。使用生物柴油或混合生物柴油时,燃油稀释程度的升高与生物柴油在通常情况下较低的挥发性有关。许多业内最新的发动机设计所采用的缸内排放控制策略可能会导致集油槽中的生物柴油浓度升高。曲轴箱机油中生物柴油浓度的长期影响尚未知晓。
- 如果使用生物柴油,Perkins 建议通过机油分析检查发动机机油的质量。确保在采集油样时记下燃油中的生物柴油水平。

与性能相关的问题

由于含能量低于标准馏出燃油,B20 将会产生 2-4%的功率损失。 此外,由于喷油器中逐渐发生沉积,功率还会进一步降低。

已知生物柴油和混合生物柴油可导致燃油系统沉淀物增加,其中喷油器中的沉淀物增加最为明显。 这些沉淀物会导致由于喷油受限或改变而产生能量损耗,或者导致与这些沉淀物相关的其他功能问题。

注:Perkins 燃油滤清器(零件号 T400012)在清洁和防止沉积物形成方面效果显著。 Perkins 柴油调节剂可提高生物柴油和混合生物柴油的稳定性,有助于限制沉积物的形成。 有关更多信息,请参阅 Perkins 柴油清洁剂。

含金属杂质(钠、钾、钙和/或镁)的生物柴油在柴油发动机内燃烧时会形成灰分产物。 灰分可能会影响后处理排放控制设备的使用寿命和性能并造成 DPF 的积累。 灰分的积累可能会导致灰分保养频率加大和/或性能降低。

一般要求

生物柴油的氧化稳定性很差,因此生物柴油长期存储期间可能会出现问题。 生物柴油应当在生产后 6 个月内使用。 如果设备存放超过 3 个月,燃油系统中不应有 B20 混合生物柴油。

由于氧化稳定性差及其它潜在的问题,强烈建议发动机在有限的运转期内不使用 B20 混合生物柴油,或者在可承担一定风险的情况下限制使用等级最高为 B5 的混合生物柴油。 在以下应用示例中应限制使用生物柴油:备用发电机组和某些急救车辆。

对于不能避免使用混合生物柴油的备用发电机组和应急车辆,必须每月抽样检查发动机燃油箱中的燃油质量。测试应包括酸值(EN14104)、氧化稳定性(EN 15751,通常称为 Rancimant 测试)和沉淀物(ISO12937)。 根据 EN 15751,对于备用发电机组,混合生物柴油的氧化稳定性必须为 20 小时或以上。如果测试显示燃油已劣化,则必须排空燃油箱,并用新鲜的优质柴油通过运转发动机来冲洗发动机。

Perkins 强烈建议季节性工作的发动机在长时间停机 之前使用常规柴油冲洗燃油系统,包括燃油箱。 例 如,联合收割机应当季节性地冲洗燃油系统。

微生物污染和生长可能导致燃油系统腐蚀和燃油滤清 器过早堵塞。 请向供应商咨询如何选择适当的抗微生 物添加剂。

水会加快微生物的污染和生长。 与馏出燃油相比,生物柴油中自然更容易存在水。 因此,应经常检查,必要时应排空油水分离器。

黄铜、青铜、红铜、铅、锡和锌会加速生物柴油的氧 化过程。 在氧化过程中可能会形成沉积物,因此燃油 箱和燃油管路不能使用这些材料。

可再生燃料和替代燃料

Perkins 通过可持续发展方案支持开发和使用可再生 燃料。 近年来,开始出现了各种各样的可再生和替代 (合成)柴油燃料。

合成柴油燃料通过各种原料的气化作用生成,然后合成为液体以获得链烷烃柴油燃料。根据使用的原料,这些燃料通常被称为生物质液体(BTL)燃料,天然气合成油(GTL)和煤制油(CTL)。植物油和动物脂肪的加氢处理是生产称为加氢处理植物油(HVO)的生物基柴油燃料的另一种新兴工艺。

BTL 和 HVO 燃料被认为是低碳燃料,因为与矿物燃料相比,它们减少了碳排放量,通常被称为可再生燃料。 这些燃料不能与生物柴油 FAME 相混淆,从本质上讲,它们是完全不同的燃料,相关内容将会在本手册的单独章节中进行讨论。

这些石蜡柴油实际上没有硫或芳烃,其十六烷值非常 高,这使得燃烧非常清洁并使发动机高效运转。 这些 燃料在化学上类似于从石油中提炼的柴油。

要符合最新版本的石蜡柴油规格 CENTS 15940,可以认为石蜡柴油可以用作石油柴油的直接替代,也可以用作 Perkins 柴油机中石油柴油的混合原。燃油还应符合表 3、Perkins 馏出柴油技术规。 EN590 或最新的 ASTM D975 技术规格中所述的求,但密度除外,对于石蜡燃料来说,密度本来就低。 由于密度较低,会有一些明显的额定功率损

确保燃料具有适当的冷流性能(浊点和 CFPP),以 适应预期发动机操作中观察到的最小统计环境温度。 燃料还必须满足本操作和保养手册 油液建议的润滑性 章节中规定的润滑性要求

用于寒冷天气运行的燃油

欧洲标准 EN590 包含与天气有关的要求以及选择范围。 这些选择可分别应用于每个国家/地区。 有五类属于北极气候和严冬气候。 0、1、2、3 和 4。

在低至 −44 °C (−47.2 °F) 的温度下,可使用符合 EN590 4 级的燃油。 请参阅 EN590 以了解燃油物理 性质的详细判断标准。

在美国使用的柴油 ASTM D975 1-D 可用于温度低于 -18 °C (-0.4 °F) 的极寒环境。

售后燃油添加剂

Perkins 对非 Perkins 油液和滤清器的质量或性能不提供任何保证。

在 Perkins 产品上使用其它制造商生产的辅助设备、 附件或消耗品(滤清器、添加剂)时,不会仅因这种 使用而影响 Perkins 保修。

但是,安装和使用其他制造商的设备、附件或消耗品而导致的故障不属于 Perkins 产品缺陷。 因此,这些缺陷不在 Perkins 保修范围之内。

通常不推荐使用补充性柴油添加剂。 因为该类添加剂可能会损坏燃油系统或发动机。 燃油供应商或燃油制造商会添加适当的补充性柴油添加剂。

Perkins 承认在有些特殊环境中需要使用添加剂。

注:部分防腐添加剂可导致喷油器结垢,该结垢可导致 喷油器工作不正常。

有关需要使用燃油添加剂的环境条件,请联系您的燃油供应商。 燃油供应商可能会为您推荐适当的添加剂以及正确的处理用量。

注:为了获得最佳效果,燃油供应商应在必要时使用添 加剂处理燃油。 经过处理的燃油必须达到表 3 中所述 的要求。

Perkins 柴油系统清洁剂

Perkins 燃油清洁剂(零件号 T400012)是 Perkins 建议的唯一燃油清洁剂。

如果需要使用生物柴油或混合生物柴油,Perkins 要求使用 Perkins 燃油清洁剂。 燃油的使用是为了清除燃油系统中因使用生物柴油而形成的沉积物。 有关生物柴油和混合生物柴油使用的详细信息,请参阅生物柴油和使用 B20 的建议。

Perkins 燃油清洁剂可清除燃油系统中因使用生物柴油和混合生物柴油而形成的沉积物。 这些沉积物可能会造成功率和发动机性能损失。

如果向燃油中加入燃油清洁剂,发动机运行 30 个小时后即可清除燃油系统中的沉积物。 为了获得最佳效果,燃油清洁剂可一直使用到运行时间达到 80 个小时。 Perkins 燃油清洁剂可连续使用,不会对发动机或燃油系统的耐用性产生任何不利影响。

容器上详细注明了强制性燃油清洁剂使用比率说明。

注:Perkins 燃油清洁剂与现有的和美国的兼容。 EPA Tier 4 认证的非公路用柴油发动机排放控制催化剂和 颗粒滤清器相兼容。 Perkins 燃油系统清洁剂中含硫 量低于 15 ppm 且允许与 ULSD 燃油一同使用。

有关燃油的污染控制建议

应使用 ISO 18/16/13 清洁度等级的燃油或分配给发动机或应用燃油箱的清洁剂。这将降低功率损耗和燃料系统故障的风险并减少相关的发动机停机时间。对于新燃油系统设计,例如共轨喷射系统和单体喷油器,燃料喷射压力且运动部件之间具有紧密间隙,以峰值喷射压力且运动。当前燃料喷射系统中的峰值喷射不统之000 bar(29000 psi)。这些系统中的间隙小于5 µm。因此,即使是4 µm 小的颗粒污染和擦伤。

燃油中的水会导致气穴和燃油系统零件腐蚀,并提供一个促使微生物在燃油中繁荣生长的环境。 其它燃油污染源有肥皂、凝胶剂或其它可能会导致燃油(特别是 ULSD)中产生不良化学反应的化合物。 低温生物柴油或长期存放的生物柴油中还可能会析出凝胶剂或其它化合物。 微生物污染、燃油添加剂或冷温凝胶剂的最佳指示是散装燃油滤清器或应用燃油滤清器的快速滤清器堵塞。

为减少因污染而造成的停机时间,请遵循这些燃油保 养指南。

- 按照建议的或要求的技术规格使用高品质燃油
- 使用 ISO 18/16/13 清洁度等级或更高等级的燃油 加注燃油箱,特别是对于带共轨和单体喷射系统的 发动机。 加注燃油箱时,通过一个绝对值为 4 µm 的滤清器(Beta 4 = 75 至 200)过滤燃油,以达到 建议的清洁度等级。 应该在将燃油注入燃油箱的 装置上执行此过滤操作。 另外,分配点处的过滤 应去除水分,以确保分配燃油的含水量在 500 ppm 或以下。
- Perkins 建议使用可清除燃油中的颗粒污染物和单 程水分的散装燃油滤清器 / coalescer 装置,

- 务必使用 Perkins 高效燃油滤清器。 按照建议的 保养要求或根据需要更换燃油滤清器。
- 每天排放油水分离器。
- 按照操作和维护手册说明排放燃油箱中的沉淀物和水。
- 安装并保持正确设计的散装滤清器 / coalescer 过滤系统。可能需要连续的散装过滤系统,以确保分配的燃油符合清洁度目标。有关散装过滤产品的可用性,请咨询您的 Perkins 分销商。
- 对于含水量超标和/或含有大颗粒污染物等严重污染的燃油,可能需要使用离心滤清器作为预滤器。 离心滤清器可有效清除大污染物。离心滤清器可能无法清除为达到建议的"ISO"清洁度等级而需要清除的小研磨颗粒。需要使用散装滤清器/凝聚式过滤器作为最终滤清器,以达到建议的清洁度等级。
- 安装绝对效率为 4 μm 或以下且能去除散装储罐水 分的干燥剂型呼吸器。
- 遵守有关燃油运输的正确规程。 储罐到应用的过滤可提高供应燃油的清洁度。 可在每一个运输阶段安装燃油过滤,以确保燃油清洁。
- 盖住和保护所有连接软管、管接头和分配喷嘴,并 确保它们清洁。

有关 Perkins 设计和生产的过滤产品的更多信息,请咨询您当地的 Perkins 分销商。

i07893049

油液建议

一般冷却液信息

注意 切勿向过热的发动机中添加冷却液。 发动机可能因此 而损坏。 应首先使发动机冷却。

注意 为了妥当地防冻和防沸腾, 要常常检查冷却液的比 重。

基于以下原因,应清洁冷却系统:

- 冷却系统受到污染
- 发动机过热
- 冷却液起泡

注意

切勿在冷却系统中未装水温调节器的情况下运行发动机。 水温调节器帮助保持发动机冷却液处于正确的工作温度。 未装水温调节器时,冷却系统可能逐渐会产生故障。

许多发动机故障与冷却系统有关。 以下故障与冷却系统故障有关: 过热、水泵泄漏以及散热器或热交换器 堵塞。

这些故障可以通过正确的冷却系统保养来加以避免。 冷却系统的保养与燃油系统和润滑系统的保养一样重 要。 冷却液的质量与燃油和润滑油的质量一样重要。

冷却液通常由三种成分构成:水、添加剂和乙二醇。

水

水在冷却系统中被用来传递热量。

注:水必须与抑制剂一起使用,以保护发动机。

建议在发动机冷却系统中使用蒸馏水或去离子水。

请勿在冷却系统内使用下列类型的水:硬水、用盐处 理过的软化水和海水。

如果没有蒸馏水或去离子水,使用具有表 5 内所列特性的水。

表 5

可使用的水		
特性	最高限值	
氯化物(CI)	40 mg/L	
硫酸盐(SO₄)	100 mg/L	
总硬度	170 mg/L	
总的固体含量	340 mg/L	
酸度	pH 值为 5.5 至 9.0	

有关水质分析,请咨询以下渠道之一:

- 当地自来水公司
- 农业机构
- 独立实验室

添加剂

添加剂帮助保护冷却系统的金属表面。 缺乏冷却液添加剂或添加剂量不足能够促使以下情况的发生:

- 腐蚀
- 矿物沉淀物的生成
- 锈蚀
- 水垢
- 冷却液起泡

在发动机运行期间,许多添加剂会耗尽。 这些添加剂 必须周期性补充。

必须添加添加剂达到正确的浓度。 添加剂浓度过高会引起抑制剂从溶液中析出。 这些沉淀物可能促使以下问题的发生:

- 凝胶体的生成
- 传热的减少
- 水泵密封件的泄漏
- 散热器、冷却器和细小通道的堵塞

乙二醇

冷却液中的乙二醇帮助提供保护,防止以下情况的发

- 沸腾
- 结冻
- 水泵气穴

为获得最佳性能,Perkins 建议使用水/乙二醇溶液 1:1 的混合液。

注:使用将会在最低环境温度下提供保护的混合液。

注:100%的纯乙二醇将在-13°C (8.6°F)的温度下 冻结。

大多数传统防冻剂使用乙二醇。 也可以使用丙二醇。 当与水按照 1:1 比例混合时,乙二醇和丙二醇提供相似的防冻和防沸腾保护。 请参阅表 6 和表 7 。

表 6

2.0		
乙二醇		
浓度		
50% -36 °C (-33 °F)		
60%	−51 °C (−60 °F)	

工票 注意 不要使用乙二醇浓度超过 50% 的丙二醇,因为此时 丙二醇的热传导能力会降低。 需要额外的防冻或防沸 保护时,可使用乙二醇。

表 7

丙二醇		
浓度		
50% -29 °C (-20 °F)		

要检查冷却液中的乙二醇浓度,请测量冷却液比重。

注:部分市售冷却液是基于替代油液,如1、3-丙二醇 (β-丙二醇、PDO)、甘油或这些替代品与乙烯/丙二 醇的混合物。 本文件出版时,尚不存在基于这些化学 品的冷却液行业标准。在 Perkins 发布和评估此类标准/技术规格之前,不建议在 Perkins 柴油发动机中使用 PDO、甘油或其他替代冷却液。

推荐的冷却液

ELC_ 长效冷却液

SCA 补充用冷却液添加剂

美国试验与材料协会 ASTM

ELC - 长效冷却液。 依靠有机抑制剂进行腐蚀和气穴保护的冷却液。 也称为 OAT 冷却液(有机酸技术)。

SCA - 补充用冷却液添加剂,浓缩无机抑制剂套件。

延长剂 - 浓缩有机抑制剂套件。

常规冷却液 - 一种依靠无机抑制剂进行腐蚀和气穴保护的冷却液。

混合冷却液 - 一种基于有机和无机抑制剂混合物进行 腐蚀和气穴保护的冷却液。

建议为 Perkins 柴油发动机采用以下冷却液:

首选 - Perkins ELC

可接受 – 符合 ASTM D6210 或 ASTM D4985 规格的 商用重负荷防冻剂。

注意

带氮氧化物还原系统的 Perkins 工业用发动机必须使用最低 30% 体积比的乙二醇/水混合物进行操作,Perkins 建议使用 50% 体积比的乙二醇/水混合物。50% 的浓度允许氮氧化物还原系统在高环境温度下正常工作。

——注意 不要使用仅符合 ASTM D3306 技术参数的市售冷却液/防冻液。 这类冷却液/防冻剂是为轻型汽车应用而配制的。

Perkins 推荐 50% 的水和乙二醇混合物。 这种乙二醇 与水的混合液作为防冻液能达到最佳的重负荷性能。 如果需要额外的防冻保护,该比例可以改变为 40% 水与 60% 乙二醇。

可以使用 SCA 抑制剂和水的混合液,但其防腐蚀、防沸腾和防冻保护水平不如 ELC。 Perkins 建议在这类冷却系统中将 SCA 的浓度保持在 6% 至 8%。 最好使用蒸馏水或去离子水。

表 8

冷却液使用寿命		
冷却液类型	使用寿命 (1)	
Perkins ELC	6000 个工作小时或 3 年	
符合 ASTM D6210 要求的市 售重负荷防冻剂	3000 个工作小时或 2 年	
市售 SCA 抑制剂和水	3000 个工作小时或 1 年	

(1) 使用首个周期。 此时,还必须把冷却系统冲洗干净。

Perkins ELC

Perkins 提供用于以下应用的 ELC:

