
M 34 DF PROJECT GUIDE / GENERATOR SET

Information for the user of this project guide

The project information contained in the following is not binding, since technical data of products may especially change due to product development and customer requests. Caterpillar reserves the right to modify and amend data at any time. Any liability for accuracy of information provided herein is excluded.

Binding determination of data is made by means of the Technical Specification and such other agreements as may be entered into in connection with the order. We will supply further binding data, drawings, diagrams, electrical drawings, etc. in connection with a corresponding order.

This edition supersedes the previous edition of this project guide.

All rights reserved. Reproduction or copying only with our prior written consent.

Caterpillar Motoren GmbH & Co. KG P. O. Box, D-24157 Kiel Germany Phone +49 431 3995-01 Telefax +49 431 3995-2193

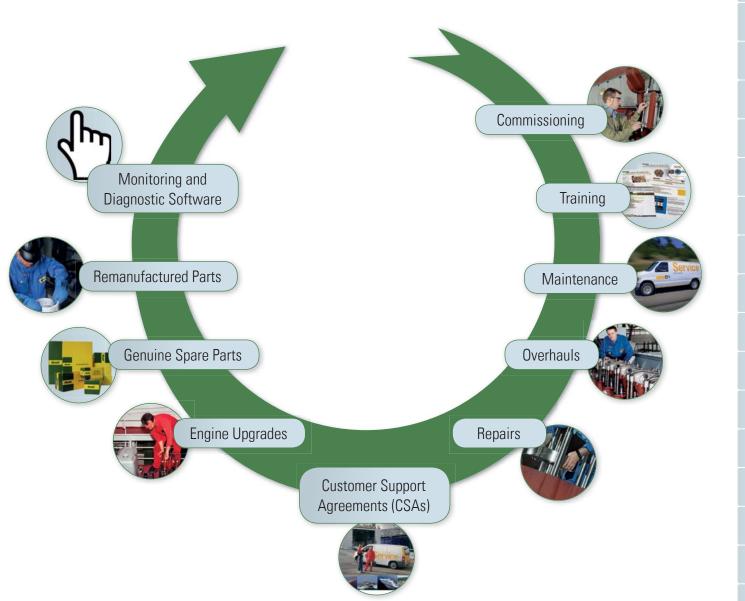
Edition November 2014

Global Resource from One Source

When you select Cat Marine Power for your vessel, look to Cat Financial for worldclass financial support. With marine lending offices in Europe, Asia and the US supporting Caterpillar's worldwide marine distribution network, Cat Financial is anchored in your homeport. We also have over 20 years of marine lending experience, so we understand your unique commercial marine business needs. Whether you're in the offshore support, cargo, ship assist, towing, fishing or passenger vessel industry, you can count on Cat Financial for the same high standard you expect from Caterpillar.

Marine Financing Guidelines

Power:	Cat and MaK
Financial Products:	Construction, term and repower financing
Repayment:	Loan terms up to 10 years, with longer amortizations available
Financed Amount:	Up to 80% of your vessel cost
Rates:	Fixed or variable
Currency:	US Dollars, Euros and other widely traded currencies


www.cat.com/CatMarineFinance

Visit our website or see your local Cat dealer to learn how our marine financing plans and options can help your business succeed.

Global Dealer Network

Providing integrated solutions for your power system means much more than just supplying your engines. Beyond complete auxiliary and propulsion power systems, we offer a broad portfolio of customer support solutions and financing options. Our global dealer network takes care of you wherever you are – worldwide. Localized dealers offer onsite technical expertise through marine specialists and an extensive inventory of all the spare parts you might need.

To find your nearest dealer, simply go to WWW.MARINE.CAT.COM

DNV BUSINESS ASSURANCE MANAGEMENT SYSTEM CERTIFICATE Certificate No.: 81311-2010-AQ-GER-DAkkS This is to certify that Caterpillar Motoren GmbH & Co. KG

Falckensteiner Str. 2 24159 Kiel - Germany

and the sites

Caterpillar Motoren Rostock GmbH Werftallee 13 18119 Rostock Germany

Caterpillar Motoren Henstedt-Ulzburg GmbH Rudolf-Diesel Straße 5-9 24558 Henstedt-Ulzburg Germany

Caterpillar Motoren Guangdong Co. Ltd. Shizhou Industrial Estate Chencun Town Shunde District, Foshan City 528341 P. R. China

has been found to conform to the Management System Standard

ISO 9001:2008

This certificate is valid for the following product or service ranges:

For Caterpillar Motoren Kiel: Design, manufacture, sales and service of gas and diesel engines For Caterpillar Motoren Rostock: Manufacture of gas and diesel engines For Caterpillar Motoren Guangdong: **Production of diesel engines** For Caterpillar Motoren Henstedt-Ulzburg GmbH: Logistics of spare and serial parts for gas and diesel engines

Initial Certification date: 03.11.2003

This certificate is valid until: 14.11.2016

The audit has been performed under the supervision of

> Stephan Ekat Lead Auditor

DAkkS Deutsche Akkreditierungsstelle D-ZM-18453-01-00

Place and date:

Essen, 15.11.2013

for the Accredited Unit: DNV ZERTIFIZIERUNG UND UMWELTGUTACHTER GMBH

IN

Nikelaus Kim Management Representative

Lack of fulfilment of conditions as set out in the Certification Agreement may render this Certificate invalid. DNV ZERTIFIZIERUNG UND UMWELTGUTACHTER GMBH, Schnieringshof 14, 45329 Essen, Tel: +49 201 7296 222 Fax: +49 201 7296 333 - www.dnvba.de

1. GENSET DESCRIPTION

1.1	Definitions	1
1.2.	Main components and systems	2
	1.2.1 Main features and characteristics	2
	1.2.2 Description of components	3
1.3	Engine running in	10
1.4	Prospective life times	11

2. GENERAL DATA AND OUTPUTS

2.1.	General definition of reference conditions	12
2.2	Reference conditions regarding fuel consumption	12
2.3	Lube oil consumption	12
2.4	Emissions	
	2.4.1 Exhaust gas – preliminary	13
	2.4.2 Nitrogen oxide emissions (NO _x -values)	13
	2.4.3 Engine International Air Pollution Prevention Certificate	14
2.5	Engine dimensions and weight – preliminary	15
2.6	System connecting points – preliminary	16

3. **OPERATING RANGES**

Restrictions for low load operation	18
3.1.1 Load restrictions in diesel mode	18
3.1.2 Load restrictions in gas mode	19
Emergency operation without turbocharger	20
Operation in inclined position	20
Load application and recovery behaviour	21
Fuel changeover and recovery behaviour	23
Derating	24
	Restrictions for low load operation3.1.1 Load restrictions in diesel mode3.1.2 Load restrictions in gas modeEmergency operation without turbochargerOperation in inclined positionLoad application and recovery behaviourFuel changeover and recovery behaviourDerating

4. TECHNICAL DATA

4.1	Diesel, mechanical	25
-----	--------------------	----

5. FUEL OIL SYSTEM

5.1	MGO / MDO operation	28
	5.1.1 Acceptable MGO / MDO characteristics	28
	5.1.2 Internal fuel oil system	30
	5.1.3 External fuel oil system	32
5.2	Ignition fuel system	40
	5.2.1 Ignition fuel quality requirements	40
	5.2.2 System diagram	40
	5.2.3 Pilot fuel ignition system components	41
5.3	HFO operation	43
	5.3.1 CIMAC – Requirements for residual fuels for diesel engines (as delivered)	45
	5.3.2 Fuel booster and supply system	50
	5.3.3 Fuel booster and supply module	59
5.4	Switching over from HFO to diesel oil	63

6. GAS FUEL SYSTEM

6.1	General	64
	6.1.1 Gas fuel quality requirements	64
	6.1.2 System diagram	65
	6.1.3 Gas system components	66

7. LUBE OIL SYSTEM

7.1	Lube oil requirements	68
7.2	Internal lube oil system	70
7.3	External lube oil system	72
7.4	Circulating tanks	76
7.5	Crankcase ventilation system	76
	7.5.1 Crankcase ventilation pipe dimensions	76
	7.5.2 Crankcase ventilation pipe layout	76
	7.5.3 Gas detection sensor	76

8. COOLING WATER SYSTEM

8.1	Gene	ral	77
	8.1.1	Two circuit cooling system	77
	8.1.2	Secondary circuit cooling system	77
8.2	Wate	r quality requirements	77
	8.2.1	General	77
	8.2.2	Requirements	78
	8.2.3	Supplementary information	78
	8.2.4	Treatment before operating the engine for the first time	78
8.3	Recor	nmendation for cooling water system	78
	8.3.1	Pipes and tanks	78
	8.3.2	Drain tank with filling pump	78
	8.3.3	Electric motor driven pumps	79
8.4	Coolir	ng water system	79
	8.4.1	General	79
	8.4.2	Components	81

8.5	System diagrams heat balance	85
8.6	Preheating (separate module)	87
	8.6.1 Electrically heated	87
	8.6.2 Other preheating systems	88
8.7	Box coolers system	88
8.8	Cooling circuit layout	88

9. COMPRESSED AIR SYSTEM

9.1	General	89
9.2	Internal compressed air system	89
9.3	External compressed air system	
	9.3.1 Compressor AC1, stand-by compressor AC2	91
	9.3.2 Air receiver AT1, AT2	92
9.4	Compressed air quality	94
9.5	Optional equipment	95

10. COMBUSTION AIR SYSTEM

10.1	Engine room ventilation	96
10.2	Combustion air system design	96
	10.2.1 Air intake from engine room (standard)	96
	10.2.2 Air intake from outside	96
	10.2.3 Air intake temperature from engine room from outside	96
10.3	Cooling air	96
10.4	Condensed water from charge air duct	96

11. EXHAUST GAS SYSTEM

11.1	Components	97
	11.1.1 Exhaust gas nozzle — preliminary	97
	11.1.2 Exhaust gas compensator	98
	11.1.3 Exhaust gas piping system	99
	11.1.4 Silencer	101
	11.1.5 Exhaust gas boiler	103
11.2	Turbocharger	104
	11.2.1 Turbine cleaning system	104
	11.2.2 Compressor cleaning system	105

12. FLEXIBLE CAMSHAFT TECHNOLOFY (FCT)

12.1 Flexible Camshaft Technology (FCT)	106
---	-----

13. CONTROL AND MONITORING SYSTEM

13.1	Local control panel (LCP)	107
13.2	Data link overview	108
13.3	Components	110
13.4	Genset control	112
13.5	Control cabinet	113
13.6	Requirements	115
	13.6.1 Requirements on power management system	115
	13.6.2 Requirements on gas system	116
13.7	List of measuring points, exhaust gas monitoring	117
13.8	Local and remote indicators	123
13.9	Condition monitoring	123
13.10	Safety	124
	13.10.1Safety concept	124

14. INSTALLATION AND ARRANGEMENT

14.1	Resilient mounting of genset	126
14.2	Earthing of engine	127

15. VIBRATION AND NOISE

15.1	Data for torsional vibration calculation	128
15.2	Sound levels	132
	15.2.1 Airborne noise	132
15.3	Vibration	132

16. POWER TRANSMISSION

16.1	Flexible coupling	133
------	-------------------	-----

17. PIPING DESIGN

17.1	Pipe dimensions	134
17.2	Flow velocities in pipes	134
17.3	Trace heating	134
17.4	Insulation	134
17.5	Flexible pipe connections	135

18. ENGINE ROOM LAYOUT

18.1	Engine center distances	136
18.2	Space requirement for maintenance	137
	18.2.1 Removal of charge air cooler and turbocharger cartridge	137
	18.2.2 Removal of piston and cylinder liner	138

19. PAINTING, PRESERVATION

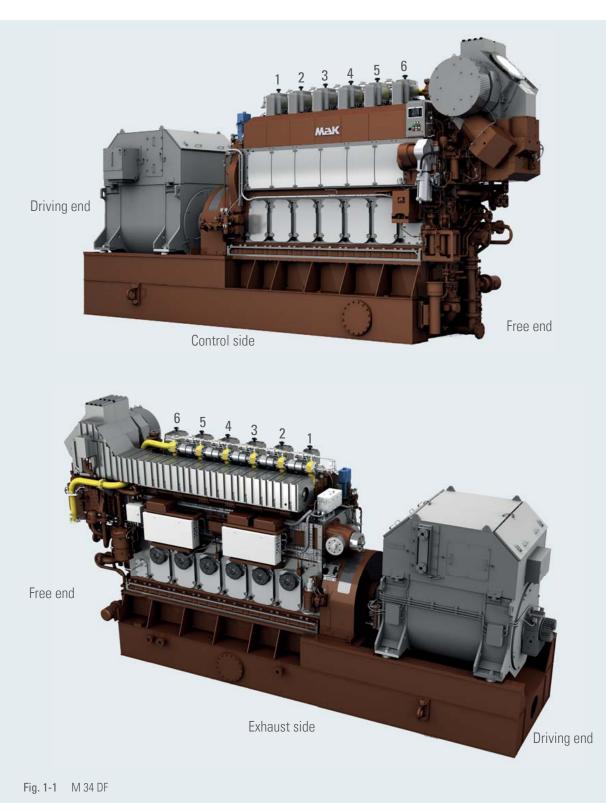
19.1	Inside preservation	139
	19.1.1 Factory standard N 576-3.3 – Inside preservation	139
19.2	Outside preservation	139
	19.2.1 Factory standard N 576-3.2 – Outside preservation VCI 368	139
	19.2.2 Factory standard N 576-4.1 – Clear varnish	140
	19.2.3 Factory standard N 576-4.3 – Painting	141
	19.2.4 Factory standard N 576-5.2 – VCI packaging	141
	19.2.5 Factory standard N 576-5.2 Suppl. 1 – Information panel for VCI preservation	
	and inspection	142
19.3	Factory standard N 576-6.1 – Protection period, check and represervation	143
	19.3.1 Protection period	143
	19.3.2 Protection check	143
	19.3.3 Represervation as per factory standard N 576-6.1	143

20. TRANSPORT, DIMENSIONS AND WEIGHTS

20.1	Lifting of engines	144
20.2	Dimensions of main components	145

21. STANDARD ACCEPTANCE TEST RUN

21.1 S	tandard acceptance test run	14	4	6
--------	-----------------------------	----	---	---


22. ENGINE PARTS

22.1	Required spare parts (Marine Classification Society MCS)	147
22.2	Recommended spare parts	148

23. CATERPILLAR MARINE

23.1	Gas sytems technology – Scope of supply	151
23.2	Caterpillar Propulsion	152

1.1 Definitions

	6 M 34 DF	8 M 34 DF	9 M 34 DF
Output [kW]	3,000	4,000	4,500

Mak

01

Cylinder configuration:	6, 8, 9 in-line
Bore:	340 mm
Stroke:	460 mm
Stroke / bore-ratio:	1.35
Swept volume:	42 l/cyl.
Output/cyl:	500 kW
BMEP:	19.9/19.1 bar
Revolutions:	720/750 rpm
Mean piston speed:	11.0/11.5 m/s
Turbocharging:	single log
Direction of rotation:	counter-clockwise, option: clockwise

1.2 Main components and systems

1.2.1 Main features and characteristics

Caterpillar Motoren designed the M 34 DF based on the reliable M 32 C engine series. It is capable of operating on multiple fuels without sacrificing the typical MaK marine engine features like superior serviceability and class-leading maintenance intervals. Caterpillar has leveraged more than 60 years experience with thousands of spark-ignited gas engines operating in the field to develop the M 34 DF.

The M 34 DF offers high fuel efficiency and lower exhaust gas emissions as an answer to increasing operating costs and upcoming fuel sulfur and NO_x regulations in Emission Control Areas (ECA).

It saves cost by using natural gas while retaining the traditional performance and durability of diesel engines. HFO operation is supported for use outside of ECAs.

High efficieny and proven reliability make the M 34 DF an excellent propulsion engine for operation inside and outside of environmentally protected areas as well as waters with HFO limitations. Redundant controls and safety systems even support single main engine installations.

The M 34 DF is an attractive alternative to expensive low-sulphur MDO or large and complex scrubber installations to comply with future IMO III exhaust gas regulations.