- 重载火花点火式燃气发动机
- 重型柴油发动机
- 汽车应用

ELC 的防腐成份与其它冷却液的防腐成份不同。 ELC 是以乙二醇为基础液的冷却液。 但是, ELC 包含有机腐蚀抑制剂和抗沫剂,并且亚硝酸盐含量低。 Perkins ELC 使用适量的上述添加剂配制而成,能够为发动机冷却系统中的所有金属部件提供卓越的防腐蚀保护。

提供与蒸馏水预先混合的 ELC 溶液。 ELC 混合比为1:1。 预先混合的 ELC 提供低至 -36°C (-33°F)的冻结保护。 建议在冷却系统初次加注时使用这种预混合 ELC。 也推荐在添补冷却系统时使用这种预混合

有几种不同尺寸的容器可供选用。 请向您的 Perkins 经销商咨询零件号。

ELC 冷却系统保养

长效冷却液的正确添加

注意 仅将 Perkins 产品用于预混合冷却液。

把长效冷却液与其他产品混合会降低长效冷却液的使用寿命。 不按照建议去做会降低冷却系统部件使用寿命,除非采取正确的补救措施。

为正确保持防冻液和添加剂之间的平衡,您必须保持 推荐的 ELC 的浓度。 降低防冻液的比例同样也会降 低添加剂的比例。 降低冷却液能力,以保护系统,避 免出现点蚀、穴蚀、腐蚀和沉积物。

注意 不要使用传统冷却液来添补加注了长效冷却液 (ELC) 的冷却系统。

不要使用补充用冷却液添加剂 (SCA)。

ELC 冷却系统清洁

注:如果冷却系统已经在使用 ELC,则不需要在规定 的冷却液更换周期使用清洁剂。 只有当系统已经被添 加的一些其他类型的冷却液或冷却系统损坏污染时, 才需要使用清洁剂。

当 ELC 被排出冷却系统后,只需用净水冲洗。

在加注冷却系统之前,必须将加热器控制装置(如有配备)设置在热位置。 请参阅 OEM 信息以设置加热器控制装置。 排空并重新加注冷却系统后,运行发动机,直到冷却剂液位达到正常工作温度时的液位并保持稳定。 需要时,添加冷却液混合液,把系统加注到规定的液位。

更换为 Perkins ELC

要将重负荷防冻液更换为 Perkins ELC,执行以下步

上意 在检验、保养、测试、调整及维修产品时,必须小心以确保收集好排放出的油液。 在打开任何腔室或拆解任何储有液体的部件之前,要准备好用合适的容器收集液体。

按照本地法规和指令处置所有液体。

- 1. 把冷却液排放到适当的容器中。
- 2. 按照当地法规处置冷却液。
- 3. 使用 33% 的 Perkins ELC 溶液加注冷却系统,并 操作发动机,确保节温器开启。 发动机停机,使发 动机冷却下来。排空冷却液。

注:在溶液中使用蒸馏水或去离子水。

- **4.** 再次使用 33% 的 Perkins ELC 溶液加注冷却系 统,并操作发动机,确保节温器开启。 停止发动 机,并使其冷却。
- 5. 排放冷却系统。

____________注意 不正确或不彻底冲洗冷却系统,会损坏铜和其它金属 部件。

注意 Perkins 不建议使用商用冷却系统清洁剂,因为它们 大多具有腐蚀性。

6. 用 Perkins 预混合 ELC 加注冷却系统。 运转发动 机。 确保所有冷却液阀开启,然后停止发动机。 当冷却时,检查冷却液液位。

ELC 冷却系统污染

注意 注意:长效冷却液(ELC)与其他产品混合会减弱 ELC 的效果,并缩短 ELC 的使用寿命。 不遵循这些 建议会缩短冷却系统部件的使用寿命。

ELC 冷却系统可以承受的最大杂质量为传统重负荷防冻剂或 SCA 的 10%。 如果杂质超过系统总容量的10%,请执行以下步骤之一:

- 排放冷却系统中的冷却液到适当的容器中。 按照 当地法规处置冷却液。 使用 5% 到 10% 的 Perkins ELC 溶液冲洗系统。 使用 Perkins ELC 加注系统。
- 按照传统的重负荷冷却液方法保养系统。 用 SCA 处理系统。 在推荐的传统重负荷冷却液的更换周 期更换冷却液。

市售重负荷防冻和 SCA

禁止使用防腐保护系统含有胺成份的市售重负荷冷却 液。

过意 切勿在冷却系统中未装水温调节器的情况下运行发动 机。 水温调节器帮助保持发动机冷却液处于正确的工 作温度。 未装水温调节器时,冷却系统可能逐渐会产 生故障。

检查乙二醇浓度,确保能够充分防沸和防冻。 Perkins 建议使用折射仪来检查乙二醇浓度。 应当使

Perkins 发动机冷却系统应当每 500 小时测试一次 SCA 的浓度。

根据测试的结果添加 SCA。 可能每 500 小时需要添加液体的 SCA。

注意 不要混淆冷却液的类型和品牌。

不要混淆 SCA 的品牌和类型。

请勿将 SCA 与延长剂混合。

仅使用经冷却液制造商批准,且与冷却液兼容的 SCA 或延长剂。

初次加注时向重负荷冷却液添加 SCA

符合 ASTM D4985 和不符合 D6210 的冷却液需要在 初次加注时添加 SCA。

用表 9_中的计算公式确定初次加注冷却系统时所需的 SCA 量。

表 9

初次加注时向重负荷冷却液中添加 SCA 的计算公式

 $V \times 0.07 = X$

V 是冷却系统的总容量。

X 是所需的 SCA 的数量。

表 10 举例说明了如何使用表 9 中的公式进行计算。 表 10

初次加注时向重负荷冷却液中添加 SCA 的示例		
冷却系统的总容量 (Ⅴ)	所需的 SCA 的数量 (X)	
15 L (4 US gal)	× 0.07	1.05 L (35.5 oz)

保养时向重负荷冷却液中添加 SCA

所有类型的重负荷防冻剂都需要定期添加 SCA。

定期测试防冻剂的 SCA 浓度。 有关具体周期,请参阅操作和保养手册, 保养周期表(保养部分)。 冷却系统补充用冷却液添加剂(SCA)- 测试/添加。

根据测试的结果添加 SCA。 冷却系统的容量决定了 所需的 SCA 量。

如有必要,用表 11 中的计算公式确定所需的 SCA 表 11

保养时向重负荷冷却液中添加 SCA 的计算公式

 $V \times 0.023 = X$

V 是冷却系统的总容量。

X 是所需的 SCA 的数量。

表 12 举例说明了如何使用表 11 中的公式进行计算。 表 12

保养时向重负荷冷却液中添加 SCA 的示例		
冷却系统的总容量 乘数 (Ⅴ)		所需的 SCA 的数量 (X)
15 L (4 US gal)	× 0.023	0.35 L (11.7 oz)

清洁重负荷防冻剂系统

注:要让阻蚀剂生效,冷却系统必须保持无锈蚀、无水 垢且无沉淀物的状态。

- 排放冷却系统。
- 在向冷却系统中加注质量合格的水之前,应将清洁 剂预先溶解在水中。 使用无泡沫清洁剂清洁机油 污染,请咨询 Perkins 代理商,了解合适的产品。

注意 Perkins 不建议使用商用冷却系统清洁剂,因为它们 大多具有腐蚀性。

使用清洁剂后,必须用清水彻底冲洗冷却系统。

不得使用船用或工业用冷却系统的清洁剂,这些清洁 剂具有强渗透性,很容易损坏冷却系统部件。

- 运行发动机约 30 分钟, 然后让发动机冷却。
- 从冷却系统中提取溶液样本,并排空系统。
- 让样品静置至少 30 分钟,检查是否有机油和沉积 物迹象。 如果仍然存在机油和沉积物,重复该步
- 用清水冲洗冷却系统。

使用新冷却液加注系统。

i08394975

油液建议

通用润滑剂信息

鉴于发动机废气排放认证方面的政府法规,必须遵循 润滑剂推荐规程。

API_ 美国石油学会

SAE_ 汽车工程师学会

_欧盟汽车制造商协会。 ACEA

发动机曲轴箱油液 ECF-3_

许可

Perkins 认可美国石油学会(API)和欧盟汽车制造商 协会和(ACRA)制定的发动机机油许可和认证系 统。有关该系统的详细信息资料,请参阅 API 第 1509 号出版物的最新版本。带有 API 符号的发动机 机油是经 API 权威认可的。

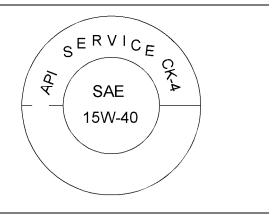


图 56 典型的 API 符号 g06183768

术语

某些缩略语遵循 SAE J754 的命名法。有些等级遵循 SAE J183 缩略语,有些等级遵循 EMA 柴油发动机机 油建议指导原则。除了 Perkins 的定义,还有其它定 义在购买润滑剂时会有帮助。

更多的有关机油的信息,请参考 Perkins 柴油发动机 油液建议, M0113102 。

发动机机油:

市售机油

Perkins 建议为所有 Perkins 发动机使用 Perkins 柴油发动机机油。Perkins 开发了独特的机油配方,旨在为您的发动机提供全面的性能和最大的使用寿命,经测试显示,可以提供卓越的保护。可在适当的 API 分类中获得,以满足发动机的排放要求和性能,请参阅13、以了解发动机的正确机油规格。请咨询 Perkins分销商,了解有关这些多级机油的更多信息。

注意 Perkins 要求使用以下发动机机油技术规格。若未使用恰当的发动机机油技术规格,将导致发动机使用寿命缩短。若未使用恰当的发动机机油技术规格,将导致后处理系统使用寿命缩短。

表 13

	机油规格	
API CK-4 ACEA E9 ECF-3		

API CK-4 和 ACEA E9 机油分级有以下化学成份限

- 硫酸盐灰分的最高含量为 0.1%
- 磷的最高含量为 0.12%
- 硫的最高含量为 0.4%

采用化学成份限制,以便维持发动机后处理系统的预期使用寿命。如果未使用表 13 中列出的机油,发动机后处理系统的性能会受到负面影响。

后处理系统的使用寿命由滤清器表面灰分的蓄积决定。灰分是颗粒物的惰性部分。该系统的设计是为收集颗粒物。烟尘燃烧之后,有,小游戏粒物和强长阻塞滤清器,造成性能损失和增加燃油消耗。大部分灰分装自正为符合产品的设计,的发动机机油。灰分经过排气。为符合对机机油。 成重要的一点是使用合适的发动机机油。 积13 中列出的机油技术规格包括低灰分含量。

使用生物柴油的发动机的保养周期 – 换油周期会受到使用生物柴油带来的负面影响。使用机油分析监控发动机机油状况。使用机油分析还可以确定最佳的换油周期。

注:API FA-4 机油旨在用于选择的公路应用,不支持 非公路应用,包括 Perkins 发动机。严禁在 Perkins 发动机上使用 API FA-4 机油。这些发动机机油未经 Perkins 批准,不得使用: CC、CD、CD-2、CF-4、CG-4、CH-4 和 CI-4。

直喷式(DI)柴油发动机的润滑油粘度建议

正确的机油 SAE 粘度等级是由发动机冷起动时的最低环境温度和发动机运转时的最高环境温度决定的。

请参阅图 57 (最低温度)以确定发动机冷起动时所 需要的机油粘度。

请参阅图 57 (最高温度)以选择发动机在预期的最 高环境温度下运行时所需要的机油粘度。

通常,在满足起动温度要求的前提下,选用具有最高 粘度的机油。

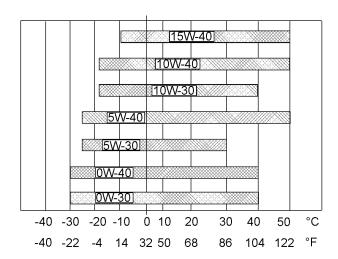


图 57

g03329707

润滑剂粘度

对低于最低环境温度下的冷透起动,建议采用辅助加热。对高于规定的最低环境温度下的冷透起动,也可能需要辅助加热,这要取决于寄生负载和其他因素。当发动机有一段时间没有运转时,就会发生冷透起动。该间隔允许机油随着环境温度的降低而更粘稠。

售后市场机油添加剂

Perkins 不建议在机油中使用售后市场添加剂。没必要使用售后市场添加剂来使发动机达到其最长使用寿命或额定性能。完整配方的成品油包含了基础油和市售添加剂组合。这些添加剂组合以精确的百分比混合到基础油中,以便使成品油能提供满足行业标准的性能特性。

不存在有关评估在成品油中添加售后市场机油添加剂后的性能及其兼容性的行业标准测试。售后市场添加剂有可能和成品油油的添加剂组合不相容,从品油的成品油的性能。售后市场添加剂可能无法和成品油良好混合。该失效将导致曲轴箱中产生油泥。Perkins不鼓励在成品油中使用售后市场添加剂。

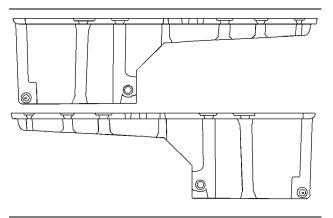
为使 Perkins 发动机发挥其最佳性能,请遵循以下指导原则:

- 请参阅适用的 "机油粘度" 。为找到适合您的发动机的机油粘度等级,请参阅图57。
- 在规定的保养周期对发动机进行维修。使用新机油并安装新机油滤清器。
- 按照操作和保养手册,保养周期表中规定的保养周期进行保养。

机油分析

有些发动机配有机油取样阀。如果需要进行机油分析,可使用机油取样阀获取发动机机油样本。机油分析将作为预防性保养程序的补充。

机油分析是一种诊断工具,用于确定机油性能和部件 磨损率。可使用机油分析确定和测量杂质。机油分析 包括以下测试:


- 磨损率分析将监测发动机金属部件的磨损。分析机油中的磨损金属数量和磨损金属类型。机油中发动机磨损金属率的增加和机油中发动机磨损金属量同样重要。
- 进行测试以检测机油中的水、乙二醇或燃油等杂质。
- 机油状况分析可确定机油润滑特性的损失情况。红外线分析用来把旧机油油样的特性与新机油的特性相比较。该分析使技术人员能够确定使用过程中机油性能的退化量。该分析也使技术人员在整个换油周期内依照技术规格核实机油的性能。

i07201990

加注容量和建议

加注容量

润滑剂加注容量

_{图 58} 标准油底壳 g02300456

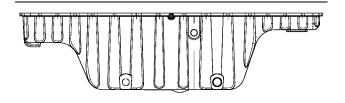


图 59

g02300473

中间油底壳

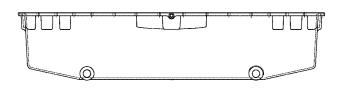


图 60 g02300474

深油底壳

表 14

2000 系列工业用发动机 近似加注容量			
集油槽⑴	带 1 个滤清器 的发动机	带 2 个滤清器的 发动机	
标准油底壳	34 L (36 qt)	43 L (45 qt)	
中间油底壳	60 L (63 qt)	62 L (66 qt)	
深油底壳	68 L (72 qt)	70 L (74 qt)	

⁽¹⁾ 这些数值是曲轴箱集油槽的近似容量,其中包括了在工厂安装 的标准机油滤清器的容量。 安装辅助机油滤清器的发动机将需 要更多的机油。 有关辅助机油滤清器的容量大小,请参阅 OEM 技术规格。

冷却液加注容量

为了正确保养冷却系统,必须知道冷却系统总容量。 冷却系统总容量会变化。 该容量取决于散热器的尺寸 (容量)。 表 15 应由客户来填写,以便对冷却系统 进行保养。

表 15

冷却系统的近似容量			
腔室或系统 升 夸脱			
冷却系统总容量(1)			

⁽¹⁾ 冷却系统总容量包括以下部件:发动机缸体、散热器和所有冷 却液软管和管路。

建议

请参阅此操作和保养手册, 油液建议,以获得此发动机可用油液的相关信息。

保养建议

i08235323

释放系统压力

冷却液系统

: 热的冷却液能造成严重的烫伤。 为了 停机,等候散热器冷下来。 然后慢慢松

为释放冷却系统的压力,需关停发动机。让冷却系统 压力盖冷却下来。慢慢拧开冷却系统压力盖,以释放 压力。

燃油系统

为释放燃气系统的压力,关闭机器。

高压燃油管(如有配备)

触高压燃油可能导致液体渗透和烧伤危险。 高压燃 溢出可能会产生火灾。 如果不遵循检查、保养和维 指南,可能会造成人身伤亡。

以下是不同之处:

- 高压燃油管始终充满高压。
- 高压燃油管的内部压力比其他类型的燃油系统要

在发动机燃油管上执行任何维修或修理之前,需执行 以下任务:

- 1. 停止发动机。
- 2. 等待 10 分钟。

不要拧松高压燃油管来排出燃油系统的空气压力。

发动机机油:

为释放润滑系统的压力,需关停发动机。

i08083888

在配备电子控制装置的发动机上 进行焊接

注意 注意 【不要在底盘架或横梁上进行焊接。有关底盘架或横梁上进行焊接。有关底盘架或横梁上进行焊接。有关底盘架或横梁上进行焊接。有关底盘架或横 【上焊接的问题,请咨询原始设备制造商(OEM)或 【的 Perkins 代理商。