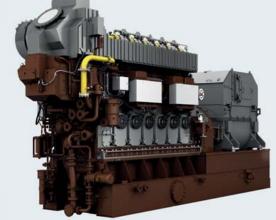


Fig. 1-2 Control side and driving end

Fig. 1-3 Exhaust side and free end

1.2.2 **Description of components**

Cylinder head

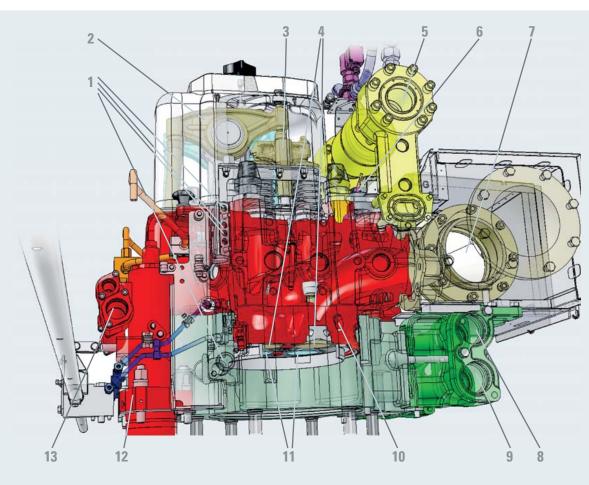
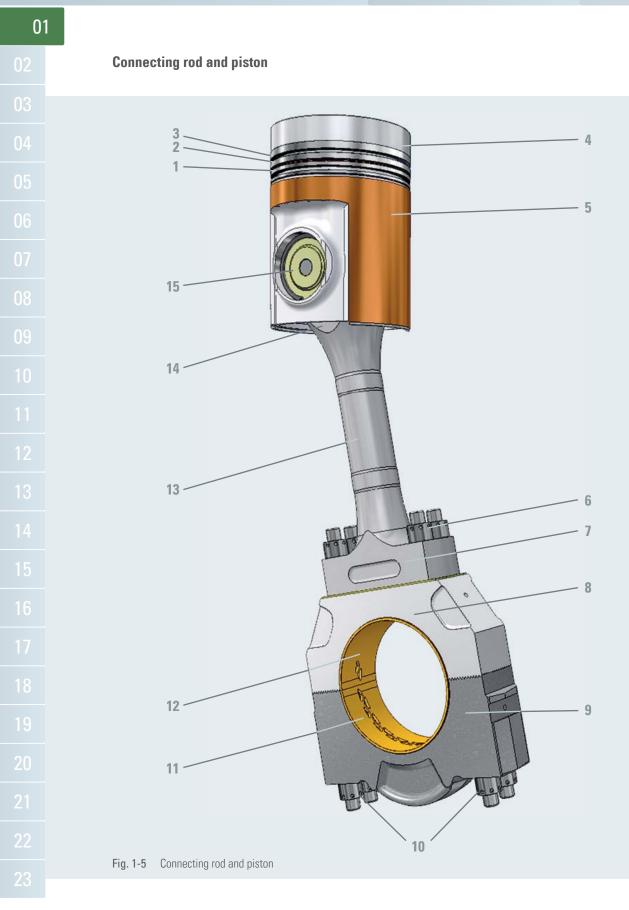


Fig. 1-4 Cylinder head


- 1 Media ducted through cylinder head
- 2 Rocker arm, outlet
- 3 Valve bridge, outlet
- 4 Exhaust gas valves, water cooled
- 5 Double walled gas pipe
- 6 Ignition fuel injector
- 7 Exhaust gas line

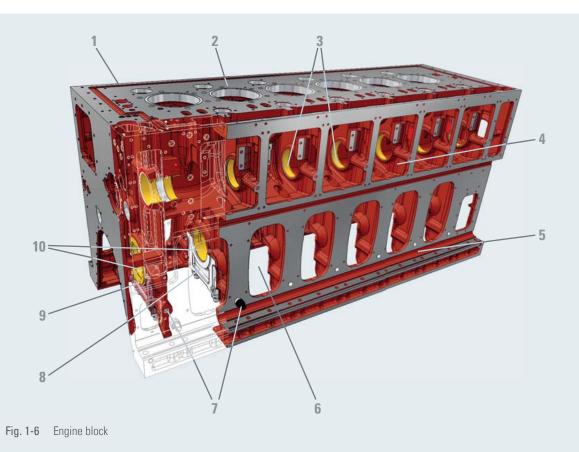
- Cooling water line, outlet 9 Cooling water line, inlet 10 Cooling water spaces in cylinder head 11 Combustion air inlet valves 12 Fuel feed pump 13 Fuel feed pipe
- The cylinder heads are made of nodular cast iron with 2 inlet and 2 exhaust valves, which are equipped with valve rotators.

8

- The exhaust valve seats are directly water cooled. •
- The injection nozzles for heavy fuel operation are cooled by engine lube oil. •

01

01


GENSET DESCRIPTION

1	Oil scraper ring	9	Big end bearing cap	02
Z	Second piston ring	10	Big end bearing bolts	
3	First piston ring	11	Lower big end bearing shell with oil inlet	03
4	Piston crown	12	Upper big end bearing shell	
5	Piston skirt	13	Connecting rod	04
6	Connecting rod bolts	14	Small end in marine head design	
7	Connecting rod flange	15	Piston pin	
8	Big end bearing			

- The pistons are of composite type with steel crown and forged steel or nodular cast iron skirt.
- The piston ring sets consist of two compression rings, first ring with chromium diamond plated running surfaces, the second ring with chromium plated running surfaces, and one chromium diamant plated oil scraper ring.
- All ring grooves are located in the steel crown, which is cooled by lube oil.
- The ring grooves are hardened.
- 3-piece connecting rod, supporting removal of the piston without opening the big end bearing.

Engine block

01

One-piece nodular cast iron block	6
Top plate with seating flanges for the	7
cylinder liners	8
Camshaft bearings	9
Camshaft housing	10
Foot of engine block with drain chamfer	
	Top plate with seating flanges for the cylinder liners Camshaft bearings Camshaft housing

- 7 Side screws
- 8 Main bearing
- 9 Locating (main) bearing
- 10 Corrosion protected main bearings

	Mak
GENSET DESCRIPTION	
	01
Core element of the M 34 DF is the engine block, which is made of nodular cast iron in one piece.	02
The advantages of the engine block design are:	03
The one-piece design makes the engine block extremely robust and warp resistant.The charge air manifold is cast integral, which avoids vibration and leakage problems.	04
• Lube oil lines are routed through the block in cast and drilled holes, reducing the number of connecting points and leakage problems to a minimum.	05
• The camshaft housing contains a camshaft, which is made of sections per cylinder allowing a removal of the segments sideways.	06
• The underslung crankshaft allows the removal of the complete crankshaft without disassembly of the	07
entire engine.The engine block is not integrated into the cooling water circuit, therefore the engine block is	08
completely dry.	
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23

Mak

Safe and simple power train

01

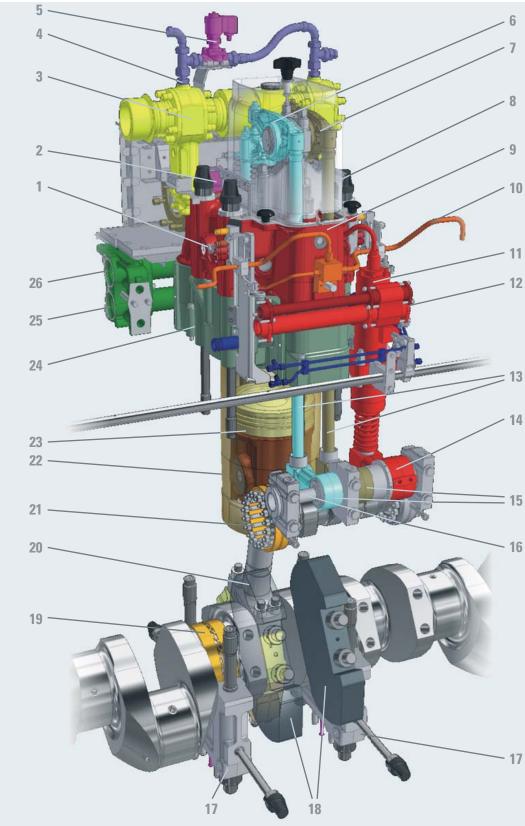


Fig. 1-7 Configuration of main components of one cylinder compartment

01

GENSET DESCRIPTION

- 1 Media duct on cylinder head
- 2 Cylinder head stud bolts
- 3 Double walled gas pipe
- 4 Leakage detection pipe
- 5 Solenoid valve
- 6 Rocker arm, inlet
- 7 Rocker arm, outlet
- 8 Head cover
- 9 Cylinder head
- 10 Ignition fuel oil pipe
- 11 Fuel feed pump
- 12 Fuel feed pipe
- 13 Push rod
- 14 Cam follower, fuel feed pump
- 15 Cam follower, outlet
- 16 Lube oil tube in cam follower shaft

17	Main bearing cap
18	Counterweights on crankshaft
19	Upper main bearing shell with oil inlet
20	Connecting rod, marine design
21	Camshaft segment
22	Cylinder liner
23	Piston crown
24	Cooling water distributor
25	Cooling water pipe, inlet
26	Cooling water pipe, outlet

The safe and simple designed power train of cylinder head, piston with liner, connecting rod and camshaft is parted in cylinder compartments, while the crankshaft is one-piece. The advantage is simplification of maintenance work saving costs.

Additional advantages are:

- Service friendly distribution of media in maintenance-free plugged pipes and cast blocks
- 2-stage fresh water cooling system with 2-stage charge air cooler
- Turbocharger supplied with inboard plain bearings which are lubricated by engine lube oil
- Service friendly gas admission valve and ignition fuel injector location

1.3 Engine running in

All MaK engines delivered have already been completely run in, therefore special guidelines for running in are not necessary.

Under certain circumstances, referred to the respective maintenance guidelines, further running in can be required. This may be for example maintenance work at or changing of:

- pistons,
- piston rings and
- liners.

In these cases a running in period of 8 hours for M 34 DF engines is to be adhered.

During this period the load of the preheated engine is increased from 20 % to 100 %.

HFO operated engines should be operated on MGO / MDO below 50 % engine load due to increased generation of combustion residues.

During the running in period pressure and temperature values are to be compared with the respective values of the factory acceptance test run.

Maintenance work or changing of main or big end bearings do not cause running in procedures.

1.4 Prospective life times

General

The expectable TBO (time between overhaul) and actual life time may deviate significantly as a result of, fuel quality, load and operating profile, conditions, the quality of maintenance and other external factors.

	Life	time operating ho	urs [h]	
Core components	M 34 DF Propulsion			
	MDO	HFO	TBO M 34 DF	
Piston crown (life time incl. 2 stages rework)	90,000	90,000	30,000	
Piston skirt cast iron (standard)	60,000	60,000	—	
Piston skirt steel (optional)	90,000	90,000	—	
Piston skirt Aluminium	_	_	_	
Piston rings	30,000	30,000	—	
Piston pin bearing	60,000	60,000	—	
Cuff / Antipolishing ring	30,000	30,000	—	
Cylinder liner	90,000	90,000	_	
Cylinder head	90,000	90,000	15,000	
Inlet valve	30,000	30,000	15,000	
Exhaust valve	30,000	30,000	15,000	
Nozzle element	7,500	5,000	—	
Pump element	15,000	15,000	—	
Main bearing	30,000	30,000	—	
Big end bearing	30,000	30,000	—	
Camshaft bearing	45,000	45,000	_	
Turbocharger plain bearing	12,000	12,000	—	
Vibration damper camshaft	15,000	15,000	_	
Vibration damper crankshaft	30,000	30,000	15,000	
Ignition fuel injector	_	—	7,500	
Gas admission valve	_	-	7,500	
Cylinder pressure sensor	_	-	7,500	
Ignition fuel oil filter element	-	—	2,000	

The above mentioned data are only indicative and relate to an average component life time under favourable operating conditions.

02

Tuna	720/750 rpm
Туре	[kW]
6 M 34 DF	3,000
8 M 34 DF	4,000
9 M 34 DF	4,500

The maximum fuel rack position is mechanically limited to 100 % output.

2.1 General definition of reference conditions

The maximum continuous rating (locked output) stated by Caterpillar Motoren refers to the following reference conditions according to "IACS" (International Association of Classification Societies) for main and auxiliary engines (tropical conditions):

Air pressure:	100 kPa (1 bar)
Air temperature:	318 K (45 °C)
Relative humidity:	60 %
Seawater temperature:	305 K (32 °C)

2.2 Reference conditions regarding fuel consumption

Fuel consumption data is based on the following reference conditions:

Intake temperature:	298 K (25 °C)
Charge air temperature:	318 K (45°C)
Charge air coolant inlet temperature:	298 K (25°C)
Net heating value of the diesel oil:	42,700 kJ/kg
Tolerance:	5 %
Fuel gas minimum lower heating value (LHV)	28 MJ/Nm ³
Fuel gas methane number for rated output	> 80

Specification of fuel consumption data without engine driven pumps; for each pump driven on an additional consumption of 1 % has to be calculated.

2.3 Lube oil consumption

- 0.6 g/kWh
- Value is based on rated output
- Tolerance ± 0.3 g/kWh

NOTE:

Please also compare the technical data (see chapter 4).

2.4 Emissions

2.4.1 Exhaust gas – preliminary

Tolerance:	5 %
Atmospheric pressure:	100 kPa (1 bar)
Relative humidity:	60 %
Constant speed	750 rpm

Intake air temperature 25 °C

	Output	Output [%]						
Engine	[kW]	[kg/h] [°C]						
		100	90	80	70	60	50	
6 M 34 DF	3,000	22,000 305	21,050 300	18,580 310	16,130 315	13,730 330	11,780 345	
8 M 34 DF	4,000	29,355 310	28,060 305	24,700 315	21,460 317	18,265 335	15,670 350	
9 M 34 DF	4,500	33,000 305	31,575 300	27,870 310	24,195 315	20,590 330	17,650 345	

Intake air temperature 45 °C

	Output	Output [%]						
Engine	[kW]	[kg/h] [°C]						
		100	90	80	70	60	50	
6 M 34 DF	3,000	20,680 324	19,785 319	17,465 330	15,160 335	12,910 351	11,070 367	
8 M 34 DF	4,000	27,590 329	26,375 324	23,215 335	20,170 337	17,170 356	14,730 372	
9 M 34 DF	4,500	31,020 325	29,675 320	26,195 330	22,740 335	19,365 351	16,600 367	

2.4.2 Nitrogen oxide emissions (NO_x-values)

NO_x -limit values according to IMO II:	9.60 g/kWh (n=750 rpm)
CPP acc. to cycle E2:	9.50 g/kWh
Genset acc. cycle D2:	9.50 g/kWh

2.4.3 Engine International Air Pollution Prevention Certificate

The MARPOL Diplomatic Conference has agreed about a limitation of NO_x emissions, referred to as Annex VI to MARPOL 73/78.

When testing the engine for NO_x emissions, the reference fuel is marine diesel oil (distillate) and the test is performed according to ISO 8178 test cycles:

	Test cycle type E2				Test	cycle typ	be D2		
Speed	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %
Power	100 %	75 %	50 %	25 %	100 %	75 %	50 %	25 %	10 %
Weighting factor	0.2	0.5	0.15	0.15	0.05	0.25	0.3	0.3	0.1

Subsequently, the NO_x value is calculated using different weighting factors for different loads that have been corrected to ISO 8178 conditions.

An NO_x emission evidence will be issued for each engine showing that the engine complies with the regulation. The evidence will come as EAPP (Engine Air Pollution Prevention) Statement of Compliance, EAPP Document of Compliance or EIAPP (Engine International Air Pollution Prevention) Certificate according to the authorization by the flag state and related technical file. For the most part on basis of an EAPP Statement of Compliance or an EAPP Document of Compliance an EIAPP certificate can be applied for.

According to the IMO regulations, a technical file shall be provided for each engine. This technical file contains information about the components affecting NO_x emissions, and each critical component is marked with a special IMO number. Such critical components are piston, cylinder head, injection nozzle (element), camshaft section, fuel injection pump, turbocharger and charge air cooler. The allowable settings and parameters for running the engine are also specified in the technical file.

The marked components can be easily identified on-board of the ship by the surveyor and thus an IAPP (International Air Pollution Prevention) certificate for the ship can be issued on basis of the EIAPP certificate and the on-board inspection.