正确的焊接程序是必要的,这样可以避免损坏发动机 ECM、传感器和相关部件。如果可能,从装置上拆下 部件,然后再焊接部件。如果不可能拆卸某个部件, 当焊接电控发动机上的装置时必须按下面步骤进行操 作。以下程序被认为是在部件上进行焊接的最安全的 程序。该程序应具有电控部件损坏的最小风险。

注意 不要将电焊机的地线接至电气部件如电子控制模块 (ECM)或传感器上。 不正确的接地方式能对传动系轴 承、液压元件、电气部件和其它部件造成损坏。

用焊接机的地线夹子夹住要焊接的组件。 尽可能将夹 子置于焊接点附近。 这将有助于减少损坏的可能性。

注:在没有爆炸危险的区域来进行焊接作业。

- 1. 停止发动机。把开关控制的电源转到 断开位置。
- 2. 确保关断通往发动机的燃料供应。
- 3. 从蓄电池上断开蓄电池负极电缆。如果提供了蓄电 池切断开关,打开开关。
- 4. 从导线线束上断开所有电气部件。包括下列部件:
 - 从动设备的电气部件
 - ECM
 - 传感器
 - 电动燃油泵
 - 电子控制阀门
 - 继电器
 - 后处理 ID 模块

注意 切勿将电气零部件(电子控制模块或电子控制模块传 感器)或电子零部件的接地点用作电焊机的接地点。

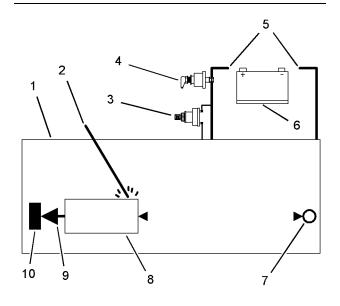


图 61 g06477753

使用上面示例。从焊机到焊机接地夹的电流不会损坏 任何相关部件。

- (1) 发动机
- (2) 焊条
- (3)钥匙开关处于 OFF(断开)位置。
- (4) 蓄电池切断开关处于打开位置
- (5)已断开的蓄电池电缆
- (6) 蓄电池
- (7) 电气/电子部件
- (8)要焊接的部件
- (9) 电焊机的电流通路
- (10) 电焊机接地卡箍
- 5. 将焊接接地电缆直接连接到要焊接的部件上。将接地电缆尽可能靠近焊缝放置,以便降低焊接电流对下列部件造成损坏的可能性。轴承、液压部件、电气部件和接地电缆带。

注:如果电气/电子部件用作焊机接地,或电气/电子部件位于焊机接地与焊接点之间,则来自焊机的电流就会严重损坏该部件。

- 6. 保护导线线束,避免因焊接碎屑和焊溅物损坏。
- 7. 采用标准焊接规程进行焊接。

i07201994

恶劣工作条件

繁重作业是指发动机的应用超出针对这台发动机发布 的现行标准。 或者导致发动机在某些极端运行条件下 使用。

- 功率范围、转速范围和油耗等性能指标
- 燃油质量
- 工作海拔高度

- 保养周期
- 机油选择和保养
- 冷却液类型和保养
- 环境质量
- 安裝
- 发动机内的油液温度

请参考发动机标准或咨询您的 Perkins 分销商,以便 确定发动机是否在规定参数范围内工作。

恶劣作业运行可能加速部件磨损。 在恶劣作业条件下运行的发动机可能需要更为频繁的保养周期,以便确保最大限度的可靠性和保持发动机的全额使用寿命。

由于应用不同,不可能把所有可能导致繁重维修作业的因素确定下来。 请咨询您的 Perkins 经销商,获得发动机必需的特有保养计划。

工作环境、不适当的操作程序和不正确的保养程序都可能导致恶劣作业运行。

环境因素

环境温度 – 发动机可能在极冷或极热环境下长时间运行。 如果发动机在非常寒冷的温度下频繁起动和停机,气门部件可能因积碳而损坏。 极热的进气会降低发动机性能。

空气质量 – 发动机可能会长时间曝露于肮脏或多尘环境,除非设备得到定期清洁。 泥浆、污垢和灰尘可能包裹部件。 保养可能非常困难。 堆积物可能含有腐蚀性化学品。

沉积 – 化合物、元素、腐蚀性化学制品和盐可能会损坏某些部件。

海拔高度 – 发动机在超过为其应用而预先设定的海拔 高度运行时可能会出现问题。 应该进行必要的调整。

不正确的操作程序

- 长时间在低怠速运行
- 频繁热停机
- 过负荷运行
- 过速运行
- 在预期应用范围之外运行

不正确的保养程序

- 延长保养周期
- 不使用推荐的燃油、润滑剂和冷却液/防冻液

i07941089	燃油系统粗滤器(油水分离器)滤芯 - 更换 86
保养周期表	燃油系统细滤清器 - 更换 87
	软管和卡箍 - 检查/更换89
需要时即进行的保养	每500个工作小时或每3个月的保养
蓄电池的回收	皮带 - 检查/调整/更换 67
蓄电池 - 更换	每 2500 个工时数
蓄电池或蓄电池电缆 - 断开 67	发动机气门间隙 - 检查
DEF 加注口滤网(与排放有关的部件)- 清洁 74	
柴油机排气处理液(与排放有关的部件)- 加注 77	每3000个工作小时或每3年的保养
发动机 - 清洁	冷却系统冷却液[柴油发动机防冻剂/冷却液(DEAC)] - 更换
发动机空气滤清器滤芯-更换 79	
发动机贮存程序 - 检查	每 4000 工作小时
燃油系统 - 充油85	空气压缩机 - 检查
燃油箱中的水和沉渣 - 排放	发动机安装支座 - 检查
散热器 - 清洁	起动马达 - 检查90
每天的保养	每5000工作小时
储气罐水和沉积物 - 排放66	ARD 火花塞(排放相关部件)- 清洁 65
冷却系统冷却液液位 - 检查 72	柴油机排气处理液滤清器(与排放有关的部件)- 更 换77
被驱动设备 - 检查78	柴油微粒滤清器(与排放有关的部件)- 清洁 78
发动机空气滤清器保养指示器 - 检查80	柴油机排气处理液喷射器(与排放有关的部件)- 更
发动机机油油位 - 检查	换
燃油系统粗滤器/油水分离器 - 放水 87	每6000个工作小时或3年
动力输出离合器 - 检查90	冷却系统长效冷却液(ELC)延长剂 - 添加 72
围绕检查90	每10000个工作小时的保养
每250个工作小时的保养	
发动机机油油样 - 采样	DEF 歧管滤清器(与排放有关的部件)- 更换 74
接地双头螺柱 - 检查/清洁/紧固	每 585000 L(154540 US gal)燃油
初次500工作小时	或每 10000 工作小时
发动机气门间隙 - 检查	大修考虑事项89
	每12000个工作小时数或每6年的保养
每500个工作小时的保养	冷却系统冷却液[长效冷却液(ELC)] - 更换 71
蓄电池电解液液位 - 检查 67	
皮带 – 检查/调整/更换 69	
冷却系统冷却液补充添加剂(SCA) - 测试/添加 73	

发动机机油和滤清器 - 更换 82

i07508570

ARD 火花塞(排放相关部件)-清洁

▲ 警告

空气压力会造成人身伤害。

不按下面的适当步骤进行操作会造成人身伤害。 使用 压缩空气时,戴防护面罩及穿防护服。

当空气喷嘴堵塞时, 清洁时使用的最大气压一定要降到 205 kPa (30 psi)。

注意

如果发动机正在运转或钥匙位于接通位置,后处理再生设备 (ARD) 塞将继续点火。维护 ARD 塞前,先把点火开关转到断开位置。

拆卸火花塞

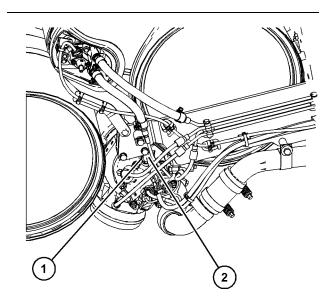


图 62

q06046854

典型示例

- (1) 火花塞
- (2) 配线线束
- 1. 从火花塞 (1) 上卸下导线线束 (2)。
- 2. 火花塞孔内可能集聚脏物。 彻底清除脏物。 使用 压缩空气。 清洁用的最高气压必须低于 205 kPa (30 psi)。 保证火花塞的周围清洁,无脏物和碎 屑。

- 3. 使用 22 mm (0.86 inch)22mm 火花塞套筒和扳钳 拧松火花塞。 拧松火花塞后,使用火花塞套筒手动 拆卸火花塞,以检测螺纹问题。 卸下火花塞后,检 查旧火花塞和密封垫。
- 4. 拆下火花塞后,通过在 ARD 燃烧盖的小孔中来回 拉动 T400005 塞孔刷清理 ARD 燃烧盖内的接地 探头。 该工具从火花塞座和螺纹上擦掉污物。 在 孔内来回拉动塞孔刷多次。

注:火花塞跌落后可能会损坏。 切勿安装掉落或者损坏的火花塞。

5. 使用非金属清理垫小心地清洁火花塞。 如果探头弯曲,更换火花塞。 不要使用丝锥。 丝锥会不必要地清除金属。 因此可能会剥伤螺纹,损坏燃烧总成。

安装火花塞

注:不要在火花塞上使用防粘结剂。 在火花塞的螺纹 和座区会传递大多数的热量。 必须与金属表面保持接 触,以传导需要的热量。

1. 确保火花塞清洁,无脏物和润滑油。

火花塞不要拧得过紧。 右侧,会造成壳体裂纹及密封垫损坏。 金属会变形,密封垫会损坏。 壳体可被拉长。 这样会使壳体与绝缘体间的密封松动,使燃烧气体的压力吹过密封。 会对发动机造成严重损坏。

使用适当的扭矩。

- 2. 用手安装火花塞 (1) ,直到火花塞接触 ARD。 将火 花塞拧紧至扭矩为 47 N·m (34 lb ft)
- 3. 连接导线线束 (2)。

i06245630

空气压缩机 - 检查 (如有配备)

▲ 警告

不要在未清除空气制动和辅助空气系统中的空气的情况下,从空压机调节器上断开空气管路。 未在拆卸空压机和/或空气管路之前清除空气制动和辅助空气系统中的空气可能导致人身伤害。

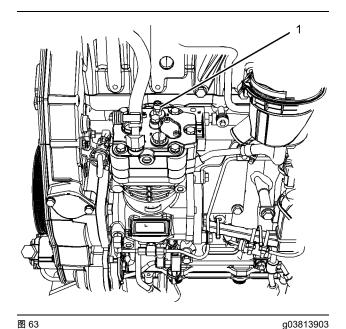


图 63

典型示例

(1) 压力安全阀

如果安装在空压机缸盖上的空气压缩机压力安全阀有 旁通压缩空气,空气系统可能存在故障,有可能是结 冰堵塞。 在此情况下,您的发动机可能没有足够的空 气供正常制动操作使用。

在压缩空气旁通的原因未查明和得到纠正前,不要操 作发动机。 不理会该警告可能引起财产损失、人身伤 害及操作员或在场其它人员的死亡。

压力安全阀的功能是在空气压缩机系统出故障时使空 气旁通流过。

空气压缩机压力安全阀在气压为 1723 kPa (250 psi) 时释放压力。 如果对空气压缩机压力安全阀进行排气,在空气压缩机的安全距离之内不得有人。 当发动机运转,且空气压缩机外露时所有人员也应远离空气压缩机。

请咨询当地 Perkins 经销商寻求帮助。

i02314821

储气罐水和沉积物 - 排放 (如有配备)

空气起动系统中有水和沉积物可能造成下列情况:

- 结冻
- 内部零件腐蚀
- 空气起动系统故障

打开排放阀时,应戴防护手套、防护面罩、穿防护服 <u>和</u>防护鞋。 压缩空气可能将碎片吹出并造成人身伤

- 1. 打开位于空气储气罐底部的放泄阀。 放掉水和沉积
- 2. 关闭放泄阀。
- 3. 检查供气压力。 空气起动马达要求空气压力至少为 620 kPa (90 psi), 以便正常工作。 空气压力最高 不得超过1550 kPa (225 psi)。 正常空气压力将是 758至965 kPa (110至140 psi)。

i08235338

蓄电池的回收

一定要回收蓄电池。决不要弃置蓄电池。一定要将用过的蓄电池送回到下列部门之一:

- 蓄电池供应商
- 指定的蓄电池回收点
- 蓄电池回收厂

i02128787

蓄电池 - 更换

蓄电池释放出可能会爆炸的可燃气体。 火花可能引起 此可燃气被点燃。 由此可能导致人身伤亡。

确保置于密闭处的蓄电池的适当通风。 遵循正确程序 以便帮助防止在蓄电池周围产生电弧和/或火花。 在 维护蓄电池时不要吸烟。

在拆卸蓄电池电缆或蓄电池之前,应先拆下蓄电池 盖。 进行任何维护之前,应先拆下蓄电池盖。

未拆下蓄电池盖的情况下就拆卸蓄电池电缆或蓄电池 可能会引发爆炸,导致人身伤害。

- 1. 把发动机起动开关转动停机(OFF)位置。 卸掉所有 电气负载。
- 2. 关掉所有蓄电池充电器。 断开所有蓄电池充电器。
- 3. 用负 "-" 极电缆把蓄电池的负 "-" 极接线柱与起动马 达的负 "-" 极接线端子连接起来。 从蓄电池的负 "-" 极接线柱断开电缆。

4. 正 "+" 极电缆把蓄电池的正 "+" 极接线柱与起动马达的正 "+" 极接线端子连接起来。 从蓄电池的正 "+" 极接线柱断开电缆。

注:一定要回收蓄电池。 决不要弃置蓄电池。 把废旧蓄电池送到适当的回收场所。

- 5. 拆下废旧蓄电池。
- 6. 安装新蓄电池。

注:安装电缆之前,确保发动机起动开关在停机(OFF) 位置。

- **7.** 把来自起动马达正极接线端子的电缆连接到蓄电池 的正 "+" 接线柱。
- 8. 把来自起动马达负 "-" 极接线端子的电缆连接到蓄电池的负 "-" 极接线柱。

i03018722

蓄电池电解液液位 - 检查

当发动机长时间不运转或只是短时间运转时,蓄电池 可能未充足电。 确保蓄电池充足电以防止蓄电池结 冻。 如果蓄电池经正确充电,发动机运转时电流表读 数应快接近零位。

▲ 警告

所有铅酸蓄电池含有硫酸,硫酸能烧蚀皮肤和腐蚀衣服。 对蓄电池作业或在其附近工作时,必须戴防护面罩和穿防护服。

1. 拆下加注口盖。 蓄电池的电解液位保持在蓄电池的 "满 (FULL)" 标记位置。

如果需要加水,要使用蒸馏水。 如果没有蒸馏水,可使用低矿物质的清洁水。 不要使用人工软化水。

- 2. 使用适当的蓄电池测试仪检查电解液的状况。
- 3. 安装盖。
- 4. 保持蓄电池清洁。

用以下清洁剂清洗蓄电池壳:

- 使用 0.1 kg (0.2 lb)碳酸氢钠与 1 L (1 qt) 清水的溶液。
- 使用氢氧化铵溶液。

用清洁水彻底冲洗蓄电池壳。

i06245652

蓄电池或蓄电池电缆 - 断开

▲ 警告

在拆卸蓄电池电缆或蓄电池之前,应先拆下蓄电池 盖。 进行任何维护之前,应先拆下蓄电池盖。

未拆下蓄电池盖的情况下就拆卸蓄电池电缆或蓄电池 可能会引发爆炸,导致人身伤害。

将起动开关转到断开位置。 把点火开关(如有配备)转到断开位置,取下钥匙和关掉所有电气负载。

注:发动机熄火后,等待 2 分钟再断开电源,以便排空 柴油机排气处理液管路。

- 2. 断开蓄电池负极接线端。 确保电缆无法与端子接触。 当使用四个 12 伏蓄电池时,必须断开 2 个负极连接。
- 3. 断开正极连接。
- 4. 清洁所有断开的接头和蓄电池端子。
- 5. 用细砂纸清洁端子和电缆卡箍。清洁这些项目,直到其表面光亮为止。不要过度去除材料。过度去除材料会导致卡箍装配不当。使用合适的硅油或凡士林涂沫卡箍和端子表面。
- 6. 为了防止意外起动,将电缆线头用胶带包上。
- 7. 进行必要的系统修理。
- 8. 要连接蓄电池,需先连接正极接头,然后再接负极 接头。

i07201954

皮带 - 检查/调整/更换(V 形皮带概述)

本章节内的信息可用作皮带张力调整指南。 如果原始设备制造商 (OEM) 安装了输送带系统,则参考 OEM 信息。

确保执行保养或者维修时发动机无法起动。

交流发电机皮带和风扇皮带

检查

皮带松造成的滑动会降低被驱动部件的效率。 皮带松引起的振动可能造成下列部件的不必要磨损:

- 皮带
- 皮带轮

轴承

如果皮带太紧,会对部件施加不必要的应力,缩短部 件使用寿命。

为使发动机性能最大化,检查皮带是否磨损开裂和断 裂。 更换磨损或损坏的皮带。

调整

本章节讲述了用于调节交流发电机皮带张力的两种不 同类型的调节器。

链节调节器

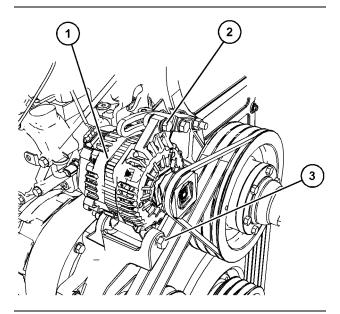


图 64 典型示例 g06108813

- 1. 拆下护罩,参见 OEM 了解正确步骤。
- 2. 松开螺母和螺栓 (2) 以及螺母和螺栓 (3)。
- **3.** 调整交流发电机 (1) ,以获得正确的皮带张力。 使用合适的皮带张力工具设置皮带张力。
- 4. 紧固螺母和螺栓 (2) 以及螺母和螺栓 (3)。
- 5. 拧紧螺母和螺栓 (2) 至扭矩为 47 N·m (34 lb ft)。 拧紧螺母和螺栓 (3) 至扭矩为 70 N·m (51 lb ft)。

连杆调节器

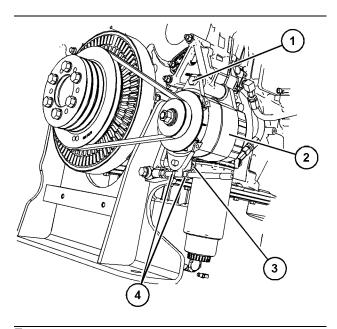


图 65 典型示例 g06109400

- 1. 拆下皮带护罩,参见 OEM 了解正确步骤。
- 2. 松开螺母和螺栓 (1) 以及螺栓 (3)。
- **3.** 松开其中一个螺母 (4) 。 调整螺母 (4) 将移动交流 发电机 (2) 。
- **4.** 调整螺母 (4) ,以获得正确的皮带张力。 使用合适的皮带张力工具设置皮带张力。
- **5.** 根据正确的张力设置,拧紧螺母和螺栓 (1) 以及螺栓 (3)。
- 6. 拧紧螺母和螺栓 (1) 至扭矩为 105 N·m (77 lb ft)。
- 7. 将螺栓 (3) 拧紧至扭矩为 105 N·m (77 lb ft)。
- 8. 拧紧螺母 (4) 至扭矩为 105 N·m (77 lb ft)。
- 重新安装皮带护罩,参见 OEM 了解正确步骤。
 如果安装新传动皮带,应在发动机以额定转速运转30 分钟后再次检查皮带张紧度。

风扇皮带调整

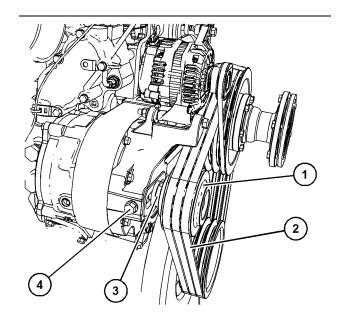


图 66 典型示例 g06109234

- 1. 拆下皮带护罩,参见 OEM 了解正确步骤。
- 2. 松开锁紧螺母 (3)。 逆时针转动螺母 (4) 将移动皮 带轮 (1) 和松驰皮带 (2) 。 顺时针转动螺母 (4) 将 移动皮带轮 (1) 和张紧皮带 (2)。
- 3. 根据正确的张力设置拧紧螺母 (3)。 拧紧螺母 (3) 至扭矩为 102 N·m (75 lb ft)。
- 4. 使用合适的皮带张力工具设置皮带张力。
- 5. 重新安装皮带护罩,参见 OEM 了解正确步骤。 如果安装新传动皮带,应在发动机以额定转速运转 30 分钟后再次检查皮带张紧度。

更换

要更换交流发电机皮带,请参见拆解和装配, 交流发 电机皮带 - 拆卸和安装。

要更换风扇皮带,参见拆解和装配, V 形皮带- 拆卸和安装。

皮带张紧度

表 16

交流发电机和风扇皮带张力				
皮带类型	皮带尺寸	新皮带张 力	使用时间 不足 10 小 时的旧皮 带张力	重置皮带 张力
交流发电 机皮带	10 mm (0.39370 inch)	645 ± 44 N (145 ± 10 lb)	512 ± 44 N (115 ± 10. lb)	311 ± 44 N (70 ± 10 lb)
风扇皮带	5V/5VX 15 mm (0.59055 inch)	801 ± 44 N (180 ± 10 lb)	645 ± 44 N (145 ± 10 lb)	378 ± 44 N (85 ± 10 lb)

注:切勿在皮带温度高时设置皮带张力。

i07201958

皮带 - 检查/调整/更换 (聚乙烯 V 形皮带概述)

510

聚乙烯 V 形皮带也称为微型楔带。

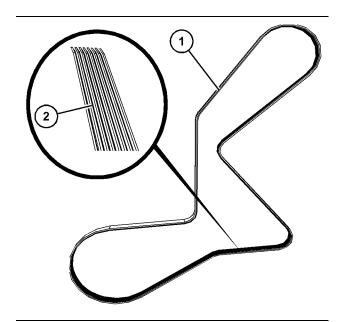


图 67 典型示例

(1) 聚乙烯 V 形皮带 (2) 皮带楔

g06177182

检查

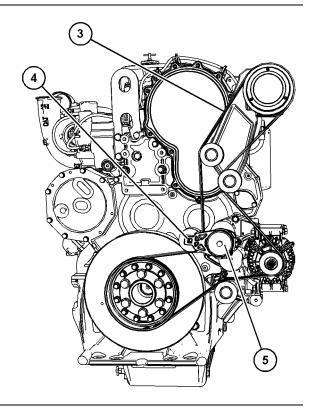


图 68 典型示例 g06177194

为获得发动机的最高性能,应检查传动皮带是否磨损 和断裂。 如果皮带磨损或损坏,更换皮带。

• 检查皮带有无裂纹、裂口、磨光、油脂、线芯错位以及液体污染迹象。

如果出现以下情况,必须更换皮带。

- 至少两个皮带肋上有裂纹。
- 在一个肋上有一段以上的最大长度为 50.8 mm (2 inch) 的皮带错位

更换

- **1.** 拆下皮带前,确保了解从曲轴到其他皮带轮和惰轮 的皮带铺设。
- **2.** 张紧器 (5) 有一个方驱动头 (2) ,可用于卸下皮带 张力,以便拆下皮带。
- **3.** 拆下皮带时,确保支撑皮带的任何惰轮或者皮带轮 干净且转动自如。

有关更换皮带的详细说明,参考拆解和装配,交流发电机皮带-拆卸和安装。

i0720197

冷却系统冷却液[柴油发动机防冻 剂/冷却液(DEAC)] - 更换

如果有以下情况发生,在推荐的保养周期之前,清洁 和冲刷冷却系统:

- 发动机频繁过热。
- 观察到起泡沫。
- 机油已进入冷却系统,冷却液被污染。
- 柴油已进入冷却系统,冷却液被污染。

注:冷却系统放水后,检查水泵和水温调节器。

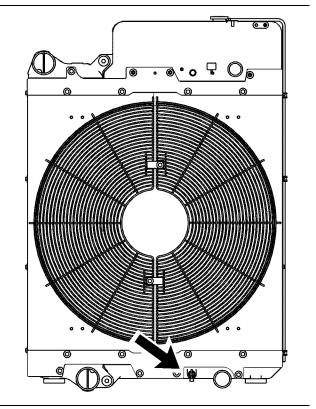


图 69

g02351659

冷却系统排放阀朝向散热器底部。

保养章节

排放

加压的系统: 热的冷却液能造成严重的烫伤。 在发动机停机,等待冷却系统部件冷却下来后再打开冷却系统加注口盖。 缓慢松开冷却系统加注口盖,以释放掉所有压力。

- **1.** 发动机停机,使发动机冷却下来。 缓慢地松开冷却 系统加注口盖,以释放掉所有压力。 拆下冷却系统 加注口盖。
- 2. 打开冷却系统排放阀。 使冷却液放出。

冲刷

- 1. 用清洁水冲刷冷却系统以便清除所有碎屑。
- 2. 关闭排放阀。

向冷却系统加注时, 速度不要快于每分钟19升(L) (5美加仑(US gal)), 以避免发生气阻。

- 3. 使用清洁的水加注冷却系统并操作发动机,确保节 温器开启。 发动机停机,使发动机冷却下来。
- 4. 排放冷却系统。
- 5. 使用清洁的水加注冷却系统并操作发动机,直到发 动机预热至 82°C (180°F)。
- 6. 发动机停机,使发动机冷却下来。 排放冷却系统。

填方

向冷却系统加注时,速度不要快于每分钟19升(L) (5美加仑(US gal)),以避免发生气阻。

- 1. 给冷却系统加注冷却液/防冻剂。 请参阅操作和保 养手册,油液建议主题,了解冷却系统技术规格的 详细信息。 尚不要安装冷却系统加注口盖。
- 2. 起动发动机并在低怠速下运转。 将发动机转速提高 到1500rpm。 在高怠速运转发动机 1 分钟以净化缸 体空穴中的空气。 停止发动机。
- 3. 检查冷却液液位。 将冷却液液位保持在加注管底部 以下 13 mm (0.5 inch) 以内。 将冷却液液位保持 在观察窗上适当的液位 13 mm (0.5 inch) 以内。

- 4. 清洗冷却系统加注口盖。 检查冷却系统加注口盖上 的垫圈。 如果冷却系统加注口盖上的垫圈损坏,废 弃原来的冷却系统加注口盖并安装新的加注口盖。 如果冷却系统加注口盖上的垫圈未损坏,进行加压 测试。 冷却系统加注口盖的正确压力刻印在冷却系 统加注口盖的表面。 如果冷却系统加注口盖无法保 持正确压力,安装新的冷却系统加注口盖。
- 5. 起动发动机,检查冷却系统是否泄漏以及是否达到 正确工作温度。

i07201963

冷却系统冷却液[长效冷却液 (ELC)] - 更换

注意
Perkins ELC 必须与延长剂一起使用,以实现 12000小时工作时间。 有关合适的延长剂的更多信息,请联系您的 Perkins 经销商。

如果有以下情况发生,在推荐的保养周期之前,清洁 和冲刷冷却系统:

- 发动机频繁过热。
- 观察到起泡沫。
- 机油已进入冷却系统,冷却液被污染。
- 柴油已进入冷却系统,冷却液被污染。

注:排放和更换长效冷却液(ELC)后,清洁冷却系统 时只需用净水。

注:冷却系统放水后,检查水泵和水温调节器。

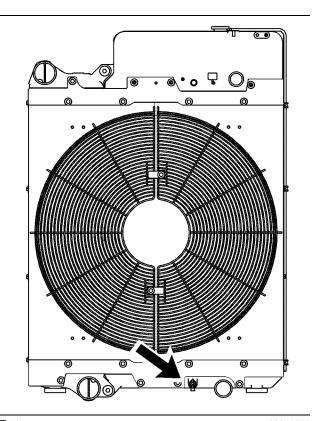


图 70

g02351659

排放

加压的系统: 热的冷却液能造成严重的烫伤。 动机停机,等待冷却系统部件冷却下来后再打开 系统加注口盖。 缓慢松开冷却系统加注口盖,以 加抗原机。等待系统加注口盖。 系统加注口盖。 掉所有压力。

- 1. 发动机停机,使发动机冷却下来。 缓慢地松开冷却 系统加注口盖,以释放掉所有压力。 拆下冷却系统 加注口盖。
- 2. 打开冷却系统排放阀。 使冷却液放出。

冲刷

- 1. 用清洁的水冲洗冷却系统,以清除所有碎屑。
- 2. 关闭排放阀。

注意 向冷却系统加注时,速度不要快于每分钟19升(L) (5美加仑(US gal)),以避免发生气阻。

3. 用清洁的水加注冷却系统。 安装冷却系统加注口 盖。

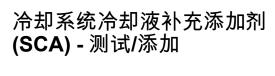
- 4. 起动并在低怠速运转发动机,直到温度达到 49 °C to 66 °C (120 °F to 150 °F).
- 5. 发动机停机,使发动机冷却下来。 缓慢地松开冷却 系统加注口盖,以释放掉所有压力。 拆下冷却系统 加注口盖。 打开排放阀。 使水放出。 用清洁的水 冲洗冷却系统。 关闭排放阀。

填方

注意 向冷却系统加注时,速度不要快于每分钟19升(L) (5美加仑(US gal)),以避免发生气阻。

- 1. 用长效冷却液 (ELC)加注冷却系统。 请参阅此操作 和保养手册, 油液建议以了解冷却系统技术规格的 详细信息。尚不要安装冷却系统加注口盖。
- 2. 起动发动机并在低怠速下运转。 提高发动机转速至 高怠速。 在高怠速运转发动机 1 分钟以净化缸体 空穴中的空气。 停止发动机。
- 3. 检查冷却液液位。 将冷却液液位保持在加注管底部 以下 13 mm (0.5 inch) 以内。 将冷却液液位保持 在观察窗上适当的液位 13 mm (0.5 inch) 以内。
- 4. 清洗冷却系统加注口盖。 检查冷却系统加注口盖上 的垫圈。 如果密封垫没有损坏,则仅安装使用的加 注口盖。 测试盖的压力是否正确。 冷却系统加注 口盖的正确压力刻印在冷却系统加注口盖的表面。 如果冷却系统加注口盖无法保持正确压力,安装新 的冷却系统加注口盖。
- 5. 起动发动机,检查冷却系统是否泄漏以及是否达到 正确工作温度。

i07201952


冷却系统长效冷却液(ELC)延长剂 - 添加

为确保 Perkins ELC 实现 12000 小时的运行,必须运行了 6000 小时后加配延长剂。 有关适用的延长剂,请联系您的 Perkins 分销商。

i07201972

冷却系统冷却液液位 - 检查

发动机停机并冷却后检查冷却液液位。

▲ 警告

冷却系统的冷却液添加剂含碱。 要避免与皮肤和眼睛接触,以免造成人身伤害。 不要饮用冷却液添加剂。

测量补充用冷却液添加剂(SCA)浓度

市售重载作业冷却液/防冻液和补充用冷却液添加剂(SCA)

注意 不要超过推荐的6%的补充用冷却液添加剂的浓度。

使用冷却液调节剂测试套件来检查补充用冷却液添加剂(SCA)的浓度。

必要时可添加补充用冷却液添加剂 (**SCA**)

不要超过补充用冷却液添加剂浓度的推荐量。 补充用冷却液添加剂浓度的推荐量。 补充用冷却液添加剂过浓会在冷却系统高温表面形成沉积物,降低发动机的传热特性。 降低传热会引起气缸盖或其它高温零部件积裂。 SCA浓度过高损。 切勿同时。据"等堵塞、过热和/或加速水泵密封磨损备)。 同时惊用液态SCA和旋装式添加剂罐(如有配备)。 同时惊用这些添加剂可能导致补充的冷却液添加剂浓度超出建议最大值。

▲ 警告

加压的系统: 热的冷却液能造成严重的烫伤。 在发动机停机,等待冷却系统部件冷却下来后再打开冷却系统加注口盖。 缓慢松开冷却系统加注口盖,以释放掉所有压力。

______注意 在对发动机冷却系统进行任何维护或修理时,必须将 发动机置于水平地面上执行相应的操作程序。 这样可 以精确地检查冷却液液位。 同时还有助于避免将气锁 引入冷却液系统的风险。

- **1.** 缓慢地松开冷却系统加注口盖,以便释放压力。 拆下冷却系统加注口盖。
- 注:务必根据当地法规弃置排放的液体。
- 2. 如果有必要,将一些冷却系统的冷却液放到合适的容器中,给额外增加的 SCA 留些空间。

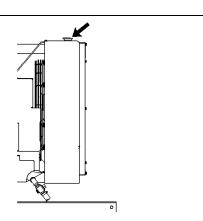


图71 冷却系统加注口盖

▲ 警告

加压的系统: 热的冷却液能造成严重的烫伤。 在发动机停机,等待冷却系统部件冷却下来后再打开冷却系统加注口盖。 缓慢松开冷却系统加注口盖,以释放掉所有压力。

- 1. 慢慢拆下冷却系统加注口盖,以释放压力。
- 2. 保持冷却液液位在加注管底部的 13 mm (0.5 inch) 范围内。 如果发动机配备了观察孔,保持冷却液液 位在观察孔内适当的水平。

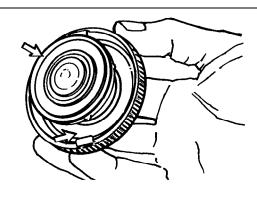


图 72 典型加注口盖密封垫

g00103639

g00285520

- 3. 清洁冷却系统加注口盖,检查加注口盖密封垫的状况。 如果加注口盖密封垫损坏,更换冷却系统加注口盖。 重新安装冷却系统加注口盖。
- 4. 检查冷却系统有无泄漏。

- 3. 添加正常数量的补充用冷却液添加剂(SCA)。 更 多有关 SCA 要求的信息,请参阅操作和保养手册, 加注容量和建议。
- 4. 清洁冷却系统加注口盖,检查垫片。 如果垫片损坏, 丢弃旧的加注口盖,安装新的加注口盖。 如果垫片没有损害,使用适当的加压泵来加压测试加注口盖。 正确压力压印在加注口盖的正面。 如果加注口盖无法保持正确的压力,则安装新的加注口盖。