2.5 Engine dimensions and weight – preliminary

Turbocharger at free end

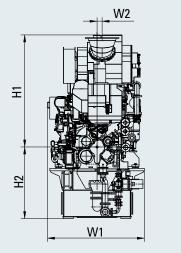
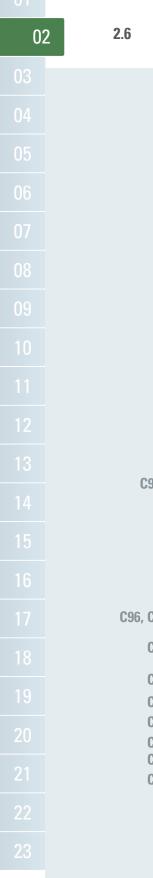


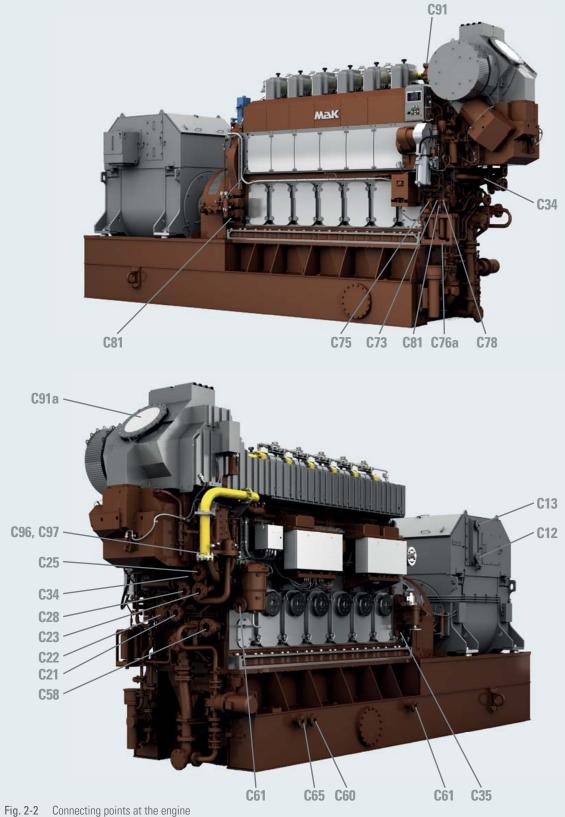
Fig. 2-1 Turbocharger at free end

Turne			Din	nensions (n	nm]			Weight
Туре	L1	L2	L3	H1	H2	W1	W2	[t]
6 M 34 DF	9,566	9,094	8,672	2,771	1,800	2,432	126	73.0
8 M 34 DF	10,626	10,154	9,732	2,908	1,800	2,432	190	92.0
9 M 34 DF	11 156	10 684	10 262	2 908	1 800	2 432	190	98 0

0


<u>L3</u> <u>L2</u> L1

Engine center distance

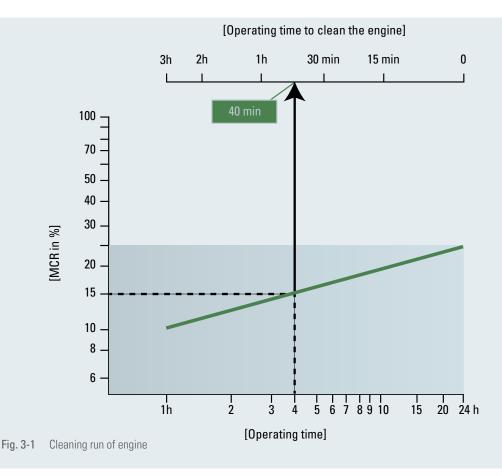

(2 engines side by side)

Minimum distance 3,000 mm

Mak

		01
C12	Generator cooler, inlet	02
C13	Generator cooler, outlet	
C21	Fresh water pump HT, inlet	
C22	Fresh water pump LT, inlet	
C23	Fresh water pump HT, outlet	
C25	Cooling water, engine outlet	
C28	Fresh water pump LT, outlet	05
C34	Drain condensate separator, charge air cooler	
C35	Drain charge air duct	06
C58	Force pump, delivery side	07
C59	Lube oil inlet, lube oil filter	
C60	Separator connection, suction side	08
C61	Separator connection, delivery side	00
C65	Lube oil filling socket	09
C73	Fuel inlet, engine fitted pump	
C75	Connection, stand-by pump	
C76a C78	Pilot fuel, inlet Fuel outlet	
C81	Drip fuel connection	
C91	Crankcase ventilation to stack	
C91a	Exhaust gas outlet	
C96	Gas inlet	
C97	Flushing connection gas pipe (inertgas)	
007		

03


3.1 Restrictions for low load operation

3.1.1 Load restrictions in diesel mode

The engine can be started, stopped and run on heavy fuel oil under all operating conditions. The HFO system of the engine remains in operation and keeps the HFO at injection viscosity. The temperature of the engine injection system is maintained by circulating hot HFO and heat losses are compensated.

The lube oil treatment system (lube oil separator) remains in operation, the lube oil is separated continuously. The operating temperature of the engine cooling water is maintained by the cooling water preheater. Below 25 % output heavy fuel operation is neither efficient nor economical.

A change-over to diesel oil is recommended to avoid disadvantages as e.g. increased wear and tear, contamination of the air and exhaust gas systems and increased contamination of lube oil.

3.1.2 Load restrictions in gas mode

According to the low load restrictions given by the required air to fuel ratio, the engine starts and stops only in diesel operation. A gas operation above 100% load is prohibited. A gas operation below 20% load is not possible or limited for a certain time. A direct fuel change over from HFO operation to gas operation is prohibited. The engine needs to run a certain time with MDO before change over to gas operation.

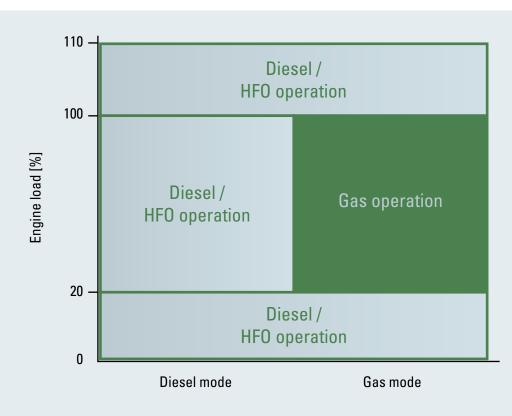


Fig. 3-2 Load restirctions in gas mode

03

3.2 Emergency operation without turbocharger

Emergency operation is permissible with MDO only up to approx. 15% of the MCR.

3.3 Operation in inclined position

Inclination angles of ships at which engine running must be possible:

Rotation X-axis:

03

Heel to each side: 15 ° Rolling to each side: 22.5 °

Rotation Y-axis:

Trim by head and stern:	5°
Pitching:	±7.5°

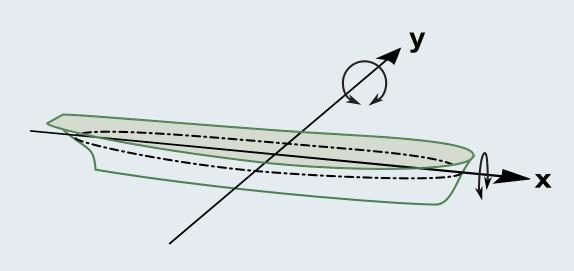
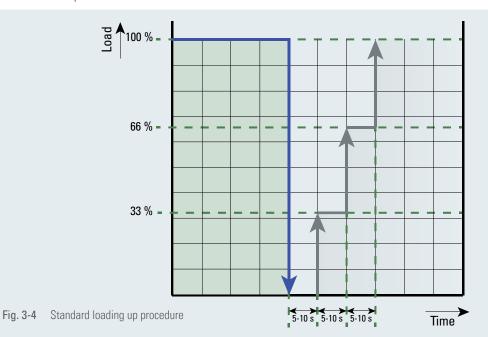
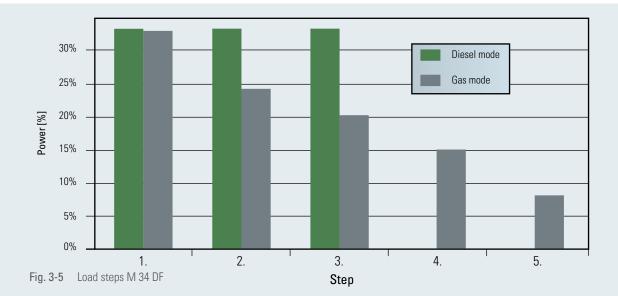



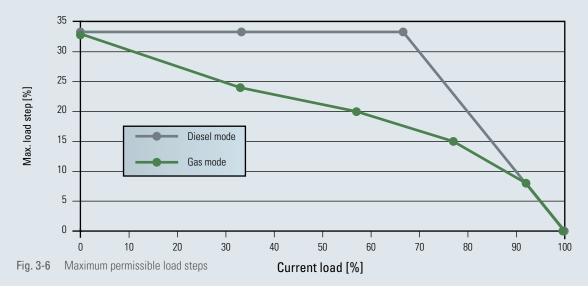
Fig. 3-3 Rotation axis

	77
1 - 1	

3.4 Load application and recovery behaviour

Our standard loading up procedure for M 34 DF engines is to achieve recovery behaviour in accordance with class requirements.




	Power [%]				
Steps	1.	2.	3.		
Diesel mode	33.3 %	33.3 %	33.3 %		

		0	
0	3		
		0	
		0	
		0	6
		0	
		0	8
		0	9
			6
			8
			9

03

	Power [%]					
Steps	1.	2.	3.	4.	5.	
Diesel mode	33.3 %	33.3 %	33.3 %			
Gas mode	33.0 %	24.0 %	20.0 %	15.0 %	80%	

Remarks:

Instant loading with recovery time in 5 seconds, Tol.: ± 5 seconds, engine warmed up in operating conditions Minimum operating rime 10 minutes

Lube oil > 50 °C

Coolant > 65 °C

3.	5 Fuel changeover and recovery behaviour	02		
a)	Changeover from gas to diesel operation:)3		
•	Changeover from gas to diesel fuel operation is done within approx. 1 second at any load, if required due to emergency switch over. The normal switchover takes approx. 50 seconds. Changeover can be started manually by operator or automatically by MACS, if the gas operation conditions are not given anymore (e.g. load window for gas operation has been left).			
٠				
	- Main liquid fuel injection activated	06		
	- Gaseous fuel slowly cut back / liquid fuel amount rises			
	 FCT: Valve timing adjusts depending on running condition (e.g. load) Air fuel ratio control is shut-off (Blow-Off and Waste Gate) 	08		
	- Ignition shot is still active	09		
b)	Changeover from diesel to gas operation:	10		
•	Changeover from diesel to gas fuel operation is possible in the load range between 20 and 100% power.	11		
	If gas mode is activated, the load is constant in the correct range and all systems are running, the engine control will change over to gas operation:	12		
	- Start air fuel ratio control with exhaust Waste Gate and Blow-Off	13		
-	etare gue euppry and raise gue amount, in gue procedie le cumorent	14		
	- Main liquid fuel injection cuts back and switches off, if minimum fuel rack position is reached			
٠	The procedure will take approx. 2 minutes, which depends on gas supply system and self check procedures.	16		
•	If the procedure is completed, power ramp up to 100% power or instant loading is possible.	17		
		18		
		19		

OPERATING RANGES

3.6 Derating

03

In case of a fuel gas methane number lower than 80, the power output has to be redetermined in gas operation.

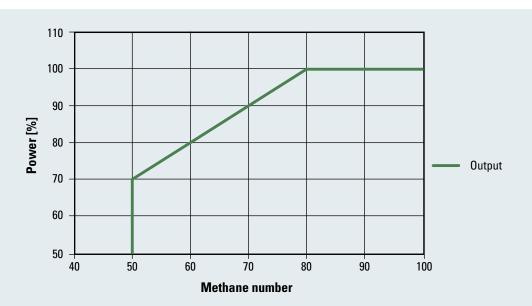


Fig. 3-7 Power as function of methane number

4.1 Diesel, mechanical

		6 M 34 DF	8 M 34 DF	9 M 34 DF
Performance data				
Maximum continuous rating acc. ISO 3046/1	[kW]	3,000	4,000	4,500
Speed	[rpm]	720/750	720/750	720/750
Minimum speed	[rpm]	435	435	435
Brake mean effective presure	[bar]	19.9/19.1	19.9/19.1	19.9/19.1
Charge air pressure	[bar]	3.55	3.55	3.55
Firing pressure	[bar]	200	200	200
Combustion air demand (ta=20 °C)	[m³/h]	17,800	23,750	26,710
Specific fuel oil consumption diesel/gas				
n = const ¹⁾ 100 %	[g/kWh] [kJ/kWh]	188/7,665	188/7,665	188/7,665
85 %	[g/kWh] [kJ/kWh]	187/7,777	187/7,777	187/7,777
75 %	[g/kWh] [kJ/kWh]	189/7,925	189/7,925	189/7,925
50 %	[g/kWh] [kJ/kWh]	195/8,290	195/8,290	195/8,290
Lube oil consumption ²⁾	[g/kWh]	0.6	0.6	0.6
Pilot injection gas operating	[%]	1	1	1
NO _x -emission ⁶⁾	[g/kWh]	9.6	9.6	9.6
NO _x -emission gas ⁶⁾	[g/kWh]	2.39	2.39	2.39
Turbocharger type		Napier NT10	Napier NT12	Napier NT12
Fuel				
Engine driven booster pump	[m³/h/bar]	3.2/5	3.2/5	3.2/5
Stand-by booster pump	[m³/h/bar]	2.2/5	2.9/5	3.2/5
Stand-by booster pump (CCR- system)	[m³/h/bar]	0.66/8	0.88/8	1.0/8
Mesh size MDO fine filter	[mm]	0.025	0.025	0.025
Mesh size HFO automatic filter	[mm]	0.010	0.010	0.010
Mesh size HFO fine filter	[mm]	0.034	0.034	0.034

TECHNICAL DATA

		6 M 34 DF	8 M 34 DF	9 M 34 DF
Lube oil				
Engine driven pump	[m³/h/bar]	141/10	141/10	141/10
Independent pump	[m ³ /h/bar]	60/10	80/10	80/10
Working pressure on engine inlet	[bar]	4 - 5	4 - 5	4 - 5
Engine driven suction pump	[m ³ /h/bar]	168/3	168/3	168/3
Independent suction pump	[m³/h/bar]	65/3	85/3	100/3
Priming pump	[m³/h/bar]	8/5	11/5	11/5
Sump tank content / dry sump content	[m³]	4.1	5.4	6.1
Temperature at engine inlet	[°C]	60 - 65	60 - 65	60 - 65
Temperature controller NB	[mm]	80	100	100
Double filter NB	[mm]	80	80	80
Mesh size double filter	[mm]	0.08	0.08	0.08
Mesh size automatic filter	[mm]	0.03	0.03	0.03
Fresh water cooling				
Engine content	[m³]	0.7	0.95	1.05
Pressure at engine inlet min/max	[bar]	4.5/6.0	4.5/6.0	4.5/6.0
Header tank capacity	[m³]	0.35	0.45	0.55
Temperature at engine outlet	[°C]	80 - 90	80 - 90	80 - 90
Two circuit system				
Engine driven pump HT	[m³/h/bar]	118/4.5	118/4.5	118/4.5
Independent pump HT	[m³/h/bar]	70/4.0	70/4.0	80/4.0
HT-controller NB	[mm]	100	100	100
Water demand LT-charge air cooler	[m³/h]	40	60	60
Temperature at LT-charge air cooler inlet	[°C]	38	38	38
Heat dissipation	1		1	1
Specific jacket water heat	[kJ/kW]	500	500	500
Specific lube oil heat	[kJ/kW]	525	525	525
Lube oil cooler	[kW]	440	590	660
Jacket water	[kW]	420	550	625
Charge air cooler ³⁾	[kW]		_	_
Charge air cooler (HT-stage) 3)	[kW]	996	1,330	1,496
Charge air cooler (LT-stage) ³⁾ (HT-stage before engine)	[kW]	290	388	436
Heat radiation engine	[kW]	150	190	210

TECHNICAL DATA

		6 M 34 DF	8 M 34 DF	9 M 34 DF
Exhaust gas				
Silencer / spark arrestor NB	[mm]	600	700	800
Pipe diameter NB after turbine	[mm]	600	700	800
Maximum exhaust gas pressure drop	[bar]	0.03	0.03	0.03
Exhaust gas temperature after turbine (intake air 25 °C) ⁵⁾	[°C)	305	310	305
Exhaust gas mass flow (intake air 25 °C) $^{\rm 5)}$	[kg/h]	22,000	29,335	33,000
Exhaust gas temperature after turbine (intake air 25 °C) (gas) ⁵⁾	[°C]	345	355	350
Exhaust gas mass flow (intake air 25 °C) (gas) $^{\rm 5)}$	[kg/h]	18,920	25,230	28,400
Starting air				
Starting air pressure max.	[bar]	30	30	30
Minimum starting air pressure	[bar]	10	10	10
Air consumption per start 4)	[Nm ³]	1.2	1.2	1.2
Max. allowed crankcase pressure, ND ventilation pipe	[mmWs/mm]	15/80	15/80	15/80

1) Reference conditions: LCV = 42,700 kJ/kg, ambient temperature 25 °C, charge air coolant temperature 25 °C, tolerance 5 %, + 1 % for engine driven pump / 2) Standard value, tolerance ± 0.3 g/kWh, related on full load / 3) Charge air heat based on 45 °C ambient temperature /

4) Preheated engine / 5) Tolerance 10 %, rel. humidity 60 % / 6) Marpol 73/78, Annex VI, cycle E2, D2

Mak

04

01 02 03 04 05 05 05 05 05 05

5.1 MG0 / MD0 operation

General

MaK diesel engines are designed to burn a wide variety of fuels.

See the information on fuel requirements in section MDO / MGO and HFO operation or consult the Caterpillar Motoren technical product support.

For proper operation of MaK engines the minimum Caterpillar Motoren requirements for storage, treatment and supply systems have to be observed, as shown in the following sections.

5.1.1 Acceptable MG0 / MD0 characteristics

Two fuel product groups are permitted for MaK engines:

Pure distillates:	Gas oil, marine gas oil, diesel fuel
Distillate/mixed fuels:	Marine gas oil (MGO), marine diesel oil (MDO)

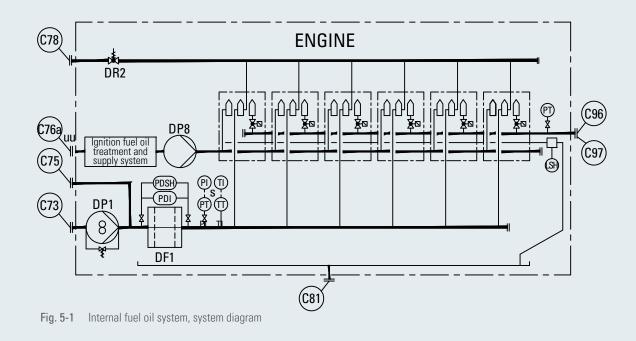
The difference between distillate/mixed fuels and pure distillates are higher density, sulfur content and viscosity.

Marine distillate fuels

Parameter	Unit	Limit	DMX	DMA	DMZ	DMB
Viscosity at 40 °C	[mm²/s]	max	5.5	6.0	6.0	11.0
Viscosity at 40 °C	[mm²/s]	min	1.4	2.0	3.0	2.0
Micro Carbon residue at 10 % residue	[% m/m]	max	0.3	0.0	0.3	_
Density at 15 °C	[kg/m³]	max	—	890	890	900
Micro Carbon residue	[% m/m]	max	—	—	—	0.3
Sulfur ^{a)}	[% m/m]	max	1.0	1.5	1.5	2.0
Water	[% V/V]	max	—	—	_	0.3 ^{b)}
Total sediment by hot filtration	[% m/m]	max	—	_	—	0.1 ^{b)}
Ash	[% m/m]	max	0.01	0.01	0.01	0.01
Flash point	[°C]	min	43	60	60	60
Pour point, summer	[°C]	max	—	0	0	6
Pour point, winter	[°C]	max	—	-6	-6	0
Cloud point	[°C]	max	-16	—	—	—
Calculated Cetane Index		min	45	40	40	35
Acid number	[mgKOH/g]	max	0.5	0.5	0.5	0.5
Oxidation stability	[g/m ³]	max	25	25	25	25 ^{c)}
Lubricity, corrected wear scar diameter (wsd 1.4 at 60 $^{\circ}\text{C})^{\text{ d})}$	[µm]	max	520	520	520	520 ^{c)}
Hydrogen sulfide ^{e)}	[mg/kg]	max	2.0	2.0	2.0	2.0
Appearance			cl	ear & brigh	t ^{f)}	b), c)

a) A Sulphur limit of 1.00 % m/m applies in the Emission Control Areas designated by the International Maritime Organization. As there may be local variations, the purchaser shall define the maximum Sulphur content according to the relevant statutory requirements, notwithstanding the limits given in this table. / b) If the sample is not clear and bright, total sediment by hot filtration and water test shall be required. / c) Oxidation stability and lubricity tests are not applicable if the sample is not clear and bright. / d) Applicable if Sulphur is less than 0.050% m/m. / e) Effective only from 1 July 2012. / f) If the sample is dyed and not transparent, water test shall be required. The water content shall not exceed 200 mg/ kg (0.02% m/m).

5.1.2


General

it is needed.

Internal fuel oil system

05

internal fuel oil system. NOTE: In diesel mode operation the ignition fuel system is always active.

The fuel injectors are utilized to deliver the correct amount of fuel to the cylinders precisely at the moment

The diesel fuel supply system must ensure a permanent and clean supply of diesel fuel to the engine

DF1	Fuel fine filter (duplex filter)	C73	Fuel inlet, to engine fitted pump
DF10	Ignition fuel oil fine filter	C75	Connection, stand-by pump
DP1	Diesel oil feed pump	C76a	Inlet, ignition fuel
DP8	Common rail high pressure pump	C78	Fuel outlet
DR2	Fuel pressure regulating valve	C81	Drip-fuel connection
		C96	Gas inlet
LSH	Level switch high	C97	Flushing connection gas pipe (inertgas)
PDI	Diff. pressure indicator		
PDSH	Diff. pressure switch high	S	Please refer to the measuring point list
PI	Pressure indicator		regarding design of the monitoring devices.
PT	Pressure transmitter	uu	Ignition fuel quality requirements only MDO
ΤI	Temperature indicator		fuel acc. ISO-F-DMA, DMB to be used
TT	Temperature transmitter (PT100)		

Diesel oil feed pump DP1 (fitted)

The engine driven fuel transfer pump DP1 is a gear pump, that delivers the fuel through the filter DF1 to each injector. The fuel transfer pump capacity is slightly oversized to deliver sufficient fuel to the fuel injection system. It also transfers the heat, generated during injection process, away from the fuel injection system.

To ensure a sufficient diesel oil pressure at the engine, a pressure regulator DR2 is installed and adjusted during commissioning of the engine.

Fuel fine filter (duplex filter) DF1 (fitted)

Duplex change over type (mesh size of $25 \ \mu m$) is fitted on the engine.

5.1.3 External fuel oil system

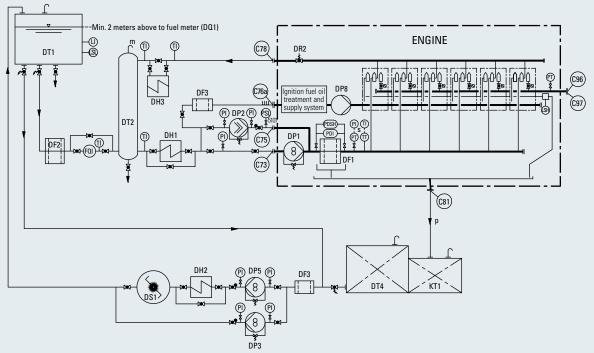


Fig. 5-2 External fuel oil system diagram with intermediate tank

DF1	Fuel fine filter (duplex filter)
DF2	Fuel primary filter (duplex filter)
DF3	Fuel coarse filter
DH1	Diesel oil preheater (if required)
DH2	Electrical preheater for diesel oil (separator)
DH3	Diesel oil cooler
DP1	Diesel oil feed pump
DP2	Diesel oil stand-by feed pump
DP3	Diesel oil transfer pump (to day tank)
DP5	Diesel oil transfer pump (separator)
DP8	Common rail high pressure pump
DB2	Fuel pressure regulating valve
DS1	Diesel oil separator
DT1	Diesel oil day tank
DT2	Diesel oil intermediate tank
DT4	Diesel oil storage tank
KP1	Fuel injection pump
KT1	Drip fuel tank
m	Lead vent pipe beyond service tank level
p	Free outlet required

FQI	Flow	quantity	indicator
-----	------	----------	-----------

- LI Level indicator
- LSH Level switch high
- LSL Level switch low
- PDI Diff. pressure indicator
- PDSH Diff. pressure switch high
- PI Pressure indicator
- PSL Pressure switch low
- **PT** Pressure transmitter
- TI Temperature indicator
- TT Temperature transmitter (PT100)
- C73 Fuel inlet, to engine fitted pump
- C75 Connection, stand-by pump
- C78 Fuel outlet
- C81 Drip-fuel connection
- C96 Gas inlet
- **C97** Flushing connection gas pipe (inertgas)
- s Please refer to the measuring point list regarding design of the monitoring devices
 uu Ignition fuel quality requirements only MDO fuel acc. ISO-F-DMA, DMB to be used

05

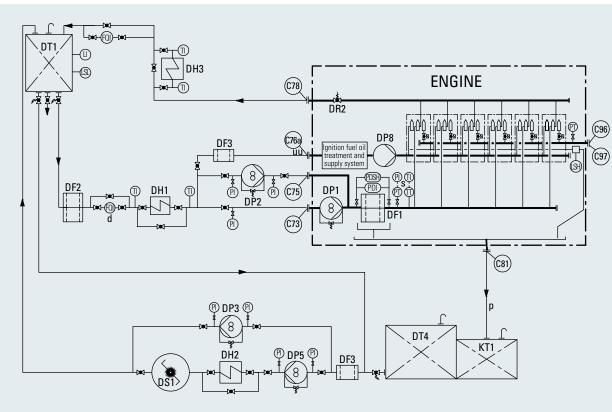


Fig. 5-3 External fuel oil system diagram without intermediate tank

- **DF1** Fuel fine filter (duplex filter)
- DF2 Fuel primary filter (duplex filter)
- DF3 Fuel coarse filter
- DH1 Diesel oil preheater (if required)
- DH2 Electrical preheater for diesel oil (separator)
- DH3 Fuel oil cooler for MDO operation
- DP1 Diesel oil feed pump
- DP2 Diesel oil stand-by feed pump
- DP3 Diesel oil transfer pump (to day tank)
- DP5 Diesel oil transfer pump (separator)
- DP8 Common rail high pressure pump
- DR2 Fuel pressure regulating valve
- DS1 Diesel oil separator
- DT1 Diesel oil day tank
- DT4 Diesel oil storage tank
- KT1 Drip fuel tank
- FQI Flow quantity indicator
- LSH Level switch high

- PDI Diff. pressure indicator PDSH Diff. pressure switch high ΡI Pressure indicator PT Pressure transmitter ΤI Temperature indicator TT Temperature transmitter (PT100) C73 Fuel inlet, to engine fitted pump C75 Connection, stand-by pump C76a Inlet, ignition fuel C78 Fuel outlet C81 **Drip-fuel connection** C96 Gas inlet C97 Flushing connection gas pipe (inertgas) р Free outlet required Please refer to the measuring point list S
- regarding design of the monitoring devicesuuIgnition fuel quality requirements only MDOfuel acc. ISO-F-DMA, DMB to be used.

- 02 03
- 05
 -)7)8

General

05

The design of the fuel oil system may vary from ship to ship, the system itself has to provide sufficient, permanent and clean fuel oil of the required viscosity and pressure to each engine. Fuel storage, treatment, temperature and pressure control as well as sufficient circulation must be ensured.

Diesel oil storage tank DT4

The tank design, sizing and location are according to classification society requirements and based on ship application. No heating is necessary because all marine distillate fuels are suitable for pumping.

Diesel oil separator DS1

Depending on the fuel oil quality a diesel oil separator DS1 is recommended for the use of MGO and required for MDO by Caterpillar Motoren. Any fuel oil must always be considered as contaminated upon delivery and should therefore be thoroughly cleaned to remove solid and liquid contaminants before use. Most of the solid contaminants in the fuel are rust, sand, dust.

Liquid contaminants are mainly water, i.e. fresh water or salt water.

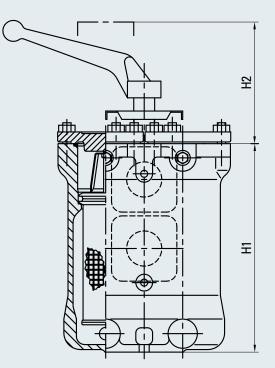
Impurities in the fuel oil can result in

- · damage to fuel injection pumps and injectors,
- increased cylinder liner wear,
- deterioration of the exhaust valve seats
- increased fouling of turbocharger blades.

If a diesel oil separator is installed a total diesel oil separator capacity of 100 % of the full load fuel consumption is recommended.

HT-water or electrical heating is normally used as heating medium.

The nominal capacity should be based on a separation time of 22h/day:


 $\begin{aligned} V_{eff.}[l/h] = 0.28 \cdot P_{eng.} \ [kW] & V_{eff.} = Volume \ effective \ [l/h] \\ P_{eng.} = Power \ engine \ [kW] \end{aligned}$

Diesel oil day tank DT1

The day tank collects clean / treated fuel oil, compensates irregularities in the treatment plant and its standstill periods. Two day tanks are to be provided, each with a capacity according to classification rules. The tank should be provided with a sludge space including a sludge drain valve and an overflow pipe from the MDO/MGO service tank to the settling/storage tank. The level of the tank must ensure a positive static pressure on the suction side of the fuel feed pumps. Usually tank heating is not required.

Fuel primary filter (duplex filter) DF2

The fuel primary filter protects the fuel meter and feed pump from major solids. A duplex change over type with mesh size of $320 \ \mu m$ is recommended.

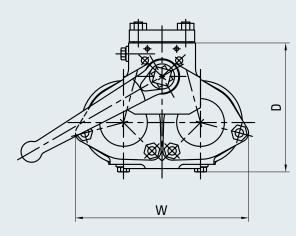


Fig. 5-4 Fuel primary filter DF2

Engine output	DN	Dimensions [mm]					
[kW]		H1	H2	W	D		
≤ 5,000	32	249	220	206	180		
≤ 10,000	40	330	300	250	210		
≤ 20,000	65	523	480	260	355		
> 20,000	80	690	700	370	430		

Flow quantity indicator FQI

One fuel meter is sufficient if the return fuel from the engine is connected to the diesel intermediate tank DT2.

If the fuel return from engine is connected to the day tank, an additional fuel meter in the return line to day tank has to be provided.

A minimum static fuel pressure head of at least 0.2 bar has to be considered. The fuel may be provided by gravity flow from the day tank. The static pressure must exceed the back pressure of the flow meter and prefilter.

05

05

Diesel oil intermediate tank DT2

In the intermediate tank DT2 the warm return fuel from the engine mixes with the fuel from the day tank. The tank shall be vented as an open system, with the ventilation line guided to above the day tank level.

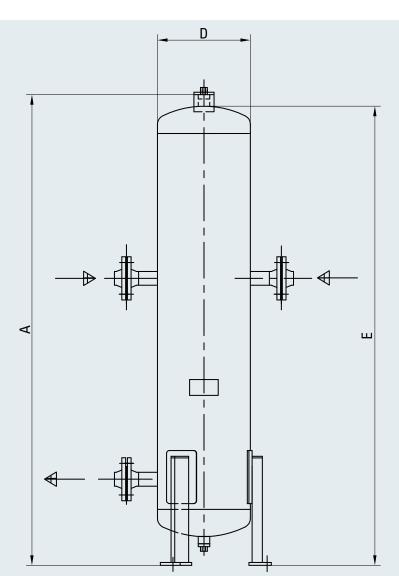


Fig. 5-5 Diesel oil intermediate tank DT2

Plant output	Volume	[Weight		
[kW]	I	I A D		E	[kg]
≤ 4,000	50	950	323	750	70
≤ 10,000	100	1,700	323	1,500	120
> 10,000	200	1,700	406	1,500	175

Diesel oil preheater DH1 (hot water)

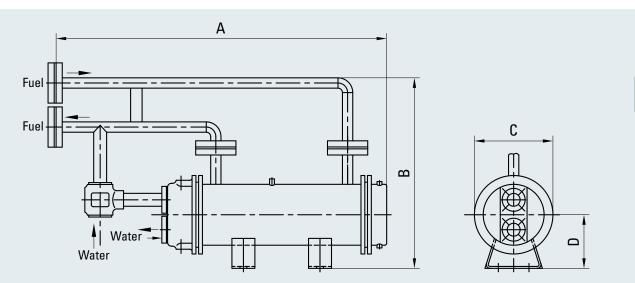


Fig. 5-6 Diesel oil preheater DH1

Engino		Weight			
Engine	А	B C		D	[kg]
6/8 M 34 DF	863	498	Ø 205	140	42
9 M 34 DF	1,468	484	Ø 205	140	ca. 75

The capacity of the MDO preheater is to determine on the required fuel temperature up to approx. 50 °C.

$$Q[kW] = \frac{P_{eng.}[kW]}{166}$$

Q = Heating capacity [kW]

 $P_{eng.} = Power engine [kW]$

A diesel oil preheater is not required

- for gas oil operation.
- with preheated day tanks.

Mak

05

Stand-by booster pump DP2 (separate)

The stand-by booster pump DP2 delivers fuel through the filter DF1 to each injection pump. The feed pump maintains the pressure at the injection pumps and circulates the fuel in the system. The capacity is slightly oversized to transfer the heat, which occurs during the injection process, away from the fuel injection system.

A positive static pressure is required at the suction side of the pump. Capacity see technical data.

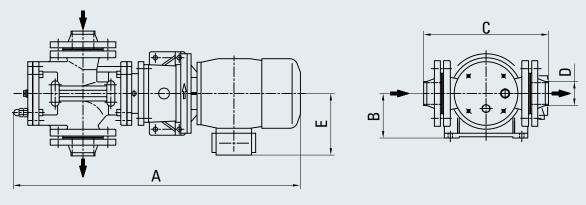


Fig. 5-7Stand-by booster pump DP2

Engine	Dimensions [mm]					Weight	Motorpower	Voltage / Frequency
	А	В	С	D	E	[kg]	[kW]	[V/Hz]
6/8/9 M 34 DF	735	112	314	60.3	155	61	1.5	400/50
6/8 M 34 DF	735	112	314	60.3	155	61	1.8	440/60
9 M 34 DF	775	132	314	60.3	155	70	2.6	440/60

Fuel oil cooler DH3

To ensure a fuel oil temperature below 50 °C at any time a cooling of diesel oil may be required. The need for a fuel cooler is system specific and depends on fuel circuit design and type of fuel oil. In case of more than one engine connected to the same fuel supply system, the MDO-cooler capacity has to be increased accordingly.

The heat transfer load into the diesel oil system is approx. 1.6 kW/cyl. LT-water is normally used as cooling medium.