DEF 加注口滤网(与排放有关的 部件)- 清洁

注意 确保在进行任何维护和修理工作之前关闭发动机。

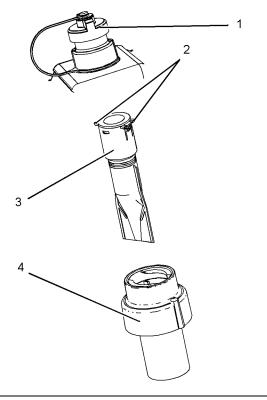


图 73 典型示例 q03725939

- 1. 确保柴油机排气处理液 (DEF) 箱盖周围区域干净。 拆下盖 (1)。
- 2. 使用适当的工具,按下舌片 (2) 以便释放舌片。 当 舌片释放时,将滤清器滤网 (3) 从 DEF 箱管颈接头 (4) 上拆下。

- 3. 可以在干净的水中清洁滤清器滤网,并用压缩空气吹干。参考本操作和保养手册, 一般危险事项,了解使用压缩空气的信息。
- 4. 如果无法清洁滤清器滤网或者滤清器滤网损坏,必须将其更换。
- 5. 将滤清器滤网 (3) 安装到 DEF 箱管颈接头 (4) 上。 将滤清器滤网按压到管颈接头上,确保舌片 (2) 正 确定位。 安装盖 (1)。

i07508564

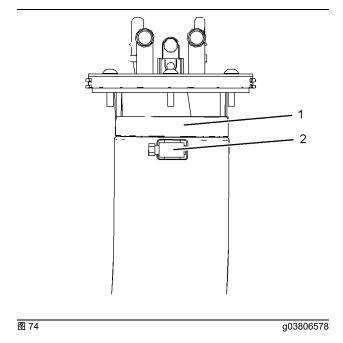
DEF 歧管滤清器(与排放有关的 部件)- 更换

注意 确保在进行任何维护和修理工作之前关闭发动机。

注意

必须小心操作,确保产品性能检查、保养、测试、调整和维修期间不会漏掉系统的柴油机排气处理液(DEF)。在打开任何舱室或拆卸任何含有油液的部件前,请准备好盛接液体用的适当容器。

按照本地法规和要求处置所有油液。


执行任何保养或者维修前,确保 DEF 歧管周围区域 未受到污染。

您的机型上可以安装两种不同设计的歧管。

类型1歧管

1. 拆下歧管,请参阅拆解和装配, 歧管 (DEF 加热器)-拆卸和安装,了解正确步骤。

保养章节

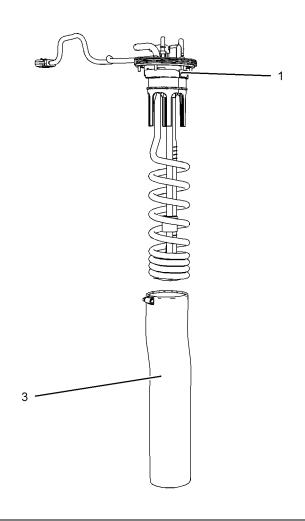


图 75 g03806580

- 2. 将带夹 (2) 从滤清器底座 (1) 上拆下。
- 3. 将滤清器 (3) 从滤清器底座 (1) 上拆下。

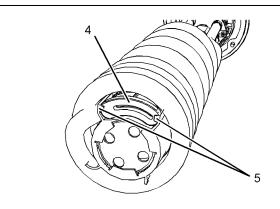


图 76 g03806581

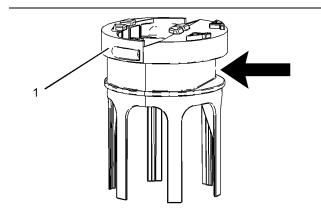


图 77 g03806583

- **4.** 拉出舌片 (5),拆下集管盘管底部的吸油滤清器 (4)。 用新的吸油滤清器进行更换。
- **5.** 安装新滤清器,将滤清器穿过歧管盘管一直拉到组 装的滤清器底座的底部。
- 6. 确保带夹如图 77 所示对准滤清器底座的平整部位。 将带夹紧固至 4.5 ± 0.7 N·m (40 ± 6 lb in) (1)。 拧紧带夹时,确保滤清器没有褶皱。
- 7. 安装歧管,请参阅拆解和装配, 歧管 (DEF 加热器) 拆卸和安装,了解正确步骤。

类型2歧管

要想从 DEF 箱上拆下 DEF 歧管和软管连接,请参阅拆解和装配, 歧管 (DEF 加热器) - 拆卸和安装。

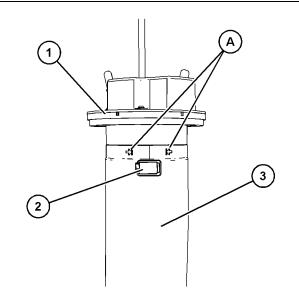


图 78 g06159487

- **1.** 记下卡箍 (2) 的位置。 卡箍 (2) 必须在标记的位置 (A) 之间。
- 2. 松开卡箍 (2) ,将外侧滤清器 (3) 从 DEF 箱集管 (1) 上拆下并废弃外侧滤清器 (3) 。

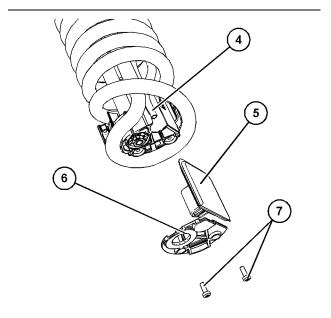


图 79 g06159580

- 3. 拆下螺钉 (7) 和挡板 (6)。
- **4.** 将 DEF 滤清器 (5) 从吸油管 (4) 上拆下并废弃旧的滤清器 (5)。
- 5. 将新的滤清器 (5) 安装到吸油管 (4) 上。
- 6. 安装挡板 (6) 和螺钉 (7) 。 拧紧螺钉 (7) 至扭矩为 1.1 N·m (9.8 lb in)。

保养章节

- 7. 将新的外侧滤清器 (3) 安装到 DEF 箱集管 (1) 上。 确保卡箍(2)位于定位点(A)之间。
- 8. 将卡箍 (2) 拧紧至扭矩为 4.5 N·m (40 lb in)。
- 9. 安装 DEF 箱集管,请参考拆解和装配, 歧管 (DEF 加热器)-拆卸和安装。

i07508011

柴油机排气处理液(与排放有关 的部件)-加注

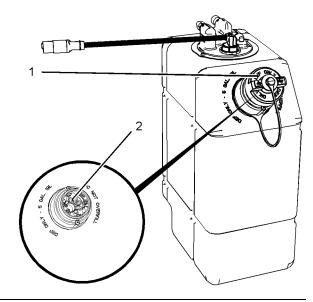


图 80 典型示例 q03714036

确保使用正确规格的柴油机排气处理液 (DEF)。 确保 DEF 的清洁度,参考本操作和保养手册, 油液建议, 了解更多信息。

分配 DEF 时请务必小心。 应立即清除溅溢。 擦干净所有表面并用水冲洗。

液体中的水份蒸发时,分离出的 DEF 将会结晶。 分离出的 DEF 将侵蚀油漆和金属。 如果分离出 DEF,用水清洗该部位。

当靠近最近曾运转的发动机分配 DEF 时,请务必小心。 热的部件上溅到 DEF 可能会引起氨蒸气释放。

确保开始作业前加满 DEF 箱。

1. 加注 DEF 箱前,确保已净化 DEF 管路。 发动机停 机后,净化 DEF 管路。 只有在净化 DEF 管路后才 可加注 DEF 箱。 有关 DEF 管路净化所需时间的更 多信息,参考本操作和保养手册,蓄电池断路开 关。

- 2. 确保 DEF 盖 (1) 和周围区域干净且没有污垢。 确 保加注储液箱时使用的所有设备均干净,无污垢。
- 3. 从储液箱上拆下 DEF 盖。
- 4. 向储液箱中加注所需的 DEF 量。 确保加注过程中 储液箱内未进入污垢。 不要加注过量。 DEF 需要 一定的空间进行膨胀。

注:务必在水平地面上加注 DEF 箱。 气温低可能会影 响 DEF,参考本操作和保养手册, 寒冷天气下的柴油 机排气处理液,了解更多信息。

5. DEF 箱 (2) 上的开口直径为特殊直径。 确保加注 DEF 箱时使用正确喷嘴。

注:DEF 油位表上的按键上将显示上次已知的 DEF 液 位,并将转变为新的 DEF 液位值。

6. 安装 DEF 盖。 目视检查 DEF 箱是否泄漏。

i07508565

柴油机排气处理液滤清器(与排 放有关的部件)-更换

柴油机排气处理液 (DEF)

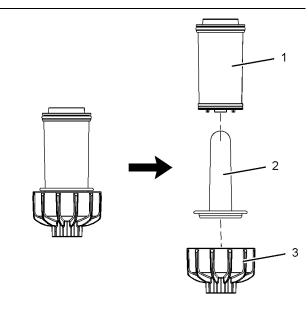


图 81 典型示例 g03332612

柴油机排气处理液喷射器(与排放有关的部件)- 更换

不正确处理化学用品会导致个人受伤。

确保您使用了本作业要求的必需防护用品。

确保阅读并理解所使用的任何化学用品的标签和材料 安全数据表上所述的所有说明和危险。

遵循化学用品制造商建议的有关化学用品搬运、储存 和废弃的所有安全注意事项。

注意 确保在进行任何维护和修理工作之前关闭发动机。

- 1. 使用 27mm 双内六角套筒拆下 DEF 滤清器盖 (3)
- 2. 将橡胶锥形镶圈 (2) 从 DEF 滤清器 (1) 上拆下。

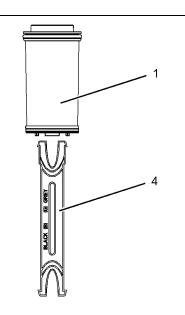


图 82

q03332637

典型示例

3. 将 DEF 滤清器拆卸工具 (4) 插入 DEF 滤清器 (1) 然后拆下 DEF 滤清器 (1)。

注:拆卸时,避免扭曲 DEF 滤清器 (1)。 扭曲可能会 导致撕裂。

- 4. 清洁滤清器壳体周围的区域。
- 5. 使用柴油机排气处理液或蒸馏水润滑新 DEF 滤清 器 (1) 的密封件。
- 6. 安装新 DEF 滤清器 (1) 和橡胶锥形镶圈。

注:安装时,避免扭曲 DEF 滤清器 (1)。 扭曲可能会 导致撕裂。

7. 安装盖 (3)。 将盖拧紧至扭矩 20 N·m (177 lb in)。

i07508568

柴油机排气处理液喷射器(与排 放有关的部件)-更换

图 83

g06043006

典型示例

1. 必须将柴油机排气处理液 (DEF) 喷射器 (2) 从后处 理再生设备 (1) 的本体上拆下并安装新的 DEF 喷射 器。 更换 DEF 喷射器时需要拆下 DEF 管路、冷却 液管路和电气连接。 有关更多信息,请参考拆解和 组装, DEF 喷射器和安装件的拆卸和安装。

i07508573

柴油微粒滤清器(与排放有关的 部件)-清洁

需要清洁可用选装件的柴油微粒滤清器时,请咨询您 的 Perkins 经销商。

需要重置电子控制模块内的灰分监控系统。

i04651989

被驱动设备 - 检查

更多有关下列针对驱动设备的保养建议的资料,请参 阅原始设备制造商 (OEM) 的技术参数。

- 检查
- 调整

- 润滑系统
- 其它保养建议

进行所有OEM建议进行的针对驱动设备的保养。

i07941096

发动机 - 清洁

高电压能造成人身伤害或死亡。

潮湿可能产生导电回路。

保证电气系统断电。 锁定起动控制装置,并在控制装置上贴上 "不准操作" 的标签。

注意 积聚在发动机上的润滑脂和机油有失火危险。 保持发 动机清洁。 只要有相当数量的碎屑和溅溢的液体积聚 在发动机上,就要清除掉。

建议进行发动机定期清洁。 蒸汽清洁发动机将去除积聚的机油和润滑脂。 清洁的发动机有以下好处:

- 容易检查到油液渗漏的地方
- 最大的热传递特性
- 保养方便

注:清洁发动机时必须多加小心以便防止过多的水损坏 电气部件。 高压清洗机或蒸汽清洁器不得对准任何电 气接头或接头后部连接电缆的接头处。 避免洗及诸如 交流发电机、起动马达和 ECM 等电气部件。 使喷油 泵远离用干清洗发动机的液体。

清洁发动机期间,务必要注意不要拆下安全标签、排 放标签和所有其他信息标签。

后处理

发动机清洁过程中,确保水或清洁液无法进入后处理 系统。 如果清洁液进入后处理系统,可能出现损坏。

i07201964

发动机空气滤清器滤芯-更换

注意 未安装空气滤清器滤芯切勿运转发动机。 空气滤清滤芯损坏时也决不能运转发动机。 不要使用褶纸、圈或密封件损坏的滤芯。 污物进入发动机会造成发机零部件的早期磨损和损坏。 空气滤清器滤芯有助防止空气中的碎屑进入进气口。

执行任何保养或维修前,确保发动机无法起动。

维修空气滤清器滤芯

注:空气滤清器系统可能不是 Perkins 提供的。 下列步 骤适用于典型的空气滤清器系统。 请参阅 OEM 信息 以了解正确的程序。

如果空气滤清器滤芯堵塞,空气就可能将空气滤清器 滤芯材料裂开。 未经过滤的空气将急剧加速发动机内 部的磨损。 请参阅 OEM 信息以了解哪些空气滤清器 滤芯适合您的应用。

- 每天检查空气滤清器维修指示器。
- 每天检查预滤器(如果配备)和灰尘杯有无脏物和 碎屑沉积。 根据需要清除一切脏物和碎屑。
- 发动机在多尘的环境下工作时,可能需要对空气滤 清器滤芯进行更为频繁的保养。

用新的空气滤清器滤芯更换脏污的空气滤清器滤芯。 安装前,应彻底检查空气滤清器滤芯的过滤材料有无 破裂和/或孔洞。 检查空气滤清器滤芯的垫片或密封 件有无损坏。 保持有适当数量的空气滤清器滤芯配件 以供更换之用。

双滤芯空气滤清器

双滤芯空气滤清器包括空气粗滤器滤芯和空气细滤器 滤芯。

当发动机在多尘或肮脏的环境下运行时,空气滤清器 滤芯可能需要更频繁的更换。

如果配备,执行空气滤清器滤芯保养前,先对预滤器 或者灰尘杯进行保养。

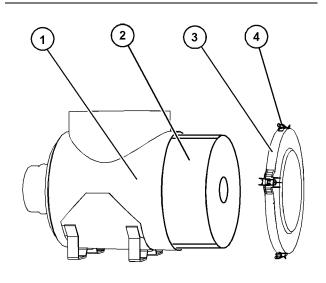


图 84 典型示例 注:空气滤清器滤芯的更换过程中切勿使污垢进入空气 系统。

1. 拆下端盖 (3) 之前,清洁空气滤清器的外壳。

注:拆卸前,检查端盖 (3) 的方位。 有些空气滤清器的端盖必须正确安装在对准位置。

- 2. 松开卡夹 (4) ,然后将端盖 (3) 从空气滤清器体 (1) 上拆下。
- 3. 拆下空气粗滤器滤芯 (2) ,然后从空气滤清器体 (1) 上拆下空气细滤器滤芯(未显示)。 确保空气滤清 器的内体清洁无污垢。 确保空气滤清器盖 (3) 的内 部清洁无污垢。
- **4.** 安装新的空气细滤器滤芯(未显示)。 安装新的空 气粗滤器滤芯 (2),然后安装端盖 (3)。 确保卡夹 (4) 牢固定位。

i06136113

发动机空气滤清器保养指示器 -检查 (如有配备)

某些发动机可能装有不同的维修指示器。

某些发动机配备进气压力差压表。 进气压力差压表显示空气滤清器滤芯之前和之后测量的压力差。 空气滤清器滤芯变脏时,压差上升。 如果您的发动机配备了不同类型的维修指示器,则应遵循 OEM 的建议,以便维修空气滤清器的维修指示器。

维修指示器可能安装在空气滤清器壳体的清洁侧或远 程位置。

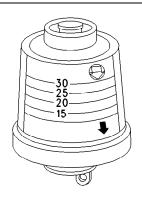


图 85

g00103777

典型维修指示器

观察维修指示器。 发生以下一种情况时,应对空气滤 清器滤芯进行清洁或更换:

- 黄色膜片进入红色区域。
- 红色柱塞锁定在可见位置。

测试保养指示器

维修指示器是重要的仪器。

- 检查复位是否容易。维修指示器应在少于3次按 压后复位。
- 当发动机满载全速运转时,检查维修指示器芯的移动。 芯应大致锁定在可以达到的最大真空位置。

如果维修指示器不能轻易复位或芯没有锁定在最大真空位置,应更换维修指示器。 如果新的维修指示器将不能复位,则维修指示器的安装孔可能堵塞。

如有必要,在恶劣脏污环境下更频繁的更换维修指示器。 不管运转情况如何,每年都要更换维修指示器。 发动机大修和更换主要发动机部件时,更换维修指示器。 器。

注:安装新的维修指示器时,拧得过紧可能使维修指示器顶部开裂。 拧紧维修指示器至扭矩为 2 N·m (18 lb in)。

i07941098

发动机安装支座 - 检查

注:Perkins 可能不提供发动机支架。 有关发动机支架 和正确的螺栓扭矩的更多详情,请参阅原始设备制造 商 (OEM) 信息。

检查发动机安装基座是否老化,螺栓扭矩是否正确。 发动机振动过大可能由以下情况引起:

- 发动机安装不当
- 发动机安装件老化
- 发动机支架松动

应更换有老化迹象的发动机安装件。 有关推荐的扭矩,请参阅 OEM 信息。

当发动机支架由 Perkins 提供时,将在发动机的拆解 和装配手册中提供保养步骤。

i07201981

发动机机油油位 - 检查

▲ 警告

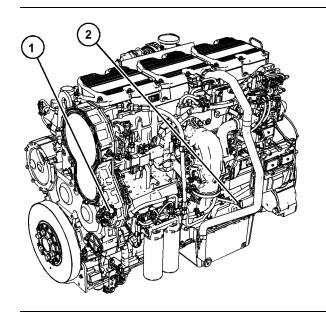


图 86

g06131517

典型示例

- (1) 机油加注口盖
- (2) 机油油位计(油尺)

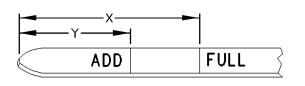


图 87

a00110310

油尺的部分视图

- (Y) "加" 标记
- (X) "满"标记

注意 在发动机停机时进行该保养。

注意 如果曲轴箱中的机油量超过机油油位计(油尺)上的 "满 (FULL)"标记,发动机就可能会损坏。

曲轴箱注油过量能使曲轴浸在机油中。 这将降低发出的功率,还迫使空气泡进入机油中。这些气泡(泡沫)会造成下列问题:降低机油的润滑能力,降低机油压力,冷却不充分,机油从曲轴箱呼吸器处涌出 and 更多的机油消耗量。

油的过度消耗将在活塞上和燃烧室中形成积碳。燃室中的积碳会导致下列问题: 气门形成冲蚀槽, 活环后积碳堆积 and 缸套磨损。

如果机油油位高于油尺上的 "满(FULL)" 标记,立即放 掉一些机油。

- 1. 拆下油位表以检查发动机机油油位。 将油位保持在 油尺 (2) 上的 "加 (ADD) " 标记 (Y) 和 "满 (FULL)"标记(X)之间。 向曲轴箱加注加油时, 不要超过 "FULL (满)" 标记 (X)。
- 2. 如果需要加注发动机机油,拆下机油加注口盖进行 添加。
- 3. 如需选择正确类型的发动机油,请参阅操作和保养 手册.液体推荐。
- 4. 清洁并安装机油加注口盖。
- 5. 记下加注的机油量。 为了进行下一次机油采样和分 析,记录应包括自上一次采样后添加的总的机油 量。 记录该信息有助于提高最精确的机油分析。

i03616520

发动机机油油样 - 采样

为一种预防性维护保养程序,应定期检查发动机润油的状况。 珀金斯 提供取样阀作为选装件。 采样(如果配备)用于对发动机润滑油的常规采样。)液采样阀位于燃油滤清器盖上或位于缸体上。

珀金斯 推荐使用采样阀来获取油样。 使用采样阀时,油样质量和采样一致性较好。 采样阀的位置决定可以取得发动机正常运转时有压流动的油样。

获取采样与分析

油和热的部件可能会导致人员受伤。 不要让热的油 部件接触皮肤。

为帮助获得最精准的分析,请在抽取油样之前记录以 下信息:

- 取样日期
- 发动机型号
- 发动机编号
- 发动机的工时数
- 上次更换机油以来的累计工作小时数
- 上次更换机油以来的机油添加量

确保装油样的容器清洁干燥。 还要确保装油样的容器 贴有清晰标签。

为了确保油样能代表曲轴箱中的机油,要采集温热 的、充分混合的机油油样。

为了避免油样被污染,用来采样的工具和用品必须干 净。

可以检查油样以下几点: 机油质量, 机油中是否存在任何冷却液, 机油中是否存在任何黑色金属颗粒 和 机油中是否存在任何黑色金属颗粒 和 机

i07201982

发动机机油和滤清器 - 更换

▲ 警告

热油和热的部件可能会导致人员受伤。 不要让热的油 和部件接触皮肤。

机油和滤清器更换间隔

发动机机油和滤清器的标准更换周期为 500 小时。 有 多个其他因素可以改变 500 小时的发动机机油和滤清 器标准更换周期。

- 如果发动机采用发动机机油分析来确定机油和滤清器的更换周期。
- 发动机在恶劣使用环境/负载系数下运行。
- 不常运行发动机

请参考本操作和保养手册,繁重作业应用,了解有关缩短发动机机油和滤清器更换周期的更多信息。 针对繁重作业应用,推荐的机油和滤清器更换周期为 250小时。

如果在恶劣的使用条件下运行发动机,Perkins 建议 使用发动机油样。 请参考本操作和保养手册, 发动机 油样 - 获取,了解更多信息。

如果发动机在 12 个月内使用的时间不足 500 小时,则应每年执行一次发动机机油和滤清器更换。

排放发动机机油

注意 在检验、保养、测试、调整及维修产品时,务必留 心,确保液体盛装在容器中。 在打开任何腔室或拆解 任何储有液体的部件之前,要准备好用合适的容器收 集液体。

按照本地法规和指令处置所有液体。

注意

保持所有零件清洁无杂质。

杂质会造成快速磨损並縮短部件使用寿命。

不要在发动机处于冷态时排放发动机机油。 由于机油较冷,悬浮废物微粒沉淀在油底壳的底部。 废物颗粒不会随冷机油排出。 在发动机停机后排空油底壳。 在机油热的时候排空油底壳。 这种放油方法可使悬浮在机油中的废物微粒正常排放。

未能遵守本推荐步骤进行操作会造成废物微粒随新机 油在发动机润滑系统中再循环。

注:确保使用的容器足够大,以便盛放废机油。

待发动机在正常工作温度下运转后,使其停机。 采用 以下方法之一排放发动机油底壳:

- 如果发动机配备了排放阀,逆时针转动排放阀旋钮 以排放机油。 机油放净之后,顺时针旋转排放阀 旋钮以关闭排放阀。
- 如果发动机没有配备排放阀,拆下机油放油塞以排放机油。

机油排出后,应清洁放油塞。 如有必要,更换 O 形密封圈并安装塞。 将排放塞拧紧至 35 N·m (26 lb ft)。

更换机油滤清器

注意 珀金斯机油滤清器是按照珀金斯技术参数制造的。 使用非 Perkins 建议的机油滤清器可能会导致发动机轴承和曲轴严重损坏。 这些严重的发动机损坏由未经过滤的机油携带进入发动机润滑系统的大的废物颗粒引起的。 只能使用珀金斯推荐的机油滤清器。

1. 使用适当的工具拆下机油滤清器。

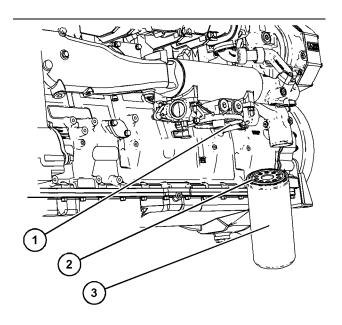


图 88 典型示例

g06131554

- 2. 清洁密封面 (1)。
- 3. 在新机油滤清器 (3) 的 O 型密封圈 (2) 上涂抹洁净的发动机机油。

注意 安装前,不要向机油滤清器中加注机油。 这些机油将 不被过滤并可能受到污染。 被污染的机油可能导致发 动机部件的加速磨损。 4. 安装新机油滤清器 (3)。 旋上机油滤清器,直到 O 形圈接触密封面 (1)。 然后,旋转机油滤清器 1 整 圈。 拆下容器并根据当地法规处理废机油。

加注油底壳

- 1. 拆下机油加注口盖。 有关合适机油的详细信息,请参阅操作和保养手册, 油液推荐规程。 在油底壳中加注适量的新发动机机油。 有关加注容量的详细信息,请参阅操作和保养手册, 加注容量。
- 2. 起动发动机,然后以低怠速运转发动机 2 分钟。 执 行本步骤,以确保润滑系统已加注机油滤清器。 检 查机油滤清器有无机油泄漏。
- 3. 关闭发动机并等待至少 10 分钟,以使机油流回油 底壳。
- **4.** 拆下油位表以检查油位。 将油位保持在机油油位表 侧面的 ADD(添加/最小)和 FULL(满/最大)标记之间。

i07201959

发动机贮存程序 - 检查

对于季节性使用车辆,换油周期可以延长为 12 个月,在一年中的停用贮存时间里,采用所需的贮存程序和启动程序。 如果还未达到操作和保养手册, 保养周期表中规定的下列几种换油周期,允许延长换油周期:

- 里程数
- 工作小时数
- 燃油消耗量

如果发动机不运转,或者没有计划使用发动机,应采取特殊的预防措施。如果发动机存放时间超过3个月,建议制订完整的防护程序。

特殊预防措施

您的 Perkins 经销商可以帮助您准备发动机,以延长存放时间。

某些机型上,发动机可以配备发动机停机延迟。停止发动机后,等待至少2分钟,然后再关闭蓄电池断路开关。发动机停机后,过快断开蓄电池电源会阻止净化 DEF 液体管路。 另外,在2分钟内发动机电子控制模块会激活以存储来自发动机和后处理传感器的信息。

必须遵循安装发动机机型的 OEM 存放条件。

发动机

- 1. 清洁发动机上的任何污垢、锈迹、润滑脂和机油。 检查外观。 用优质的油漆喷涂油漆损坏的区域。
- **2.** 去除空气滤清器上的污垢。 检查所有密封件、密封 垫和滤清器滤芯是否损坏。

- 3. 对操作和保养手册, 保养周期表中的所有点加注润滑剂。
- **4.** 排空曲轴箱机油。 替换曲轴箱机油并更换机油滤清器。 关于正确的步骤,请参阅操作和保养手册。
- 5. 向曲轴箱机油中添加挥发性阻蚀剂 (VCI) 油。 曲轴 箱机油中的 VCI 油容量应是百分之 3 至 4。

注:如果发动机曲轴箱已充满,应排出足够的发动机机油,以便添加混合液。

6. 拆下空气滤清器滤芯。 油门控制处于 FUEL OFF (断油)位置时,以起动转速转动发动机。 使用喷 头向空气进口或涡轮增压器进口中添加 50% VCI 油和 50% 发动机机油的混合液。

注:可拆下用于检查涡轮增压器增压压力的螺塞,以添加 VCI 油的混合液。 VCI 机油混合液的最低喷洒量是发动机排量的 5.5 mL per L (3 oz per 1000 cu in)。

- 7. 使用喷头向排气开孔中添加 50% VCI 油和 50% 曲轴箱机油的混合液。 机油混合液的最低喷洒量是发动机排量的 5.5 mL per L (3 oz per 1000 cu in)。密封排气管并密封消音器中的任何排放孔。
- 8. 从燃油细滤器壳体上去除燃油。 交替地排空和重新 安装旋入式燃油滤清器滤芯,以去除任何污垢和 水。 排空任何套筒计量燃油泵。

清洁粗滤器。 加注校正油或煤油。 安装燃油粗滤器并运行充油泵。 此步骤将向细滤器和发动机输送清洁机油。

打开燃油箱排放阀以排空燃油箱的任何水和污垢。 为了防止燃油箱生锈,按照 30 mL per 30 L (1 oz per 7.50 gal US) 的燃油箱容量比率喷射标定 数量的油液或煤油。 向燃油添加 0.15 mL per L (.02 oz per 1 gal US) 的市售生物杀虫剂,如 Biobor JF。

向燃油箱加油器管颈上的螺纹加注少量机油并安装 盖帽。 密封油箱的所有开口,以防止燃油挥发并作 为防腐剂。

9. 拆下燃油喷油器。 向每个油缸中加注 30 mL (1 oz) 的机油混合液(50% VCI 机油和 50% 发动机机油)。

使用杆或盘车工具缓慢转动发动机。 该步骤可将机油加在气缸壁上。 安装所有喷油器并拧紧至正确的 扭矩。 有关更多信息,请参阅拆解和装配手册。

- **10.** 将少量机油混合液(50% VCI 油和 50% 发动机机油)喷到以下部件上:飞轮、齿圈轮齿和起动机小齿轮。 安装盖以防止 VCI 油的蒸汽蒸发。
- **11.** 向所有活动的外部零件,如连杆螺纹、球形接头和连杆等加注大量多用途润滑脂。

注:安装所有盖。 确保在所有开口、空气进口、排气 开孔、飞轮壳、曲轴箱呼吸器和油尺管上安装胶带。

确保所有盖均是气密的和防风雨的。 请使用防水耐候性胶带如 Kendall No. 231 或同等产品。 不要使用大力贴。 大力贴仅会在短时间内起密封作用。

12. 大多数情况下,拆下电池是最佳程序。 作为替代方案,应将电池存放起来。 根据需要,定期对存放中的电池充电。

如果没有拆下电池,清洗干净电池顶部。 对电池进 行充电以获得 1.225 的比重。

断开蓄电池接线柱。用塑料盖罩住电池。

- 13. 从发动机上卸下驱动皮带
- **14.** 在发动机上装上防水盖。 确保发动机罩牢固。 盖 应足够松动,以使空气在发动机周围循环,以防由 于冷凝造成的损坏。
- 15. 在发动机上系上带有存放日期的标签。
- **16.** 每隔 2 个月或 3 个月拆下一次防水盖,以检查发动机有无腐蚀。 如果发动机有腐蚀迹象,则重复进行保护程序。

冷却液系统

存放前对冷却系统进行完全加注。

有关冷却液的更多资料,请参阅操作和保养手册,油液建议。

后处理

关闭蓄电池断路开关前,必须使发动机执行柴油机排气处理液 (DEF) 净化。 某些机型上,发动机可以配备发动机停机延迟。 发动机停机后等待 2 分钟,然后再断开蓄电池断路开关。

必须盖住后处理的排气出口。 为防止存储期间损坏排 气出口连接,CEM 的重量不得作用到排气出口上。

- 1. 确保发动机正常停机期间可净化 DEF。 切勿断开 蓄电池断路开关,钥匙关闭 2 分钟后再断开。
- 2. 将符合 ISO 22241-1 中所有要求的 DEF 加注到储 液箱内。
- 3. 确保所有 DEF 管路和电气连接已连接,防止形成结晶。
- 4. 确保正确安装 DEF 加注口盖。

使用存放状态的机型

使用存放状态的机型时遵循 OEM 建议。

拆卸发动机以进行存放

- 1. 卸下所有外部保护盖。
- 2. 更换机油和滤清器。

- 3. 检查风扇和交流发电机皮带的状况。 如有必要,更换皮带。 关于正确的程序,请参阅操作和保养手册, 皮带 检查/调整/更换。
- 4. 更换燃油滤清器滤芯。
- 5. 拆下空气滤清器滤芯的塑料盖。
- 6. 使用杆或盘车工具以正常旋转方向转动发动机。 该步骤确保不会存在液压阻塞或电阻。
- 7. 起动发动机前,拆下气门室盖或盖。 向凸轮轴、凸轮随动件和气门机构加注大量发动机机油,以防止机构的损坏。

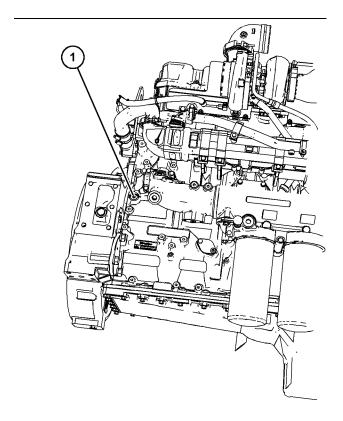


图 89 典型示例 g06042459

(1) 塞

8. 如果发动机存放时间超过 1 年,Perkins 建议预润 滑发动机,以避免干起动。 使用合适的泵,将发动 机机油注入发动机机油系统。

泵将需要在发动机内建立最小为 0.25 bar (3.6 psi) 的压力。 此压力需要持续 15 秒,以便润滑内表面。

拆下图 89 中所示的其中一个螺塞,以连接发动机 机油系统。 所需的连接为 9/16" x 18 tpi。 确保使 用正确的机油技术规格,请参阅本操作和保养手册, 油液建议,了解更多信息。 润滑发动机内部表面 后,拆下接头并安装塞(1)。 拧紧螺塞至扭矩 30 N·m (265 lb in)。 Perkins 建议必须在至少 10°C (50°F)的环境温度下执行该步骤。

- 9. 检查所有橡胶软管的状况。 更换任何磨损软管。 更换所有损坏的软管。
- 10. 起动前,测试冷却液调节剂 3% 至 6% 浓度下的 冷却系统。 添加液态冷却液添加剂或冷却液添加剂 滤芯,如有配备。

测试冷却液混合液是否有正确的亚硝酸盐水平。 如 有需要,调整冷却液混合液。

起动前,用清洁的柴油充注发动机。

- 11. 确保冷却系统是清洁的。 确保系统已注满。 确保 系统具有补充冷却系统调节剂的正确的量。
- 12. 运行的第一天,应多次检查整个发动机是否泄漏 和正确运转。