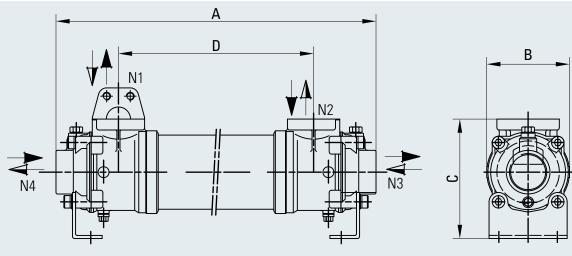
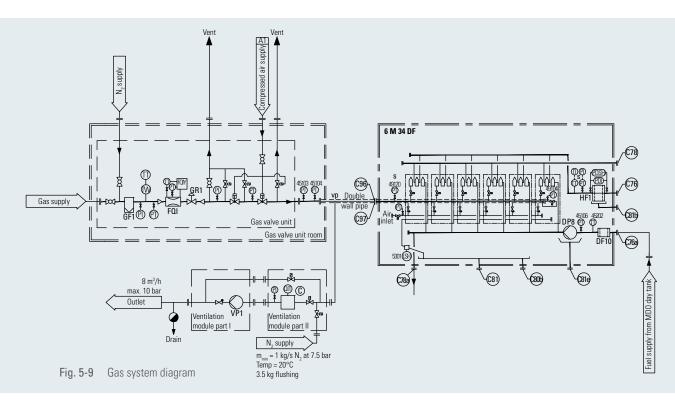


Fig. 5-8 Fuel oil cooler for MDO operation DH3

Engino	Dimensions [mm]									
Engine	A	В	С	D	N1 + N2	N3 + N4	[kg]			
6/8/9 M 34 DF	910	106	153	750	1 ¼" SAE	1 ½" SAE	19			


5.2 Ignition fuel system

The MaK dual fuel engine is equipped with an ignition fuel system to ignite the gas fuel / air mixture in the combustion chamber. This ignition system is a common rail system which injects only a small amount of MDO fuel.

5.2.1 Ignition fuel quality requirements

Only MDO fuel acc. to ISO-F-DMA, DMB is to be used.

5.2.2 System diagram

DF10 DP8 GF1	Ignition fuel oil fine filter Common rail high pressure pump Gas filter	C76 C76a C78	Inlet, fuplex filter Inlet, ignition fuel Fuel outlet	
GR1	Gas pressure regulating valve	C78	Outlet, ignition fuel	
HF1	Fine filter (duplex filter)	C80b	Drip-fuel connection	
VP1	Vaccuum pump	C81	(sealing oil injection pump) Drip fuel connection	05
FQI	Flow quantity indicator	C81b	Drip fuel connection (filter pan)	
LSH	Level switch high	C81e	Drip fuel connection	
ΡI	Pressure indicator	C96	Gas inlet	
PT	Pressure transmitter	C97	Flushing connection gas pipe (inertgas)	
QIT	Gas indicator and transmitter			
ΤI	Termperature indicator	S	Please refer to the measuring point list	
TT	Temperature transmitter (PT100)		regarding design of the monitoring	
TW	Protective sleeve		devices.	
		vp	Distance between GVU and engine max. 10 m (piping length).	

5.2.3 Pilot fuel ignition system components

Ignition fuel injector

Weight: 0.7 kg

The ignition fuel injector enables the injection of pressurized fuel directly into the cylinder.

The injector design is simple and compact, the key features are:

- Electronically controlled
- Flexible injection timing and duration

Fig. 5-10 Ignition fuel injector

0			
0			
0			
0	4		
		0	5
0			
0			
0			
0			

High pressure pump

Weight: 8 kg

One high pressure pump delivers the required amount of ignition fuel to the injectors and provides the desired pressure in closed loop control. The pump itself is based on a proved design.

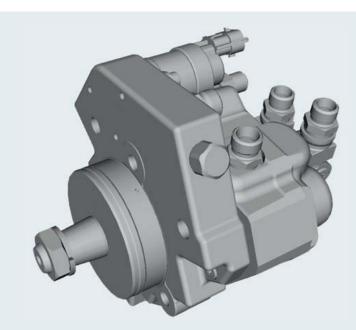


Fig. 5-11 High pressure pump

5.3 HFO operation

The following section is based on the experiences gained in the operation of heavy fuel installations. Stable and correct viscosity of the fuel before injection pumps (see technical data) must be maintained at any time. Sufficient circulation through every engine connected to the same circuit must be ensured in all operating conditions.

The fuel treatment system should comprise at least one settling tank and two separators. Correct dimensioning of HFO separators is of great importance, and therefore the recommendations of the separator manufacturer must be closely followed.

Poorly purified fuel is harmful to the engine. A high content of water may also damage the fuel feed system.

Injection pumps generate pressure pulses into the fuel feed and return piping. The fuel pipes between the feed unit and the engine must be clamped properly to rigid structures. The distance between the fixing points should be at close distance next to the engine. (See chapter piping design, treatment and installation.)

ATTENTION:

In multiple engine installations, where several engines are connected to the same fuel feed circuit, it must be possible to close the fuel supply and return lines connected to the engine individually. (This is a SOLAS requirement.)

NOTE:

It is further stipulated that the means of isolation shall not affect the operation of the other engines, and it shall be possible to close the fuel lines from a position that is not rendered inaccessible due to fire on any of the engines.

In HFO mode operation the ignition fuel system is always active.

Fuel oil system

A pressurized fuel oil system, as shown in Fig. 5-13, is necessary when operating on high viscosity fuels. When using high viscosity fuels requiring high preheating temperatures, the fuel oil from the engine fuel oil system to the return line will also have a relatively high temperature. The fuel oil pressure measured on the engine (at fuel pump level) should be about 5 bar. This maintains a pressure margin against gasification and cavitation in the fuel system, even at 150 °C preheating.

In order to ensure correct atomization, the fuel oil temperature must be adjusted according to the specific fuel oil viscosity used. An inadequate temperature can influence the combustion and could cause increased wear on cylinder liners and piston rings, as well as deterioration of the exhaust valve seats. A too low heating temperature, i.e. too high viscosity, could also result in excessive fuel consumption.

Therefore, optimum injection viscosity of 10 - 12 cSt must be maintained at any rate and with all fuel grades.

Deviations from design recommendations are possible, however, they should be discussed with Caterpillar Motoren.

Trace heating for all heavy fuel pipes is recommended.

05

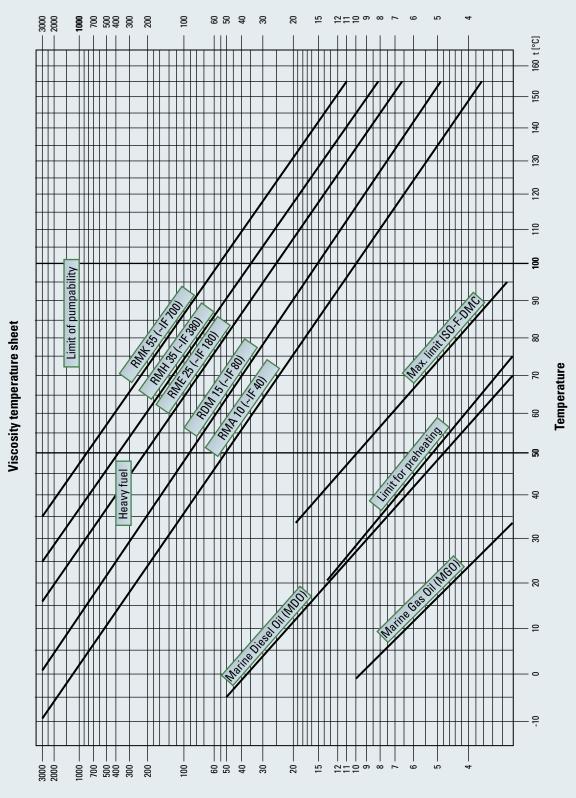
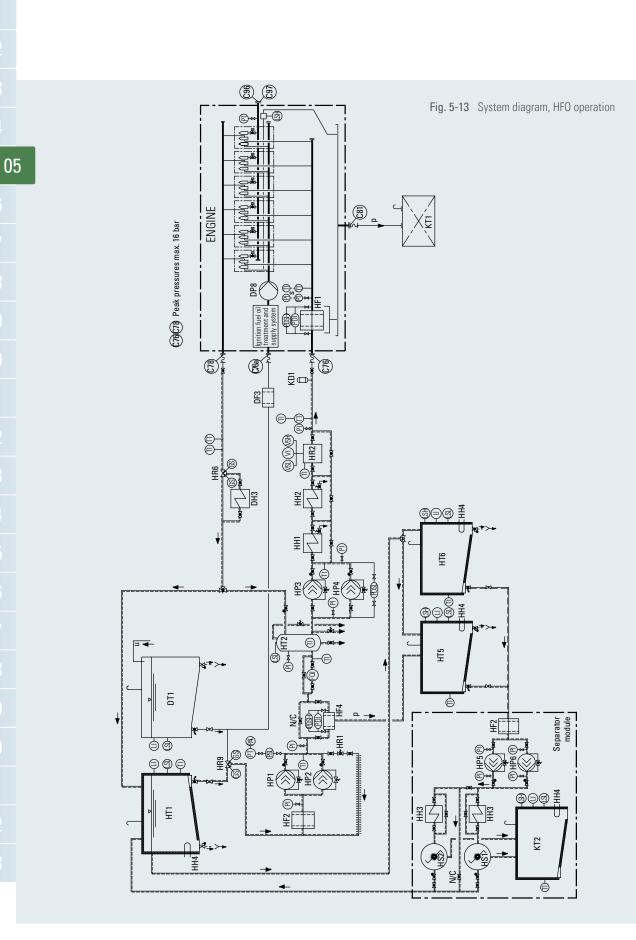



Fig. 5-12 Viscosity / temperature diagram

FUEL OIL SYSTEM																			
5.3.1 CIMAC – Requirements for residual fuels for diesel engines (as delivered)																			
	iel shal equirem							el engii	nes	plea	ise see	e tak	ole n	ext	page.				
CIMAC K55			1,010	55		60		30	22	0.15	0.10	0.5	4.5	600	80	15	15	30	
CIMAC H55			991							0	0	0	7	0					
CIMAC K45			1,010	45		60		30	22	0.15	0.10	.5	.5	600	80	15	15	30	
CIMAC H45			991	7						0	0	0	4.	9		、	、		_
CIMAC K35	_		1,010						22	0.15				600					
CIMAC H35			991	35		60		30		0	0.10	0.5	4.5	9	80	15	15	30	
CIMAC G35			6						18	0.15				300					_
CIMAC F25	RMF 180		991	25		60		30	20	0.15	0.10	0.5	.5	500	80	15	5	30	elow:
CIMAC E25	RME 180		6	5	15 5)	0		en e	15	0.10	0.	0	4.	200	8	-	1	(r)	PF is given below:
CIMAC D15	RMD 80		980 4)	15		60		30	14	0.10	0.10	0.5	4.0	350	80	15	15	30	ledw. I sec 100 45 55 500 7,000 5,000 7,000
CIMAC C10	30 30		,2 ₃₎					24	14					300					50°C and Rec 35 35 38 38 38 38 38 38 38 38 38 38 38 38 38
CIMAC B10	RMB 30		675	10		60	0	9	Z ⁶⁾	0.10	0.10	0.5	3.5	150	80	15	15	30	viscosity at 50 15 25 80 180 600 1,500 5) ISO: carbon
CIMAC A10	RMA 30		950 ²⁾		e ₂₎				12					1					in kinematic 7 10 30 40 200 300 101 limited / 6
nation	ed to 7 (05) F-	Limit	тах	max	min	min	max	max.	тах	тах	max	тах	max	тах	max	тах	тах	тах	quivalents (cSt.) (cSt.) sec.] 5/5) ISO: r
Designation	Related to ISO8217 (05) F-	Dim.	kg/m³	cSt. ¹⁾	cSt. ¹⁾	S	Jo	J.	(m/m) %	(m/m) %	(m/m) %	(V/V) %	(m/m) %	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	pproximate e pproximate e 50°C [mm²/s] 00°F Redv. [1 / 4) ISO: 975
	Characteristic		Density at 15°C	Kin. viscosity at 100°C	Kin. viscosity at 100°C	Flash point	Pour point winter	Pour point summer	Carbon residue	Ash	Total sedim. after ageing	Water	Sulphur	Vanadium	Aluminum + Silicon	Zink	Phosphor	Calcium	1) An indication of the approximate equivalents in kinematic viscosity at 50°C and Redw. I sec 100°F Kinematic viscosity at 100°C [mm²/s] (cSt.) 7 10 15 25 35 45 55 Kinematic viscosity at 50°C [mm²/s] (cSt.) 30 40 80 180 380 500 700 Kinematic viscosity at 50°C [mm²/s] (cSt.) 30 40 80 180 380 500 700 Kinematic viscosity at 100°F Redw. [I sec.] 200 300 600 1,500 3,000 5,000 7,000 Z) ISO: 960 / 3) ISO: 960 / 4) ISO: 975 / 5) ISO: not limited / 6) ISO: carbon residue 10 2

Mak

Page 46 / M 34 DF Generator Set / 11.2014

General

For location, dimensions and design (e.g. flexible connection) of the disconnecting points see engine installation drawing.

No valve fittings with loose cone must be installed by the shipyard in admission and return lines.

DH3	Fuel oil cooler for MDO operation							
DF3	Fuel coarse filter							
DP8	Common rail high pressure pump							
DT1	Diesel oil day tank							
HF1	Fine filter (duplex filter)							
HF2	Primary filter (duplex filter)							
HF4	Self cleaning filter							
HH1	Heavy fuel final preheater							
HH2	Stand-by final preheater							
HH3	Heavy fuel preheater (separator)							
HH4	Heating coil							
HP1	Fuel pressure pump							
HP2	Fuel stand-by pressure pump							
HP3	Fuel circulating pump							
HP4	Stand-by circulating pump							
HP5/6	Heavy fuel transfer pump (separator)							
HR1	Fuel pressure regulating valve							
HR2	Viscosimeter							
HR6	Change over valve							
HR9	Fuel change over main valve							
HS1/2	Heavy fuel separator							
HT1	Heavy fuel day tank							
HT2	Mixing tank							
HT5/6	Settling tank							
KD1	Pressure absorber							
KP1	Injection pump							
KT1	Drip fuel tank							
KT2	Sludge tank							
All heav	All heavy fuel pipes have to be insulated.							
	Heated pipe							

FQI GS LI LSH LSL PAL PDI	Flow quantity indicator Limit switch Level indicator Level switch high Level switch low Pressure alarm low Diff. pressure indicator
PDSH	Diff. pressure switch high
PDSL	Diff. pressure switch low
PI	Pressure indicator
PSL	Pressure switch low
PT	Pressure temp.
TI	Temperature indicator
TT	Temperature transmitter (PT100)
VI	Viscosity indicator
VSH	Viscosity control switch high
VSL	Viscosity control switch low
C76 C76a C78 C81 C96 C97	Inlet, duplex filter Inlet, pilot fuel Fuel outlet Drip-fuel connection Gas inlet Flushing connection gas pipe (inertgas)
p s u uu	Free outlet required Please refer to the measuring point list regarding design of the monitoring devices Fuel from separator or from transfer pump Ignition fuel quality requirements only MDO fuel acc. ISO-F-DMA, DMB to be used.

05

Fintube heat exchanger

Storage tanks

The tank design, sizing and location must comply with classification society requirements and are based on ship application.

Heating coils are necessary and are to be designed so that the HFO temperature is at least 10K above the pour point to ensure a pumping viscosity below 1,000 cSt.

Heating is possible by steam, thermal oil, electrical current or hot water.

Settling tanks HT5, HT6

The tank design, sizing, location must comply with classification society requirements and are based on ship application. Two settling tanks are to be provided.

Its function is to remove water and solids by gravity due to higher fuel oil temperature and reduced turbulences. Provide constant oil temperature and avoid interruption of treatment system, due to overflow from HFO day tank.Thermal insulation of the settling tanks is recommended to avoid heat losses.

In order to ensure a sufficient settling effect, the following settling tank designs are permitted:

- 2 settling tanks, each with a capacity sufficient for 24 hours full load operation of all consumers or
- 1 settling tank with a capacity sufficient for 36 hours full load operation of all consumers and automatic filling

Settling tank temperature shall be 70 - 80 °C; the charging level shall be 70 - 90 %.

Heavy fuel preheater (separator) HH3

Heavy fuel oil needs to be heated up to a certain temperature before separating. The most common heaters on board of ships are steam heaters. Other fluid heating sources are hot water, thermal oil or electrical heaters. Overheating of the fuel may cause fuel cracking. Thus the maximum electric load on the heater element should not exceed 1 Watt/cm².

In a cleaning system for HFO the usual processing temperature is 98 °C.

The separator manufacturer's guidelines have to be observed.

Heavy fuel transfer pumps (separator) HP5, HP6

The separator feed pumps shall be installed as close as possible to the settling tanks. The separator manufacturer's guidelines have to be observed.

Heavy fuel separators HS1, HS2

Any fuel oils whether heavy fuel oil, diesel oil or crude oil must always be considered as contaminated upon delivery and should therefore be thoroughly cleaned before use.

Therefore self-cleaning types should be selected.

The purpose of any fuel treatment system is to clean the fuel oil by removal of water, solids, and suspended matter to protect the engine from excessive wear and corrosion.

Liquid contaminants are mainly water, i.e. either fresh water or salt water.

Impurities in the fuel can cause damage to fuel injection pumps and injectors, and can result in increased cylinder liner wear and deterioration of the exhaust valve seats as well as increased fouling of turbocharger blades.

Two separators with independent electrically driven pumps must be provided.

Separator sizing:

The correct sizing of the separators is based on the max. fuel oil consumption at maximum continuous rating (MCR) of the engines. The following formula can be used:

(The fuel consumption of auxiliary engines and boilers, if there are any, must be included)

 $V_{off} = 0.28 P (I/h)$

 $V_{eff.} = Volume effective [l/h] P_{eng} = Power engine [kW]$

The cleaning capacity of the separator must always be higher than the entire fuel consumption of the plant, incl. aux. equipment.

ATTENTION:

The separator outlet pressure is limited, so the pressure in the pipe line between separator outlet and day tank must be observed carefully. Follow the separator manufacturer's guidelines.

Heavy fuel day tank HT1

The tank design, sizing and location must comply with classification society requirements based on ship application. Two day tanks are to be provided. Each day tank capacity must be designed for full load operation of all consumers according to classification requirements. An overflow system into the settling tanks is required.HFO day tanks shall be provided with heating coils and sufficient insulation. Heating is possible by steam, thermal oil or hot water. The day tank temperature shall be above 90 °C.

5.3.2 Fuel booster and supply system

The booster system shall provide a pre-pressure to the mixing tank of approx. 4 - 5 bar. The circulating system provides sufficient flow of the required viscosity to the injection pumps. The circulation flow rate is typically 3.5 - 4 times the fuel consumption at MCR to prevent overheating of the fuel injection system and thus avoiding evaporation in the injection pumps.

Fuel change over main valve HR9

A manually operated three-way valve for changing over from MDO/MGO to HFO operation and back to MDO/MGO equipped with limit switches is necessary.

Primary filter (duplex filter) HF2

A protection strainer with a mesh size 320 μ m has to be installed before fuel pressure pumps to prevent any large particles entering the pump.

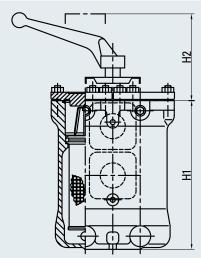


Fig. 5-14 Primary filter HF2

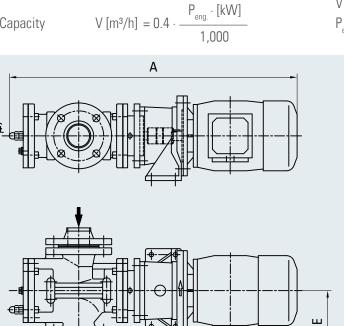
	D
- W	

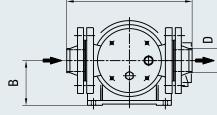
Engine output	DN	Dimensions [mm]								
[kW]		H1	H2	W	D					
≤ 10,000	40	330	300	250	210					
≤ 20,000	65	523	480	260	355					
> 20,000	80	690	700	370	430					

Fuel pressure pump HP1, fuel stand-by pressure pump HP2

Two supply pumps in parallel are recommended, one in operation and one on stand-by. The capacity of the pump must be sufficient to prevent pressure drop during flushing of the automatic filter. A suction strainer with a mesh size of 320 µm should be installed before each pump.

V =


P_{eng.}=


Volume [m³/h]

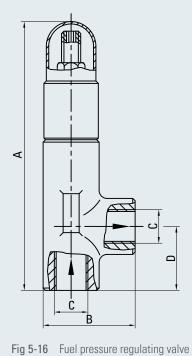
Power engine [kW]

- Screw type pump with mechanical seal.
- Vertical or horizontal installation is possible.
- Delivery head 5 bar. •

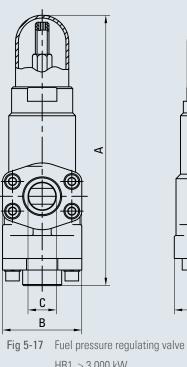
Capacity

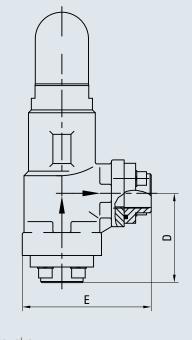
С

Fig. 5-15 Fuel pressure pump HP1; fuel stand-by pressure pump HP2

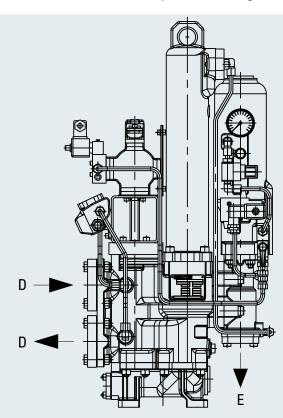

Plant output		Dir	Weight	Voltage / frequency			
[kW]	A	В	С	D	E	[kg]	[V/Hz]
3,300	650	112	254	42.4	155	42	400/50
4,950 - 6,600	775	132	314	60.3	180	70	400/50
8,800 - 9,900	805	132	314	60.3	180	72	400/50

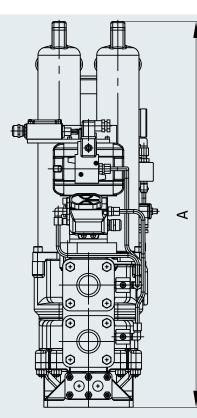
Plant output		Dir	Weight	Voltage / frequency			
[kW]	A	В	С	D	E	[kg]	[V/Hz]
3,300	625	112	254	42.4	155	42	440/60
4,400 - 4,950	705	112	254	42.4	180	57	440/60
6,600 - 9,900	775	132	314	60.3	180	70	440/60


Mak


05

This valve is installed for adjusting a constant and sufficient pressure at engine fuel inlet. Due to the overcapacity of the pressure pumps HP1/HP2 the valve provides a nearly constant pressure under all operating conditions - from engine stop to maximum engine consumption. For MD0/MG0 operation the pipes of the fuel return line must be equipped with sufficient fincoolers to reduce the generated heat.





HR1,≤	3,000 kVV		HKI,>	3,000 kVV		
Plant output		D	imensions [mr	n]		Weight
[kW]	А	В	С	D	E	[kg]
≤ 3,000	168	57.5	G 1⁄2"	40		1.5
≤ 8,000	248	70	Ø 25	88	122.5	3.6
> 8,000	279	94	Ø 38	109	150.5	8.4

HFO automatic filter HF4

An automatic filter with a mesh size 10 μ m (absolute) is required to remove cat fines from the fuel oil. The filter is installed between day tank and mixing tank.

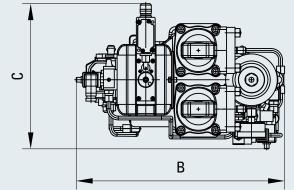
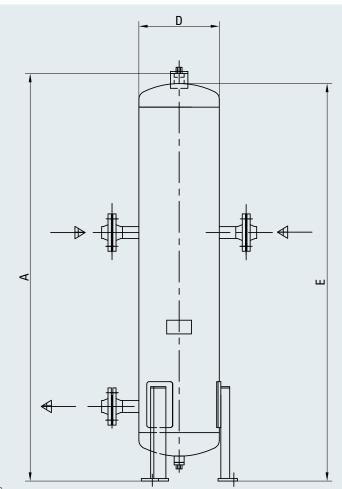


Fig. 5-18 HFO automatic filter HF4

Plant output	Dimensions [mm]									
[kW]	A	В	С	D	E					
3,300 - 4,400	825	445	310	DN 40	DN 32					
4,950 - 13,200	890	520	335	DN 65	DN 50					
14,850 - 19,800	975	590	410	DN 80	DN 65					

Flow quantity indicator FQ1


The fuel meter has to be installed between feed pumps and mixing tank HT2. Independent fuel consumption measurements for individual engines can be provided by installing two flow meters per engine, one at the feed line and one at the return line.

Mixing tank HT2

05

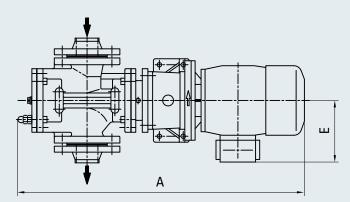
The mixing tank acts as a buffer for fuel viscosity and/or fuel temperature, when changing over from HFO to diesel oil and vice versa. In the mixing tank the warm return fuel from the engine is mixed with the fuel delivered from the day tank.

Venting to the day tank is required, if level switch is activated, due to accumulated air or gases in the mixing tank.

Fig. 5-19 Mixing tank HT2

Plant output	Volume		Weight		
[kW]	[1]	A	D	E	[kg]
≤ 10,000	100	1,700	323	1,500	120
> 10,000	200	1,700	406	1,500	175

Fuel circulating pump HP3, stand-by circulating pump HP4


Two fuel circulating pumps in parallel are recommended, one in operation and one on stand-by. The circulating pumps maintain the required fuel circulation through the engine's fuel injection system.

- Screw type pump with mechanical seal
- Vertical or horizontal installation is possible
- Delivery head 5 bar

Capacity

$$V[m^{3}/h] = 0.7 \cdot \frac{P_{eng.} \cdot [kW]}{1.000}$$

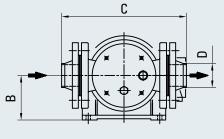


Fig. 5-20 Fuel circulating pump HP3, Stand-by circulating pump HP4

Plant output		Diı	Weight	Voltage / frequency			
[kW]	А	В	С	D	E	[kg]	[V/Hz]
3,300	775	132	314	60.3	180	70	400/50
4,400 - 4,950	805	132	314	60.3	180	72	400/50
6,600	820	132	314	60.3	180	80	400/50
8,800 - 9,900	980	160	345	88.9	210	124	400/50

Plant output		Weight	Voltage / frequency				
[kW]	А	В	С	D	E	[kg]	[V/Hz]
3,300 - 4,400	775	132	314	60.3	180	70	440/60
4,950 - 6,600	805	132	314	60.3	180	72	440/60
8,800 - 9,900	820	132	314	60.3	190	80	440/60

05

Mak

05

Heavy fuel final preheater HH1, stand-by final preheater HH2

The capacity of the final preheater shall be determined based on the injection temperature at the nozzle, to which 4 K must be added to compensate for heat losses in the piping.

The piping for both heaters shall be arranged for separate and series operation.

Parallel operation with half the flow must be avoided due to the risk of sludge deposits.

The arrangement of only one preheater may be approved where it is ensured that the operation with fuel oil which does not need preheating can be temporarily maintained.

NOTE:

Safe return to port requirement, maneuverability must be ensured.

- Two mutually independent final preheaters have to be installed.
- The arrangement of only one preheater may be approved where it is ensured that the operation with fuel oil which does not need preheating can be temporarily maintained. Heating media:
- Electric current (max. surface power density 1.1 W/cm²)
- Steam
- Thermal oil

Temperature at engine inlet max. 150 °C

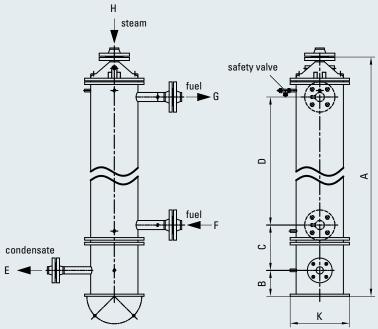


Fig. 5-21 Heavy fuel final preheater HH1, stand-by final preheater HH2 (steam heated)

Plant output	Dimensions [mm]							Weight		
[kW]	Α	В	С	D	E	F	G	Н	K	[kg]
up to 3,300	1,220	120	210	705	DN 25	DN 25	DN 25	DN 32	Ø 275	125
up to 4,950	1,520	120	210	1,005	DN 25	DN 32	DN 32	DN 32	Ø 275	155
up to 8,800	2,065	120	215	1,540	DN 25	DN 40	DN 40	DN 32	Ø 275	272
up to 14,000	1,630	130	235	1,035	DN 40	DN 50	DN 50	DN 50	Ø 390	265
up to 21,000	2,170	130	235	1,555	DN 40	DN 65	DN 65	DN 50	Ø 390	339

Viscosimeter HR2

The viscosimeter is regulating in conjunction with the final preheater the required fuel injection viscosity. This device automatically regulates the heating of the final preheater depending on the viscosity of the bunkered fuel oil, so that the fuel will reach the nozzles with the viscosity required for injection.

Pressure absorber KD1 (optional)

During the injection phases of fuel from the supply line, compression and injection as well as the release of unused fuel into the return line, cyclic pressure pulsations may result. The requirement of installing fuel dampers in the external pipe system depends on the design of the external fuel pipe work and its ability to absorb such pulsations sufficiently. Just in case of enhanced damping requirements additional dampers have to be installed.

Bypass overflow valve HV (optional)

If more than one engine is connected to the fuel booster and supply system a bypass overflow valve between the feed line and the return line can be required.

It serves to secure and stabilize the pressure in the fuel feed line under all circumstances and operation conditions.

The overflow valve must be differential pressure operated. The opening differential pressure should be 2 bar.

Duplex filter HF1 (fitted)

The fuel duplex filter is installed at the engine.

The two filter chamber construction allows continuous operation without any shut downs for cleaning the filter elements.

The drain connection of the filter is provided with a valve and must be routed to the leak oil tank.

If the filter elements are removed for cleaning, the filter chamber must be emptied. This prevents the dirt particles remaining in the filter casing from migrating to the clean oil side of the filter.

To ensure a fuel oil temp. below 50 °C a cooling of diesel oil may be required.

The need for fuel cooler is system specific and depends on fuel circuit design and type of fuel oil. In case of more than one engine are connected to the same fuel supply system, the MDO-cooler capacity has to be increased accordingly.

The diesel oil coolers are always installed in the fuel return line (engine connection C78).

The heat transfer load into the diesel oil system is approx. 1.6 kW/cyl.

LT-water is normally used as cooling medium.

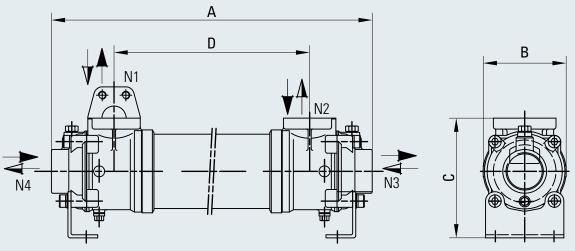


Fig. 5-22 Fuel oil cooler for MDO operation DH3

Engine	Dimensions [mm]							
	A	В	С	D	N1 + N2	N3 + N4	[kg]	
6/8/9 M 34 DF	910	106	153	750	1 ¼" SAE	1 ½" SAE	19	

5.3.3 Fuel booster and supply module

A complete fuel conditioning module, designed for HFO up to 700 cSt / 50 °C, can be supplied. Caterpillar Motoren standard modules consist of the following components:

- Three-way change over valve
- Booster pumps
- Automatic filter
- Pressure regulating valve
- Fuel flow meter
- Mixing tank
- Circulating pumps
- Fuel preheater (steam, thermal oil or electric)
- Viscosity control
- Diesel oil cooler
- Control cabinet
- Alarm panel

Built on one frame, they include all piping, wiring and trace heating.

Module controlled automatically with alarms and starters

- Pressure pump starters with stand-by automatic
- Circulating pump starters with stand-by automatic
- Pl-controller for viscosity controlling
- Starter for the viscosimeter
- Analog output signal 4 20 mA for viscosity

Alarms

- Pressure pump stand-by start
- Low level in the mixing tank
- Circulating pump stand-by start
- Self-cleaning fine filter clogged
- Viscosity alarm high/low
- The alarms with potential free contacts
- Alarm cabinet with alarms to engine control room and connection interface for remote start/stop and
- indicating lamp of fuel pressure and circulating pumps

	K	ζ	
		0	
		0	
		0	
		0	
0	5		
		0	6
		0	
		0	8
		0	9
			6
			8
			9

Size, weight and dimensions

The whole module is tubed and cabled up to the terminal strips in the electric switch boxes which are installed on the module. All necessary components like valves, pressure switches, thermometers, gauges etc. are included. The fuel oil pipes are equipped with trace heating (steam, thermal oil or electrical) where necessary.

NOTE:

05

The module will be tested hydrostatical and functional in the workshop without heating and not connected to the engine.

Fuel oil standard module

Engino	Module size	Module weight
Engine	[mm]	[kg]
6 M 34 DF	2,800 x 1,200 x 2,100	1,800
8 M 34 DF	3,000 x 1,200 x 2,100	2,200
9 M 34 DF	3,200 x 1,300 x 2,100	2,700

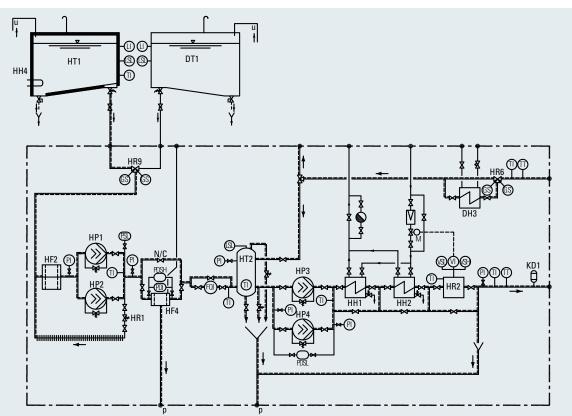
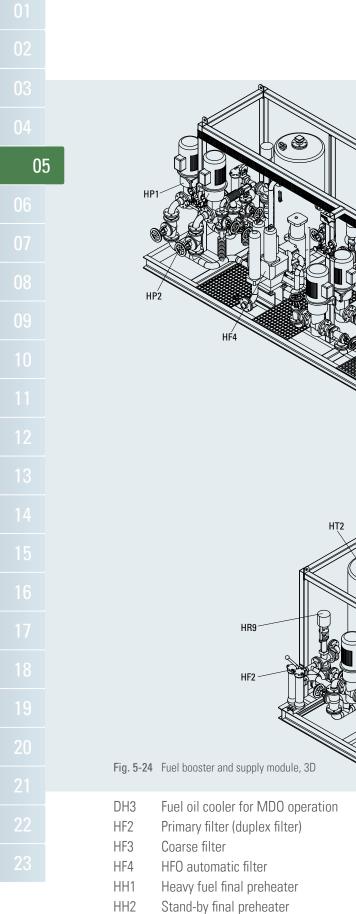


Fig. 5-23 Fuel booster and supply module, system diagram


DH3 Fuel oil cooler for MDO operation DT1 Diesel oil day tank HF2 Primary filter (duplex filter) HF4 HFO automatic filter HH1 Heavy fuel final preheater HH2 Stand-by final preheater HH4 Heating coil HP1 Fuel pressure pump HP2 Fuel stand-by pressure pump HP3 Fuel circulating pump HP4 Stand-by circulating pump HR1 Fuel pressure regulating valve HR2 Viscosimeter HR6 Change over valve (HFO/diesel oil) 3-way-valve HR9 Fuel change over main valve HT1 Heavy fuel day tank HT2 Mixing tank All heavy fuel pipes have to be insulated.

KD1	Pressure absorber	14
FQI	Flow quantity indicator	
GS	Limit switch	
LI	Level indicator	16
LSL	Level switch low	
PDI	Diff. pressure indicator	
PDSH	Diff. pressure switch high	
PDSL	Diff. pressure switch low	18
PI	Pressure indicator	
PSL	Pressure switch low	19
TI	Temperature indicator	
TT	Temperature transmitter (PT100)	
VI	Viscosity indicator	
VSH	Viscosity control switch high	
VSL	Viscosity control switch low	
р	Free outlet required	
u	Fuel separator or from transfer pump	

Heated pipe

Page 61 / M 34 DF Generator Set / 11.2014

Mak

HR9- HF2-				- HH2 -HH1	
	×	LID1	Fuel proceur		

Fuel oil cooler for MDO operation	HP1	Fuel pressure pump
Primary filter (duplex filter)	HP2	Fuel stand-by pressure pump
Coarse filter	HP3	Fuel circulation pump
HFO automatic filter	HP4	Stand-by circulation pump
Heavy fuel final preheater	HR9	Fuel change over main valve
Stand-by final preheater	HT2	Mixing tank

5.4 Switching over from HFO to diesel oil

Continuous operation with HFO is recommended for engines designed for running mainly on HFO. Starting and stopping the engine on HFO (Pier to Pier) can be provided if a sufficient preheating of the fuel oil system is ensured.

The circulating pumps have to be permanently in service, so that a continuous circulation of warm/hot fuel oil through the engine is ensured.

A frequent change over from HFO to diesel oil is only recommended when necessary for flushing purposes, emergencies, special sea area emission requirements, etc.

Changing the fuel oil too quickly and too often may cause high risk of plunger seizure (thermal shock), fuel injection pump leakages, etc. in the fuel injection pump. Only a slow switch over will attenuate that effect.

population of the set of the set

Typical switch over characteristics (HFO to diesel)

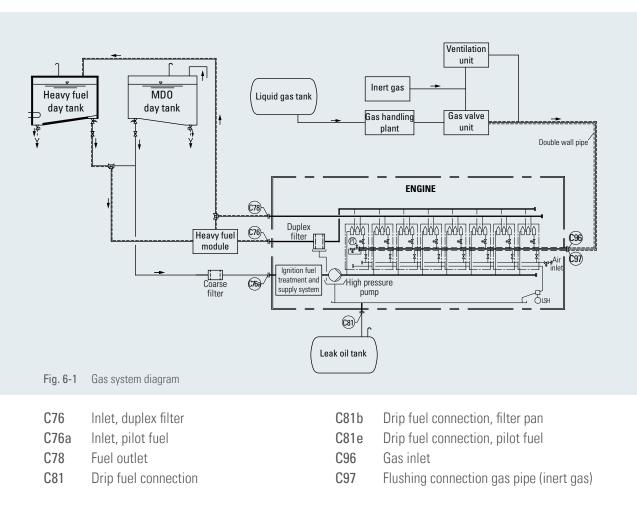
Fig 5-25Switch over characteristics

Mak

6.1 General

The gas fuel system will be provided from the Gas Valve Unit (GVU) to the engine acc. to the Caterpillar gas fuel specification VD8768 for dual fuel engines.

The key features of the gas system are:


- Double walled designed
- With leak detection
- Double wall is separated in sections
- Optional leakage location system available

6.1.1 Gas fuel quality requirements

Gas fuel to be complied with the Caterpillar gas fuel specification VD8768 for dual fuel engines.

Gas specification M 34 DF							
Gas temperature before engine inlet	°C	0 - 60					
Gas pressure before GVU without flow meter	bar (g)	6 - 10					
Gas pressure before GVU with flow meter	bar (g)	6.5 - 10					
Maximum gas pressure fluctuation	mbar/s	+/- 80					
Maximum rate for gas pressure changes	bar/min	1					
Minimum lower heating value (LHV)	MJ/mn ³	28					
Minimum Methane number (MN) (rated output)	-	80					
Maximum Sulphur as H ₂ S	Vol %	0.05 (= 770 mg/mn ³)					
Maximum Ammonia (NH ₄)	mg/mn ³	25					
Maximum Fluorines	mg/mn ³	Σ = 50					
Maximum Chlorine	mg/mn ³	Σ = 50					
Maximum oil content	mg/mn ³	50					
Maximum particles content	mg/mn ³	50					
Maximum particle size	μm	5					
Maximum Tar content	mg/mn ³	10					
Maximum Silicium	mg/mn ³	10					
Maximum water		Saturated fuel or water and condensates at gas control unit are not allowed					

6.1.2 System diagram

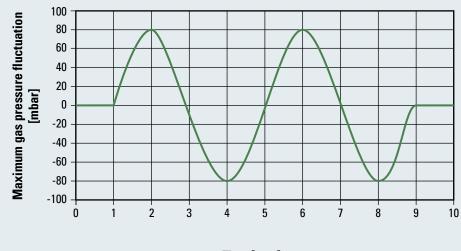
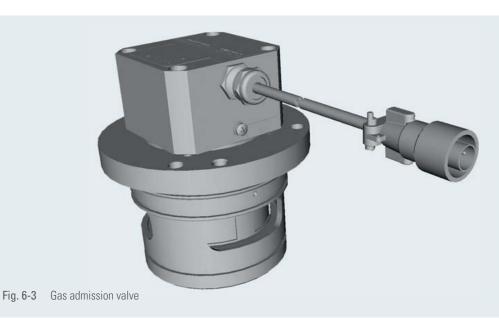


Fig. 6-2 Maximum gas pressure fluctuation

6.1.3 Gas system components

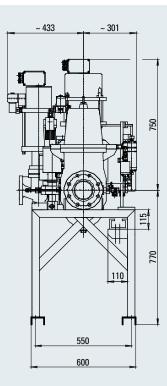

Gas admission valve

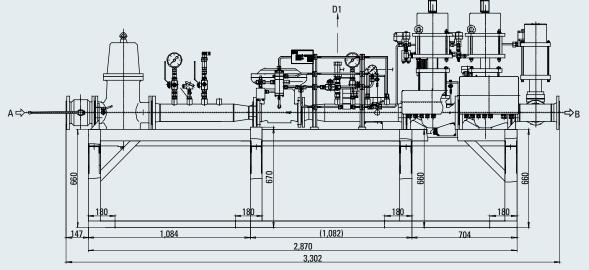
A gas admission valve is necessary ti introduce the fuel gas acc. to the engine load demand. The gas admission valve is solenoid activated.

The key features of the gas admission valve are:

- Gas tight cable outlet
- Solenoid activated
- Gas valve is normally closed

Weight: 3.7 kg




06

Gas Valve Unit (GVU)

The gas valve unit is an off-engine component. It provides fuel gas to the engine with the required pressure and flow. It shuts off the gas supply to the engine while not operating on gas. It depressurizes the gas piping between GVU and engine. Control air is being used to switch the valves. GVU is single walled designed and need to be installed in an ESD compliant machinery space.

The GVU is optionally available with a gas fuel flow meter.

General

The lube oil performs several basic functions:

- It cleans the engine by carrying dirt and wear particles until the filters can extract and store them.
- It cools the engine by carrying heat away from the piston, cylinder walls, valves and cylinder heads to be dissipated in the engine oil cooler.
- It cushions the engines bearings from the shocks of cylinder firing.
- It lubricates the wear surfaces, reducing friction.
- It neutralizes the corrosive combustion products.
- It seals the engines metal surfaces from rust.
- It lubricates the turbocharger bearings.
- It cools the injection nozzles.

7.1 Lube oil requirements

NOTE:

07

The viscosity class SAE 40 is required.

Wear and tear and thus the service life of the engine depend on the lube oil quality. Therefore high requirements are made for lubricants:

- Constant uniform distribution of the additives at all operating conditions
- Perfect cleaning (detergent effect) and dispersing power, prevention of deposits from the combustion process in the engine
- Sufficient alkalinity in order to neutralize acid combustion residues
- The TBN (total base number) must be 30 KOH/g at HFO operation The TBN is 12 - 20 KOH/g for MDO operation depending on Sulfur content

Manufacturer	Diesel oil / MDO operation	I	Ш	HFO operation	I	Ш
AGIP	DIESEL SIGMA S CLADIUM 120		X X	CLADIUM 300 S	Х	
BP	ENERGOL HPDX 40 ENERGOL DS 3-154 ENERGOL IC-HFX 204 VANELLUS C3	X X X	Х	ENERGOL IC-HFX 304	Х	
CHEVRON, CALTEX, TEXACO	DELO 1000 MARINE TARO 12 XD TARGO 16 XD TARGO 20 DP TARGO 20 DPX	X X X X X		TARO 30 DP	Х	
CASTROL	MARINE MLC MHP 154 TLX PLUS 204	X X X		TLX PLUS 304	Х	
CESPA	KORAL 1540		Х			
ESSO	EXXMAR 12 TP EXXMAR CM+ ESSOLUBE X 301	Х	X X	EXXMAR 30 TP EXXMAR 30 TP PLUS	X X	
MOBIL	MOBILGARD 412 MOBILGARD ADL MOBILGARD M430 MOBILGARD 1-SHC ¹⁾ DELVAC 1640	X X X X	Х	MOBILGARD M430	Х	
SHELL	GADINIA GADINIA AL ARGINA S ARGINA T	X X X X		ARGINA T	Х	
TOTAL LUBMA- RINE	RUBIA FP DISOLA M 4015 AURELIA TI 4030 CAPRANO M40	X X X	Х	AURELIA TI 4030	Х	
LUKOIL	NAVIGO 12/40 NAVIGO 15/40	X X		NAVIGO TPEO 30/40	Х	
GULF	SEA POWER 4015	Х		SEA POWER 4030	Х	

I Approved in operation / II Permitted for controlled use. When these lube oils are used, Caterpillar Motoren GmbH & Co. KG must be informed because at the moment there is insufficient experience available for engines. Otherwise the warranty is invalid. / 1) Synthetic oil with a high viscosity index (SAE 40 W/40). Only permitted if the oil inlet temperatures can be decreased by 5 - 10 °C.

7.2 Internal lube oil system

Lube oil force pump LP1 (fitted)

The lube oil force pump is a gear pump, fitted on the engine and mechanically driven by the crankshaft. The lube oil force pump provides the lube oil from the circulating tank LT1 to the engine. It is designed to provide a sufficient amount of lube oil at the required pressure to the engine even when running at the designed minimum engine speed. Capacity, see technical data.

Self-cleaning lube oil filter LF2 (fitted)

The back flushing filter protects the engine from dirt particles which may accumulate in the circulating tank LT1.

Mesh size 30 µm (absolute). The filter is continuously flushing into the oil pan without flushing oil treatment, without bypass filter. For single-engine plants a filter insert will be delivered as spare part.

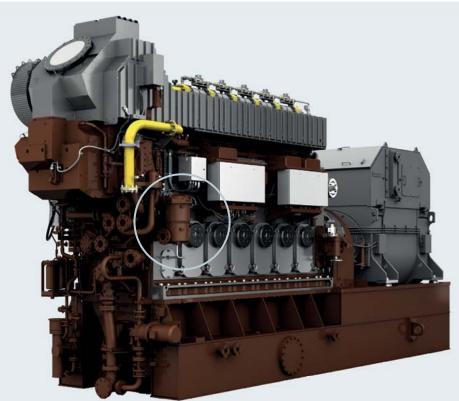
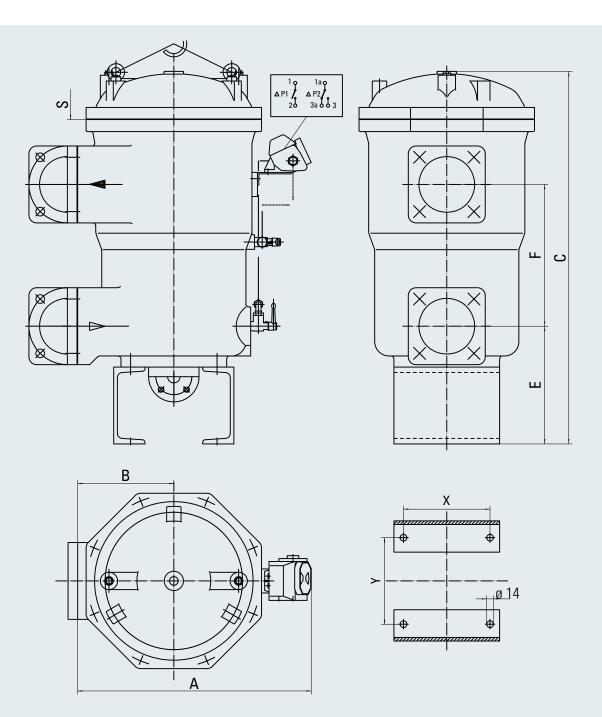
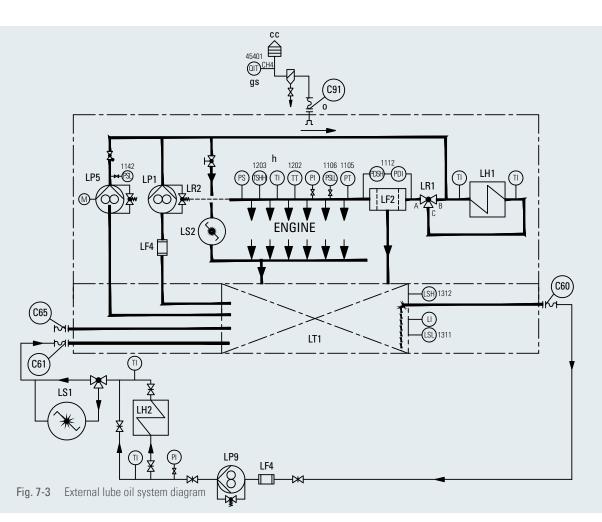


Fig. 7-1 Self-cleaning lube oil filter LF2

Back flushing filter LF2 (separate), option




Fig. 7-2 Back flushing filter LF2

	Dimensions [mm]						Weight		
	А	В	С	E	F	S	Х	Y	[kg]
6/8/9 M 34 DF	485	200	775	245	295	400	180	180	112

If the back flushing filter is separate, there will be a duplex filter on the engine.

07

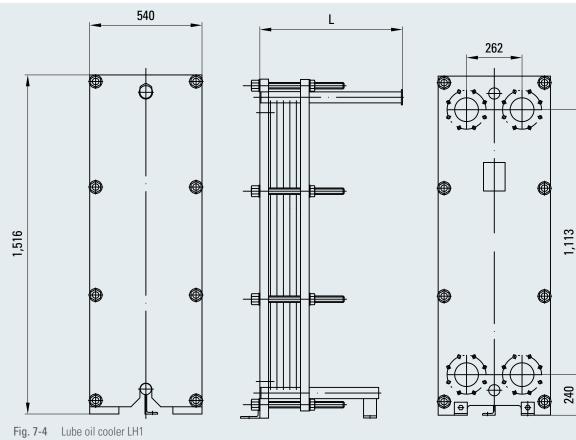
- LF2 Self-cleaning lube oil filter LF4 Suction strainer
- LH1 Lube oil cooler
- Lube oil preheater LH2
 - LP1
- Lube oil force pump LP5 Prelubrication pump
- LP9 Transfer pump (separator)
- LR1 Lube oil temperature control valve
- LR2 Oil pressure regulating valve
- LS1 Lube oil separator
- LT1
- Sump tank
- LI Level indicator
- LSL Level switch low LSH
- Level switch high PDI Diff. pressure indicator
- PDSH Diff. pressure switch high
 - ΡI Pressure indicator

- PSL/PSLLPressure switch low
- PT Pressure transmitter
- QIT Gas indicator and transmitter
- ΤI Temperature indicator
- TSHH Temperature switch high high
- ΤT Temperature transmitter (PT100)
- C60 Separator connection, suction side
- C61 Separator connection, delivery side
- C65 Lube oil filling
- C91 Crankcase ventilation to stack
- Flame arrestor must be provided СС
- Position gassensor min. 5m behind C91 gs

Please refer to the measuring point list h regarding design of the monitoring devices. 0 See "crankcase ventilation" installation instructions 4-A-9570

Prelubricating pump LP5

This pump is mounted at the baseframe. This pump can only be used for prelubricating, not as stand-by for the force pump. Capacity see technical data.