使用存贮状态的后处理

DEF 的寿命有限,请参考表 17 ,了解时间和温度范围。 必须更换超出该范围的 DEF。

使用存贮状态的 DEF 时,必须用折射计测试储液箱内的 DEF 质量。 储液箱中的 DEF 必须满足 ISO 22241-1 中的要求,符合表 17。

- 1. 如有必要,排空储液箱并加注满足 ISO 22241-1 要 求的 DEF。
- 2. 更换 DEF 滤清器,请参考本操作和保养手册, 柴油 机排气处理液滤清器 - 清洁/更换。
- 3. 确保正确安装传动带。 确保所有发动机冷却液和发 动机机油的规格和等级均正确。 确保冷却液和发动 机机油的液位正确。 起动发动机。 如果出现故 障,关闭发动机,留出2分钟来净化 DEF系统, 然后重新起动发动机。
- 4. 如果故障继续保持激活状态,参考故障诊断与排 除,了解更多信息。

表 17

DEF 存贮		
温度	持续时间	
10° C (50° F)	36 个月	
25° C (77° F)	18 个月	
30° C (86° F)	12 个月	
35° C (95° F) ⁽¹⁾	6 个月	

(表 17, 续)

(1) 温度为 35° C 时,会发生明显退化。 使用前对各个批次进行检 杳。

更多信息

通过运转发动机至工作温度以清除挥发蒸气。 清除挥 发蒸气之后剩下的是矿物油基。 然后,排出油,安装 新的滤清器并添加新机油。

i07201951

发动机气门间隙 - 检查

确保在进行此保养时不能起动发动机。 不要使用起动 马达带动飞轮,以免造成人身伤害。

热的发动机零部件可能造成烫伤。 在测量/调整气门 间隙前要等一定时间,让发动机冷下来。

只有具有资质的维修人员工能进行该项保养工作。 对于整个气门间隙调整步骤,请参阅维修手册或与授权的珀金斯 代理商或珀金斯 分销商联系。

运行带有错误气门间隙的珀金斯 发动机将会降低发动 机效率,同时减少发动机部件的使用寿命。

仅建议在额定值为 432 kW (580 hp) 和更大的新发动机、翻修发动机或者再制造发动机上进行初始气门间隙调整。 由于气门系部件的初始磨损和磨合就座,调整是必要的。

建议将这种保养作为润滑和预防性保养计划的一部分,以帮助发动机达到最长使用寿命。 对于额定值小于 432 kW (580 hp) 的发动机,不必执行初始气门间隙调整。

注:达到 2500 小时时必须对所有额定值的发动机执行 发动机气门间隙调整。

确保发动机已停机,再测量气门间隙。 为了得到准确 的测量结果,先让气门冷却下来再进行该项保养。

气门调整期间,目视检查气门机构有无磨损或损坏。

请参阅系统操作、测试和调整,发动机气门间隙-检 查/调整以了解更多信息。

i07201991

燃油系统 - 充油

图 90 q06046130

(1) 燃油注油泵

The state of the s

- (2) 注油开关
- **1.** 可从钥匙开关或远程安装的开关 (2) 给燃油系统注油。
- 2. 将注油开关 (2) 转至接通位置。 将注油开关保持在接通位置 2 分钟。 如果向空的燃油系统中注油, 关闭开关后再打开开关 2 分钟。
- 3.2 分钟后,燃油系统注满油,发动机起动就绪。
- **4.** 起动发动机,参考本操作和保养手册, 起动发动机 或者参考 OEM,了解有关发动机起动的说明。
- 5. 如果发动机起动,但运转不平稳,或发动机不点火,就先让发动机在低怠速下运转,直至发动机转动平稳为止。 如果发动机不能起动,或发动机连续不点火,或冒黑烟,就要重复步骤 2。

还可使用钥匙开关给燃油系统注油。 将钥匙转至接通位置 2 分钟。 2 分钟后,应给燃油系统注油。 如果需要,通过循环钥匙开关,系统将再次注油 2 分钟。

i07201956

燃油系统粗滤器(油水分离器)滤芯 - 更换

▲警告

渗漏或溅溢到热表面或电气部件上的燃油会引起失火。为防止可能的伤害,当更换燃油滤清器或油水分离器滤芯时,要将起动开关断开。 应立即将溅溢的燃油清除干净。

注意

不要让脏物进入燃油系统。 彻底清洁要断开的燃油系统部件的周围区域。 在所有断开的燃油系统部件上安放适当的盖。

注意 安装前不要向燃油滤清器加注燃油。 否则燃油不会被 过滤并可能受污染。 污染的燃油会造成燃油系统零件 的加速磨损。 起动发动机之前应向燃油系统充注油。

燃油中有水可导致发动机运转粗暴。 燃油中有水可导致电子单体喷油器出故障。 如果燃油被水污染,滤芯应在正常换油周期之前更换。

粗滤器/油水分离器也提供过滤功能,以便帮助延长燃油细滤器的寿命。 滤芯应定期更换。 如果安装有真空计,应在 50 kPa to 70 kPa (7.25 psi to 10.15 psi)时更换粗滤器/油水分离器。

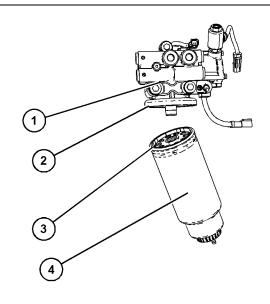


图 91 g06046186

- 1. 关闭主供油阀。
- 2. 将适当的容器置于燃油粗滤器下面,以便收集可能 溢出的任何油液。 清洁任何溢出的油液。
- 3. 清洁燃油粗滤器的外侧。
- **4.** 使用适当的工具将旋装式滤清器 (4) 从滤清器底座 (1) 拆下。 废弃旧滤清器滤芯。
- **5.** 确保密封表面 (2) 清洁。 向新旋装式滤清器的 O 形 密封圈 (3) 上涂覆清洁的柴油。
- 6. 将新的旋装式滤清器安装到滤清器底座 (1) 上。 旋装滤清器,直到 O 形密封圈 (3) 接触到密封表面 (2) 。 然后,旋转旋装式滤清器 ¾ 圈。
- 当更换燃油粗滤器时,应更换燃油细滤器。 有关更 多信息,请参阅本操作和保养手册, 燃油系统细滤 器 - 更换。

燃油系统粗滤器/油水分离器 - 放水

8. 按照当地法规处置油液和旧的滤清器。

i07201957

燃油系统粗滤器/油水分离器 - 放 水

或溅溢到热表面或电气部件上的燃油会引起失 为防止可能的伤害,当更换燃油滤清器或油水分 滤芯时,要将起动开关断开。 应立即将溅溢的燃 除干净。

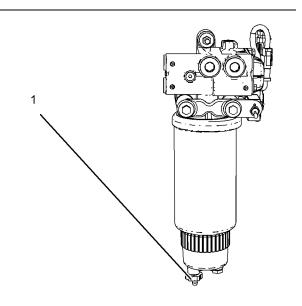


图 92 典型示例 g03807817

- 1. 确保发动机停转。 打开排放口 (1) 。 该放水阀是自 行通风式的放水阀。 用适当的容器盛接放掉的水。 妥善处置放掉的水。
- 2. 关闭放水阀 (3)。

i06985027

燃油系统细滤清器 - 更换

或溅溢到热表面或电气部件上的燃油会引起失 为防止可能的伤害,当更换燃油滤清器或油水分 滤芯时,要将起动开关断开。 应立即将溅溢的燃 除干净。

注意 确保在进行任何维护和修理工作之前关闭发动机。

有关在所有燃油系统工作期间必须遵循的清洁度标准的详细信息,请参阅系统操作、测试和调整,燃油系统部件清洁度。

- 1. 执行此保养前,断开供油阀(如有配备)。
- 2. 在燃油滤清器下面放置一个合适的容器,以便盛接 所有可能溢出的燃油。 清除所有溢出的燃油。 清 洁两个燃油滤清器的外体。

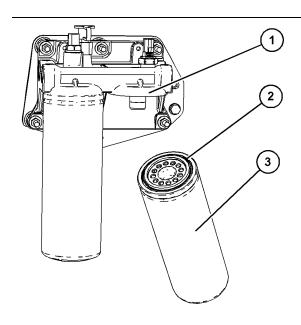


图 93 典型示例 g06042986

注:燃油系统有两个细滤器,两个都必须更换。

- 3. 可能需要释放燃油系统中的剩余燃油压力。 等待 1 分钟至5分钟,直到燃油压力下降。
- 4. 使用适当的工具拆下旋装式燃油滤清器 (3)。

- 5. 确保密封表面 (1) 清洁。 使用清洁的柴油润滑新的 旋装式滤清器上的 O 形密封圈 (2)。
- 6. 将新的旋装式滤清器 (3) 安装到滤清器底座上。 旋 装滤清器,直到 O 形密封圈 (2) 接触到密封表面 (1)。 然后,旋转旋装式滤清器 1 整圈。
- 7. 更换另一个细滤器,参考步骤2至步骤6。
- 8. 打开供油阀。 按照当地法规处置油液和旧的滤清
- 9. 燃油粗滤器和燃油细滤器必须同时更换。 请参阅操 作和保养手册, 让燃油系统粗滤器(水分离器)芯-更换。 发动机将需要排出空气。 关于燃油粗滤器 和燃油细滤器的更换,请参阅操作和保养手册,燃 油系统充注。

燃油箱中的水和沉渣 - 排放

在检查, 保养, 测试, 调整 and 维修发动机时,务必留心,确保将溢出的液体盛装在容器中。在打开任何腔室或拆解任何储有液体的部件之前,要准备好用合适的容器收集液体。

按照本地法规和指令处置所有液体。

燃油箱

燃油质量对发动机的性能和使用寿命至关重要。 燃油 中的水分可能导致燃油系统的过度磨损。

燃油箱加注燃油时会带入水分。

燃油经加热和冷却后会发生水汽凝结。 燃油流过燃油系统后回到燃油箱的过程中会发生水汽凝结。 这会导致水在燃油箱中积聚。 定期排放燃油箱和从可靠来源取得燃油有助于消除燃油中的水分。

排放水和沉淀物

燃油箱应该具备从燃油箱底部放掉水和沉淀物的装 置。

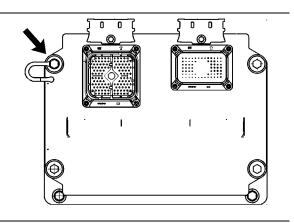
打开燃油箱底部的放油阀以便放掉水和沉淀物。 关闭 排放阀。

每天检查燃油。 向燃油箱加油后等待五分钟,然后再 放掉燃油箱中的水和沉淀物。

等发动机运行后再向燃油箱加油,以便驱除油箱中的潮湿空气。这样有助于防止凝结。 向燃油箱加油时,不要加到顶。 燃油变热后膨胀。 油箱可能溢流。

燃油储油箱

按照以下周期放掉燃油储油箱中的水和沉淀物。


- 每周
- 保养周期
- 再加注燃油箱

这样将有助于防止水和沉淀物被从储油箱中泵吸进发 动机燃油箱中。

如果大储油箱刚被加过油或移动过,在向发动机加油 之前,留出足够时间使储油箱中的沉淀物沉积下来。 大储油箱的内部隔板也将有助于截留沉淀物。 对从储 油箱中泵出的燃油进行过滤有助于保证燃油质量。 如 有可能应使用油水分离器。

i05660525

接地双头螺柱 - 检查/清洁/紧固

q01376112

接地螺柱位于发动机控制模块的左上角。

检查原始设备制造商(OEM)线束连接是否良好。 检查原始设备制造商(OEM)线束的状况。

接地螺柱必须有一条连接到蓄电池的接地线。 每次换油时应拧紧接地螺柱。 接地线和接地母线应共同连接 到发动机接地点。 所有接地装置必须紧固和无腐蚀现

- 使用清洁的抹布清洁接地螺柱和接地母线的端子。
- 如果连接处被腐蚀,使用烘焙苏打和水的溶液清洁
- 保持接地螺柱和接地母线清洁并使用 MPGM 润滑 脂或石油膏涂覆。

软管和卡箍 - 检查/更换

▲ 警告

接触高压燃油可能导致液体渗透和烧伤危险。 高压燃油溢出可能会产生火灾。 如果不遵循检查、保养和维修指南,可能会造成人身伤亡。

如果您检查正在运行的发动机,请始终使用正确的检查步骤以避免液体穿透危险。 请参考操作和保养手册, 一般危险信息。

检查所有软管以明确是否有以下原因产生的泄漏:

- 裂纹
- 软化
- 卡箍松脱

更换破裂或软化的软管。 拧紧任何松动的卡箍。

检查有无下列情况:

- 管端接头有损坏或泄漏
- 外覆层有磨损或割伤
- 金属丝加强筋暴露在外
- 外覆层局部隆起鼓包
- 软管的柔性部分扭结或挤压
- 铠装护套嵌入外覆层

恒定扭矩软管卡箍可用来代替任何标准软管卡箍。 确 保恒定扭矩软管卡箍与标准卡箍尺寸相同。

软管由于温度剧烈变化将会硬化。 软管硬化将会引起软管卡箍变松。 该硬化可导致泄漏。 恒定扭矩软管卡箍将有助于防止软管卡箍松动。

每种安装场合可能会有所不同。 不同之处取决于以下 因素:

- 软管类型
- 接头材料的类型
- 软管的预期膨胀和收缩
- 接头的预期膨胀和收缩

更换软管和卡箍

更多有关拆卸和更换燃油软管(如果装备)的信息请 参阅 OEM 资料。

下文描述了一种更换冷却液软管的典型方法。 更多有 关冷却系统和冷却系统软管的信息请参阅 OEM 资 料。

▲警告

加压的系统: 热的冷却液能造成严重的烫伤。 在发动机停机,等待冷却系统部件冷却下来后再打开冷却系统加注口盖。 缓慢松开冷却系统加注口盖,以释放掉所有压力。

- 1. 停止发动机。 让发动机冷却。
- 2. 缓慢地松开冷却系统加注口盖,以释放掉所有压力。 拆下冷却系统加注口盖。

注:将冷却液排放到适当的清洁容器中。 此冷却液可以重新使用。

- 3. 从冷却系统中排放部分冷却液,使冷却液液位低于 要更换的软管。
- 4. 拆去软管的卡箍。
- 5. 断开旧软管。
- 6. 用新软管更换旧软管。
- 7. 用扭矩扳手安装软管卡箍。

注:有关正确的冷却液,请参阅本操作和保养手册,油 液建议。

- 8. 重新加注冷却系统。 有关重新加注冷却系统的更多 信息请参阅 OEM 资料。
- 9. 清洗冷却系统加注口盖。 检查冷却系统加注口盖密 封件。 如果密封圈损坏,更换冷却系统加注口盖。 安装冷却系统加注口盖。
- 10. 起动发动机。 检查冷却系统有无泄漏。

燃油系统

燃油系统分成两个不同的部分,高压和低压。 拆卸、 松动或更换任何零件前,确保排空燃油压力。

检查连接和软管是否牢固,检查有无泄漏。 如果要拆卸或拧紧零件,请参阅拆解和装配手册,了解更多信息。

i06043722

大修考虑事项

有关大修解决方案,请联系您的 Perkins 经销商。

动力输出离合器 - 检查

注意 新的动力输出装置在投入使用之前,应对其离合器的 调整进行检查。 在最初10小时运行之后,应再次检查 离合器的调整。 新离合器片有一个"磨合"期,而且离 合器可能需要调整几次才能使新片"磨合"好。

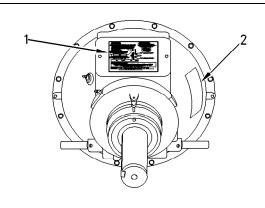


图 95

g00781502

- (1) 说明标牌
- (2) 序列号铭牌

"磨合期"过后定期检查离合器的调整情况。 重型作业 时离合器接合频繁和打滑时间相对较长,此时离合器 需要比轻型作业更为频繁的调整。 应该测量离合器的 工作扭矩以便确定是否需要进行离合器调整。

有关润滑、调整和其它维修建议的说明,请参考原始设备制造商(OEM)的信息资料和使用说明标牌 (1)。 进行说明标牌上指定的保养。

▲ 警告

当离合器的说明标牌盖被卸下时,不要运行发动机。 否则可能会造成人身伤害。

如果离合器爆裂损坏,飞出的碎片会伤害直接靠近区域中的任何人员。 遵照正确安全防护措施,以防意外事故发生。

i08277467

散热器 - 清洁

注:根据作业环境影响的情况调整清洁工作的频率。

检查散热器有无这些项目:损坏的散热片、腐蚀、脏污、油脂、昆虫、树叶、机油及其他碎屑。必要时清洁散热器。

▲ 警告

空气压力会造成人身伤害。

不按下面的适当步骤进行操作会造成人身伤害。 使用 压缩空气时,戴防护面罩及穿防护服。

当空气喷嘴堵塞时, 清洁时使用的最大气压一定要降 到 205 kPa (30 psi)。

增压空气是清除松动碎屑的优选方法。将压缩空气对着散热片气流相反的方向吹。保持喷嘴离散热片大约6 mm (0.25 inch) 远。在与管子平行的方向缓慢移动喷嘴。这将清除在管子之间的碎屑。