Oil pressure regulating valve LR2 (fitted)

The pressure control valve controls the lube oil pressure at engine inlet by giving only the adequate oil flow to the engine. Excessive oil flow will be led back into the engine oil pan.

Lube oil cooler LH1

A plate cooler with plates of stainless steel will be used to dissipate the heat to the LT fresh water system. It is mounted at the baseframe

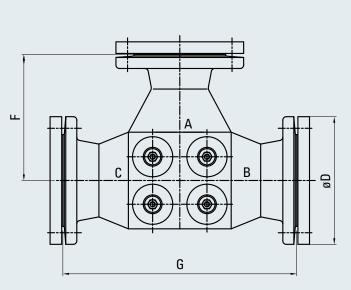
Option: separate

	L	Weight
	[mm]	[kg]
6 M 34 DF	545	638
8 M 34 DF	765	692
9 M 34 DF	765	711

Mak

07

Lube oil temperature control valve LR1 (fitted)


A wax operated control valve will be used to control the oil inlet temperature into the engine. It has an emergency manual adjustment. Option: separate

Control valve, option

If the cooler is not mounted at the baseframe, the control valve is also separated.

Н

30

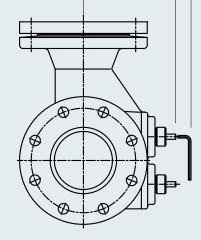


Fig. 7-5 Lube oil temperature control valve LR1

		Weight				
	DN	D	F	G	Н	[kg]
6 M 34 DF	80	200	171	267	151	27
8/9 M 34 DF	100	220	217	403	167	47

Centrifugal filter LS2 (separate)

A centrifugal filter can be used for cleaning of lube oil. This may extend the lube oil change intervals.

L	U	В	Е	0	IL	S١	<u>(S</u>	TEI	M
		_	_	-		· · ·	· · ·		

Lube oil temperature control valve LR1 (electric driven valve), option

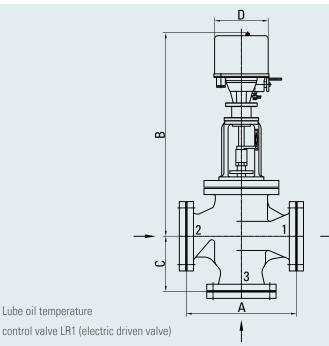


Fig. 7-6 Lube oil temperature

	Dimensions (mm)						
	DN	А	В	С	D	[kg]	
6 M 34 DF	80	310	624	155	170	58	
8/9 M 34 DF	100	350	646	175	170	70	

Lube oil separator LS1 (separate)

The most effective cleaning of lube oil is carried out by means of separation. Separation is mandatory for HFO driven plants and highly recommended for MGO/MDO operation.

Layout for MGO/MDO and gas operation

Automatic self-cleaning separator; Operating temperature 85 - 95 °C

 $V [l/h] = 0.18 \cdot P_{eng}[kW]$ P_{eng}= Power engine [kW]

Layout for HFO and gas operation

Automatic self-cleaning separator; Operating temperature 95 °C

 $V [I/h] = 0.29 \cdot P_{eng}[kW]$ P_{eng}= Power engine [kW]

For the layout of separators, please follow the separator manufacturer's guidelines.

7.4

7.5

UI

02

3

07

04

Crankcase ventilation system

Circulating tanks

7.5.1 Crankcase ventilation pipe dimensions

The circulating tank LT1 is mounted at the baseframe.

- The crankcase ventilation connecting point is DN 80.
- The engine main ventilation line must be at least DN 125.

7.5.2 Crankcase ventilation pipe layout

- The pipes should run upwards.
- Free ventilation under all trim conditions is required.
- To avoid backflow of condensate, a permanent drain of the ventilation pipe is required.

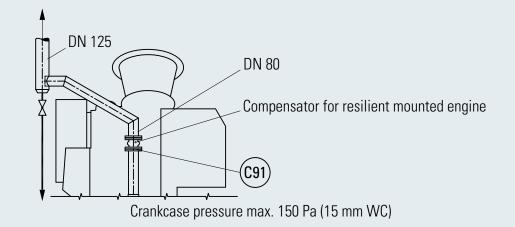


Fig. 7-7 Crankcase ventilation

C91 Crankcase ventilation to stack

7.5.3 Gas detection sensor

A gas detection sensor has to be installed in the crankcase vent pipe.

8.1 General

MaK engines are cooled by two cooling circuits:

- A high temperature (HT) and
- A low temperature (LT) cooling circuit

The cooling water needs to be treated according to Caterpillar Motoren requirements for MaK engines.

8.1.1 Two circuit cooling system

In this system arrangement, the two cooling systems are designed as two separate water circuits. Each circuit needs to be fitted with a header tank and a fresh water cooler.

8.1.2 Secondary circuit cooling system

In the "secondary circuit cooling system", HT and LT cooling circuits are combined in sequence to one water circuit.

In order to use the different temperature levels, the HT suction side is connected to the LT delivery side. The HT circuit uses an amount of warm LT water and further heats it up by cooling the engine. The amount of LT water, that is used by the HT system, depends on the current temperature and engine power. The overrun of the fixed flow of the fresh water pump (fitted on engine) HT (FP1) circulates via bypass line from the temperature control valve HT (FR1) to the suction side as usual.

The advantage of the secondary circuit system is it's simplicity. It uses just one water circuit and there is only one header tank and one fresh water cooler instead of two.

In addition also the amount of piping is reduced.

8.2 Water quality requirements

8.2.1 General

The engine cooling water must be carefully selected, treated and controlled.

The use of untreated cooling water will cause corrosion, erosion and cavitation on the surfaces of the cooling system. Deposits can impair the heat transfer and may result in thermal overload on components to be cooled.

Therefore the treatment with an anti-corrosion agent has to be effected before the very first commissioning of the plant.

8.2.2 Requirements

The characteristic of the untreated cooling water must be within the following limits:

- Distillate or freshwater free from foreign matter (no seawater or waste water)
- A total hardness of max. 10° dH
- pH-value 6.5 8
- Chloride ion content of max. 50 m/l

8.2.3 Supplementary information

Distillate:

80

If a distillate or fully desalinated water is available, this should preferably be used as engine cooling water.

Hardness:

Water with more than 10° dGH (German total hardness) must be mixed with distillate or softened.

8.2.4 Treatment before operating the engine for the first time

Treatment with an anti-corrosion agent must be done before the engine is operated for the first time to prevent irreparable initial damage.

8.3 Recommendation for cooling water system

8.3.1 Pipes and tanks

Galvanized material should not be used in tanks and pipes, it can cause zinc attack in the engine.

8.3.2 Drain tank with filling pump

It is recommended to collect the treated water in a separate drain tank when carrying out maintenance work (to be installed by the yard).

8.3.3 Electric motor driven pumps

Pumps should be applicable for use in fresh water as well as sea water circuits, vertical design.

Rough calculation of power demand for the electric balance:

$$p = \frac{\rho \cdot H \cdot V}{367 \cdot \eta} [kW]$$

Ρ= Power [kW] $P_{M} =$ Power of electr. motor [kW] V =Flow rate [m³/h] Η= Delivery head [m] ρ= Density [kg/dm³] Pump efficiency, 0.70 for centrifugal pumps η = $P_{M} =$ 1.5 · P $< 1.5 \, kW$ P., = 1.25 · P 1.5 - 4 kW

M		
P _M =	1.2 · P	4 - 7.5 kW
P _M =	1.15 · P	7.5 - 40 kW
P _M =	1.1 · P	>40 kW

8.4 Cooling water system

8.4.1 General

The high temperature (HT) system provides the HT side of the charge air cooler and the engine's cylinder heads and cylinder liner water rings with cooling water. In order to reduce the thermal tension in water-cooled engine parts, it is important to keep the drop in temperature low and therefore the flow high. Therefore the fresh water pump (fitted on engine) HT (FP1) delivers its full flow over the engine. The HT outlet temperature of 90 °C is controlled by the temperature control valve HT (FR1). In case the temperature decreases, the valve delivers more water to the bypass (connection B for mechanical, connection 3 for electrical driven valves) back to the HT pump's suction side.

In order to use the thermal energy of the HT circuit, a heat recovery can be installed as shown in the cooling water diagrams (FH3). For heat recoveries, especially for fresh water generators a high flow over the heat consumer (FH3) is recommended. This can be achieved by using a flow temperature control valve HT (FR3). This valve raises the HT flow temperature and therefore reduces the amount of water that is circulated over the bypass of FR1 and increases the flow through the heat recovery heat consumer (FH3) and the fresh water cooler HT (FH1).

Mak

The low temperature (LT) cooling circuit provides cooling for the LT stage of the charge air cooler, the lube oil and the diesel oil coolers and possible other consumers like e.g. gear box and generator coolers. The LT flow temperature is controlled by FR2. The cooling system is laid out for 38 °C under tropical conditions and full engine load. For better performance, the LT temperature is to be controlled to 32 °C. Caterpillar Motoren can deliver mechanic P-controllers with a set point range of 20 to 30 °C or electric driven valves with electronic controllers, which must be set to 32 °C. Depending on the plant design the fresh cooling water pumps can be fitted on the engine. All cooling water pumps may also be designed as separate with electrical drive

Cooling water system diagram

08

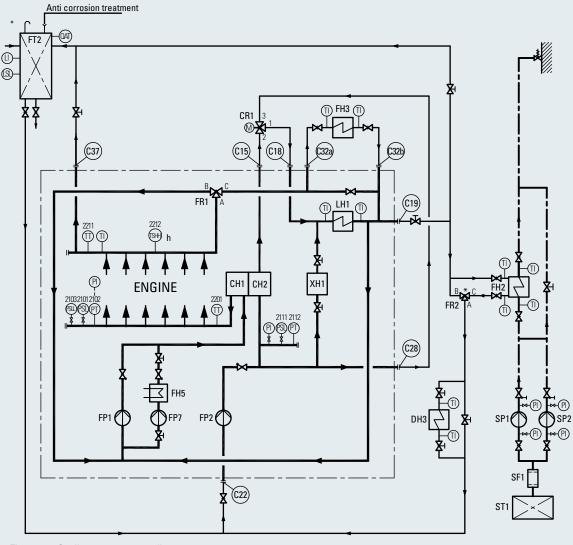


Fig. 8-1 Cooling water system diagram

In plants with skin or box coolers not required: seawater system (SP1, SP2, SF1, ST1).

CH1	Charge air cooler HT	LI	Level indicator	0
CH2	Charge air cooler LT	LSL	Level switch low	
CR1	Charge air temperature control valve	PI	Pressure indicator	0
DH3	Fuel oil cooler for MDO operation	PSL	Pressure switch low	
FH2	Fresh water cooler LT	PSLL	Pressure switch low	0
FH3	Heat consumer	PT	Pressure transmitter	
FH5	Fresh water preheater	TI	Temperature indicator	
FP1	Fresh water pump (fitted on engine) HT	TSHH	Temperature switch high	
FP2	Fresh water pump (fitted on engine) LT	TT	Temperature transmitter	0
FP7	Preheating pump	0.AT	Gas sensor	
FR1	Temperature control valve HT			
FR2	Temperature control valve LT	C15	Charge air cooler LT, outlet	1.00
FT2	Compensation tank LT	C18	Oil cooler, inlet	08
LH1	Lube oil cooler	C19	Oil cooler outlet	
SF1	Seawater filter	C22	Freshwater pump LT, inlet	0
SP1	Seawater pump	C28	Fresh water pump LT, outlet	
SP2	Seawater stand-by pump	C32a	Heat recovery, outlet	
ST1	Sea chest	C32b	Heat recovery, inlet	
XH1	Generator cooler	C37	Vent	
		h	Please refer to the measuring point list	

regarding design of the monitoring devices.

8.4.2 Components

Freshwater cooler LT FH2 (separate)

Plate type, size depending on the total heat to be dissipated.

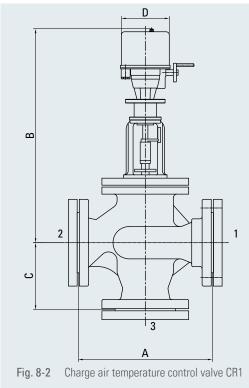
Most ship cooling systems dump the engines' waste heat in seawater cooled fresh water coolers. Caterpillar Motoren offers standardized titanium plate heat exchangers for this purpose. The size of these coolers will always be individually calculated for the heat dissipation demand of the respective systems.

Alternatively box coolers, radiators and other heat exchanger arrangements and any kind of combined cooling systems can be laid out and delivered.

Compensation tank HT FT1 / LT FT2

- Arrangement: Min. 4 / max. 16 m above crankshaft center line (CL).
- Size according to technical engine data.
- All continuous vents from engine are to be connected.

Main functions of the cooling water header tank:


- It produces static pressure for the cooling water pumps in order to prevent cavitation. Therefore it
 has to be connected to each pump suction side or in case of a combined system to the suction side of
 the central cooling water pump.
- The vent lines continuously deliver a small water flow to the header tank. In this flow, air bubbles are carried away and the system gets de-aerated.
 - Vent lines should also be installed in the highest points of the circuits in order to get rid of all air bubbles that accumulate there.
 - Vent lines may not be too large in order to keep the flow over the header tank low. DN 20 is recommended and also valves for adjusting the flow must be installed.
- The flow of the vent lines gradually heats up the header tank by means of the constantly delivered hot water. This flow returns to the system via the pump suction side. As this circulation is very small in relation to the flow of the pump (if adjusted correctly), the temperature rise in the system will not be noticeable.
- The header tanks water volume balances the entire system volume, which changes due to thermal expansion and possibly due to leakages.

NOTE: Due to class rules, the HT compensation tank has to be fitted with a gas sensor.

Electric driven charge air temperature control valve CR1 (separate)

		Weight				
	DN	[kg]				
	80	310	624	155	170	58
6/8 M 34 DF	100	350	646	175	170	70
9 M 34 DF	125	400	717	200	170	110

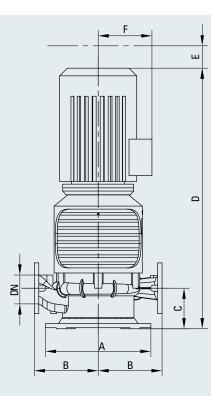
Page 82 / M 34 DF Generator Set / 11.2014

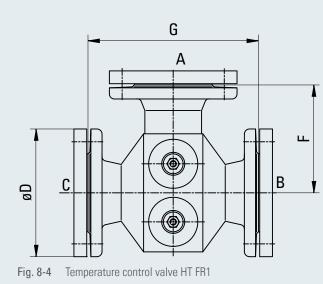
04 01

07

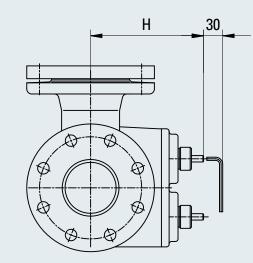
Fresh water pump (separate) HT FP3/FP5 and LT FP4/FP6

Capacity: acc. to heat balance.




Fig. 8-3 Fresh water pump

Flow	Pressure		Dimensions [mm]						Weight
[m³/h]	[bar]	DN	A	В	C	D	E	F	[kg]
70	3.0	80	400	200	140	1,132	180	250	189
80	3.2	100	520	250	175	1,255	140	250	247
90	3.0	100	520	250	175	1,255	140	250	247
100	3.2	125	520	315	200	1,285	110	265	359


Temperature control valve HT FR1 (fitted) / LT FR2 / HT flow FR3

P-controller with manual emergency adjustment (basis).

Option: Pl-controller with electric drive. See charge air temperature control valve (CR1).

08

			Dimensions [mm]				
		DN	D	F	G	Н	[kg]
6/8/9 M 34 DF	HT	180	200	171	267	151	27
6/8 M 34 DF	LT	100*	220	217	403	167	47
9 M 34 DF	LT	125*	250	241	489	200	67

* Minimum depending on total cooling water flow

8.5 System diagrams heat balance

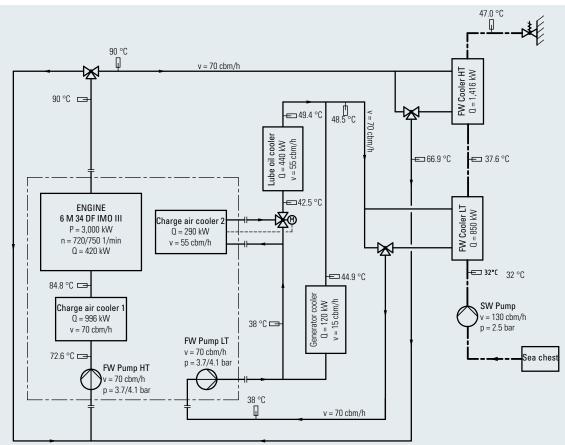


Fig. 8-5 Heat balance, system diagram 6 M 34 DF