高压水也可用于清洗。清洁用的最高水压必须低于 275 kPa (40 psi)。使用高压水软化泥浆。从两侧清洁 散热器芯。

用去油剂和蒸气来清除机油和润滑脂。清洁散热器芯两侧。用去污剂和热水冲洗水箱芯。用干净水彻底漂洗水箱芯。

清洁后,起动发动机并将发动机加速至高怠速。这有 助于清除碎屑和干燥散热器芯。停止发动机。在散热 器芯后面放一个灯泡来检查芯是否清洁。必要时再次 清洁。

检查散热片有无损坏。弯曲了的散热片可用一把 "梳刀" 梳开。检查这些项目状况是否良好:焊接、安装支架、空气管路、接头、卡箍和密封件。如有必要,进行维修。

i06043793

起动马达 - 检查

Perkins 建议定期检查起动马达。 如果起动马达失效,发动机在紧急情况下就无法起动。

检查起动马达是否正常工作。 检查和清洁电气连接。 有关检查步骤和技术规格的更多信息,请参阅维修手 册,或咨询您的 Perkins 经销商,寻求帮助。

i07201955

围绕检查

检查发动机是否渗漏,连接处是否松 动

为了使发动机获得最长的使用寿命,在起动发动机之 前要对发动机室进行一次彻底检查。 查看有无以下项 目:机油泄漏或冷却液泄漏、螺栓松动、传动带磨 损、连接松动和垃圾堆积。 根据需要进行修理。

- 防护罩必须安装到正确位置。 修理损坏的防护罩 或更换丢失的防护罩。
- 维修发动机前先擦拭所有的罩盖和塞堵,以减少系统污染的机会。

____________注意 擦拭掉任何种类的渗漏液体(冷却液、润滑油或燃 油)。 如果观察到渗漏情况,要找出泄漏的原因并解决。 如果怀疑有渗漏,应比推荐次数更为频繁地检查液位,直到找到或修好渗漏,或直到不再怀疑有渗漏。

注意 发动机上或甲板上积聚油脂和/或机油有失火危险。 用蒸汽清洗或用高压水去除油脂或机油。

- 确保冷却管路适当夹紧,不漏水。 检查有无泄 漏。 检查所有管路的状况。
- 检查水泵是否有冷却液渗漏。

注:水泵密封件由冷却系统的冷却液进行润滑。 当发 动机降温而零件收缩时,有少量渗漏发生是正常的。

冷却液过量泄漏可能说明需要更换水泵密封件。 关于水泵的拆卸和水泵和/或密封件的安装,请参阅发动机的维修手册或咨询 Perkins 经销商。

- 检查润滑系统中曲轴前油封、曲轴后油封、油底 壳、机油滤清器和阀室盖处是否有渗漏。
- 检查燃料系统有无泄漏。 查找有无松动的燃油管 路卡箍或松动的燃油管路捆束结。
- 检查空气进气系统管道和弯管接头处有无裂纹及卡 箍松动。 确保软管和管不与其它软管、管和导线 线束接触。
- 检查交流发电机皮带和附件传动带是否有裂纹、断 裂或其它损坏。

多槽皮带轮的皮带必须成套更换。 如果只更换一根皮带,则这根皮带就会比其它没更换的皮带承受更大的负荷。 因为原来的皮带已被拉长。 额外负载就会加到新皮带上,从而造成皮带断裂。

- 每天都要放掉燃油箱中的水和沉渣,以确保只有清 洁燃油进入燃油系统。
- 检查线路和导线线束是否有连接处松动,导线是否 磨损或擦伤。
- 检查接地母线连接和状况是否良好。
- 检查 ECM 到缸盖接地母线的连接和状况是否良 好。
- 断开所有无法防护起动马达的吸耗电流的蓄电池充 电装置。 除非发动机装的是免维护蓄电池,否则 要检查蓄电池的状况和电解液液位。
- 检查仪表的状况。 更换破裂的仪表。 更换所有不 能被校准的仪表。

后处理系统

检查冷却液管路、柴油机排气处理液 (DEF) 管路和电气连接的状况。 检查所有卡箍、夹子和系带是否牢固且状况良好。 检查并确认 DEF 加注口盖牢固且盖干净无污垢。

检查储液箱内的 DEF 液位足以支持运行,如有必要,加注 DEF 箱。

保修部分

保修信息资料

i07304835

排放保修信息

认证发动机制造商向最终采购方和所有后续采购方担 保:

- 1. 在美国和加拿大运行和使用单缸排量小于 10 升 (包括小于 37 kW 的 Tier 1 和 Tier 2 船用发动 机,但不包括机车用和其他船用发动机)的新生产 非公路柴油发动机和固定式柴油发动机,包括其排 放控制系统的所有零件("排放相关部件"),均:
 - a. 自销售之日起,其设计、建造和装配满足美国环境保护署(EPA)以法规形式规定的相关排放标准的要求。
 - b. 在保修期内,排放相关部件在材质和制造工艺方面,不存在可能导致发动机违反相关排放标准规定的缺陷。
- 2. 在加利福尼亚州运行和使用的新生产非公路柴油发动机(包括小于 37 kW 的 Tier 1 和 Tier 2 船用推进发动机及小于 37 kW 的 Tier 1 至 Tier 4 船用辅助发动机,但不包括机车用和其他船用发动机),包括其排放控制系统的所有零件("排放相关部件"),均:
 - a. 自销售之日起,其设计、建造和装配满足加州空 气资源局(ARB)规定的所有相关法规的要求。
 - b. 在保修期内,不存在材料和工艺方面的缺陷,不 会导致排放相关的部件出现发动机制造商认证申 请中所描述的材料失效类型。
- 3. 在韩国运行和使用、安装在建筑机器中的新非公路 柴油发动机符合韩国有关 2015 年 1 月 1 日后制造 的建筑机器的法规,包括其排放控制系统的所有零 件("排放相关部件"),均:
 - a. 自销售之日起,其设计、建造和装配满足韩国 MOE 发布的清洁空气保护法的执行规则中规定 的适用排放标准。
 - b. 在保修期内,排放相关部件在材质和制造工艺方面,不存在可能导致发动机违反相关排放标准规定的缺陷。

只要遵守规定的保养要求,可预期后处理系统在发动 机使用寿命(排放设备耐用期)内正常工作。

有关排放控制保修的详细说明,请联系授权的 Perkins 代理商或者授权的 Perkins 经销商。

参考资料部分

参考资料

i07813056

参考资料 (延期维修合同)

延期维修合同 - 即刻购买,多年保护。

延期维修合同 (ESC) 让您不必再为意外的修理工作烦恼,因为它已经涵盖了让您的发动机重新正常运转所需的费用。 与其它延期保修不同,Perkins 白金 ESC让您免受任何部件和零件故障困扰。

每日成本只需 £0.03 / \$0.05 / euro 0.04 即可高枕无忧,ESC 让您梦想成真。

为什么要购买延期维修合同?

- 1. 不要吃惊 对意外维修事件的总体解决(零件、人 工和旅费)。
- 2. 享有 Perkins 全球网络提供的长期产品支持。
- 3. 原装 Perkins 零件确保始终如一的发动机性能。
- 4. 所由维修工作都由受过严格培训的技师完成。
- 5. 如果出售机器,还可转让保修服务。

灵活的保修可为您的 Perkins 发动机提供正确水平的保护。 保修可以延长到 2 年/ 1,000 小时乃至 10 年/ 40,000 小时

您可以在标准保修期内随时购买 ESC - 即使是最后一

每家 Perkins 经销商都有经过严格培训且经验丰富的 Perkins 产品支持服务技师。 全天候提供支持服务, 随时候命让您的发动机恢复正常工作,确保停机时间 最短。 购买 ESC 就意味着这些服务费用全免。

购买延期服务合同,快速便捷! 请立即联系本地 Perkins 经销商,他们会即刻为您提供报价。 您可以 访问下面的网站以查找离您最近的 Perkins 经销商:

www.perkins.com

与发动机类型和应用无关。

i06245669

机器的报废和处理

当产品不再使用时,各地报废产品的地方法规是不同的。 对产品的处置会随地方法规而不同。 有关更多信息,请咨询最近的 Perkins 分销商。

i06043734

保养记录

Perkins 建议保留准确的保养记录。 准确的保养记录 可用于下列目的:

- 确定运行费用。
- 可为在同样环境中运行的其它发动机制订保养计
- 证明与实际需要的保养实践和保养周期的一致性。

保养记录可用于有关发动机保养的其它各种业务决 策。

保养记录是正确管理保养计划的关键因素。 准确的保 养记录有助于 Perkins 代理商精确调整推荐的保养间 隔,以符合特定的工作条件。 这样可以降低发动机的 运营成本。

记录应含有下面项目:

燃油消耗量 – 记录燃料消耗量对确定何时应该检查或 更换负载敏感部件是必不可少的。 燃料消耗量还可用 来确定大修周期。

工作小时数 – 记录工时数对确定应该何时检查或更换 转速敏感部件是必不可少的。

文档 – 这些项目应该容易得到并应保存在发动机的历史记录文件中。 所有文档都应显示以下信息:日期,工作小时数,燃油消耗量,机组编号 和 发动机序列号。 下列种类的文件应保存作为产品保修的保养或修

保存下列种类的文件作为产品保修的保养证据。 作为 保修时保养或维修的证明:

- 代理商工作订单和分项列记的帐单
- 用户修理成本
- 用户收据
- 保养记录表

保养记录表

表 18

发动机型号		用户识别号			
序列号		配置总成编号			
工作小时 数	燃油量	维修项目		日期	认可

索引部分

索引

A		每5000工作小时	
ARD 火花塞(排放相关部件)- 清洁	65	每500个工作小时的保养	
安装火花塞		每500个工作小时或每3个月的保养	
拆卸火花塞		每6000个工作小时或3年	
炉中八化坐	. 00	每天的保养	
		需要时即进行的保养	. 64
D		储气罐水和沉积物 - 排放 (如有配备)	. 66
DEF 加注口滤网 (与排放有关的部件)-清		传感器和电气部件	
清	74	泵电子箱装置 (PETU)	
DEF 歧管滤清器 (与排放有关的部件) - 更		发动机	
换	74	后处理系统	
类型 1 歧管		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
类型 2 歧管)	
天生 2 攻 日	. 10	,	
		冷却系统冷却液[柴油发动机防冻剂/冷却液	
_		(DEAC)] - 更换	. 70
上、下设备	. 12	冲刷	. 71
二、, 《 G		排放	. 71
柴油机排气处理液		填方	
盛装泄漏的液体		冷却系统冷却液[长效冷却液(ELC)] - 更换	
适当地处置废弃物		冲刷	
吸入	. 10	排放	
压缩空气和加压水		填方	
液体穿透		冷却系统冷却液补充添加剂(SCA) - 测试/添	–
用超低硫柴油加注时会出现静电危害		加	73
用超低气采油加注可会出现时电厄舌	ŏ	必要时可添加补充用冷却液添加剂 (SCA)	
_		测量补充用冷却液添加剂(SCA)浓度	72
产品识别信息资料	20	冷却系统冷却液液位 - 检查	72
产品信息资料部分		冷却系统长效冷却液(ELC)延长剂 - 添加	
,	. 10	存却永约以双行却被(ELU)处以刊·徐加	. 12
人		Л	
保修部分	. 92	前言	4
保修信息资料	. 92	安全	4
保养记录	. 93	保养	4
保养记录表	. 94	保养周期	
保养建议	. 62	操作	
保养章节	. 49	大修	
保养周期表	. 64	加利福尼亚州 65 号提案中的警告	
初次500工作小时		文献资料	
每 2500 个工时数		ZIVX11	
每 585000 L(154540 US gal)燃油或每		<u>.</u>	
10000 工作小时	64	カ	
每10000个工作小时的保养		动力输出离合器 - 检查	. 90
每12000个工作小时数或每6年的保养		功能部件和控制装置	
每250个工作小时的保养		加注容量	
每3000个工作小时或每3年的保养		加注容量和建议	
每4000工作小时或每3年的保护		加注容量	
毋 毋∪∪○ 工 [上기 개]	. 04	^마다 비 포 ······	

建议	61		
		围绕检查	. 90
Д		检查发动机是否渗漏,连接处是否松动	. 90
参考资料	03		
参考资料 (延期维修合同)		±	
多考页科 (延知维修古内) 参考资料部分			
多考页件部分	93	在配备电子控制装置的发动机上进行焊接	. 62
又		大	
发动机 - 清洁	79		
后处理		大修考虑事项	. 89
发动机安装支座 - 检查	80		
发动机电子装置		-	
发动机机油和滤清器 - 更换		安全标志	5
机油和滤清器更换间隔		女主你心	5
加注油底壳		硫酸燃烧危险(2) 普适警告(1)	0
排放发动机机油			
发动机机油油位 - 检查		安全部分	
发动机机油油样 - 采样		寒冷天气操作	
获取采样与分析		寒冷天气起动	
发动机空气滤清器保养指示器 - 检查 (如有	. 01	乙醚喷射系统(如有配备)	
	۹۸	寒冷天气下与燃油有关的部件	
配备)	. OU . QO	燃油加热器	
发动机空气滤清器滤芯 - 更换		燃油箱	. 47
双滤芯空气滤清器			
维修空气滤清器滤芯	70	心	
		恶劣工作条件	63
发动机起动		不正确的保养程序	
接线线束故障		不正确的操作程序	
起动发动机		不正确的操作程序 环境因素	
起动故障		小児囚系	. 03
发动机起动后			
低温环境下的怠速延时		手	
发动机起动前		操作章节	. 22
发动机气门间隙 - 检查		接地双头螺柱 - 检查/清洁/紧固	
发动机停机		接合被驱动设备	
发动机停机延迟(如果启用)		排放保修信息	
发动机停机后		排放认证贴膜	
发动机运行		手动停机程序	
发动机运转情况和后处理系统		J 29J 〒 1/16/1王/ J · · · · · · · · · · · · · · · · · ·	. 40
发动机诊断			
发动机贮存程序 - 检查		攴	
拆卸发动机以进行存放		故障记录	. 37
发动机		散热器 - 清洁	
更多信息		散热器气流限制	
后处理		MANAGE AND	••
冷却液系统		+	
使用存放状态的机型		木	
使用存贮状态的后处理	85	柴油机排气处理液 (与排放有关的部件)-	
特殊预防措施	. 83	加注	. 77
		柴油机排气处理液滤清器 (与排放有关的部	
		件) - 更换	. 77

柴油机排气处理液喷射器 (与排放有关的部		田	
件) - 更换	78	电气系统	13
柴油微粒滤清器 (与排放有关的部件)-清		接地方法	1?
洁		1久地方14	10
柴油微粒滤清器再生	42		
二氧化碳 (CO ₂)排放声明	43	皮	
再生		皮带 - 检查/调整/更换 (V 形皮带概述)	67
再生触发		交流发电机皮带和风扇皮带	
再生开关		皮带张紧度	
再生模式			08
再生系统警告指示灯		皮带 - 检查/调整/更换 (聚乙烯 V 形皮带概	0.0
再生指示灯		述)	
刊生1日小月	42	更换	
机器的报废和处理		检查	70
机型视图			
发动机视图		ш	
后处理系统		WORLT D.	
清洁排放模块		监测系统	
机型视图说明	15	监控系统指示灯	27
水		目	
			_
油液建议55		目录	3
发动机机油:	59		
通用润滑剂信息	58	穴	
一般冷却液信息	55		
ELC 冷却系统保养		空气压缩机 - 检查 (如有配备)	65
油液建议 (一般燃油资料)	. 49		
柴油特性		自	
柴油要求			
一般信息		自诊断	37
有关燃油的污染控制建议			
有大船曲的行朱江刺建以	54		
		类 中心, 更热	00
火		蓄电池 - 更换	
燃油和寒冷天气的影响	47	蓄电池的回收	
燃油省油准则		蓄电池电解液液位 - 检查	
燃油系统 - 充油		蓄电池断路开关 (如有配备)	32
		蓄电池或蓄电池电缆 - 断开	67
燃油系统粗滤器(油水分离器)滤芯 - 更换			
燃油系统粗滤器/油水分离器 - 放水		衣	
燃油系统细滤清器 - 更换			
燃油箱中的水和沉渣 - 排放		被驱动设备 - 检查	78
排放水和沉淀物			
燃油储油箱	88	ì	
燃油箱	88	·	
		设备描述	
用		电控发动机特性	
л		发动机规格	
用跨接起动电缆起动 (不要在存在爆燃性空		发动机使用寿命	
气的危险场所中使用本步骤)	40	发动机诊断	
,		售后产品和 Perkins 发动机	
		设备起吊	
		表由子箱装置 (PFTU)	2/

发动机起吊	24 24 24
走 起吊和贮存 起动发动机前 起动马达 - 检查	12
车	
软管和卡箍 - 检查/更换更换软管和卡箍	89
ì_	
选择性催化还原警告系统	32) 34 k) 36 33
来	
释放系统压力	62
里	
里 重要安全信息	62
重要安全信息	62
	2
重要安全信息	2
重要安全信息	

TH 2T	40
机油	10
冷却液	10
蓄电池	10
防止压伤和割伤	
附加标志	6

产品和代理商资料

注: 关于产品识别标牌位置, 请参阅《操作与保养手册》 的"产品识别信息资料"部分。 交货日期:_____ 产品资料 型号: _____ 产品识别号:______ 发动机序列号:_____ 发动机序列号:_____ 发电机序列号:_____ 附件序列号:_____ 用户设备编号:_____ 代理商设备编号:_____ 代理商资料 名称: 分公司:_____ 地址: 代理商联系人 电话号码 办公时间 销售: 零件: 服务: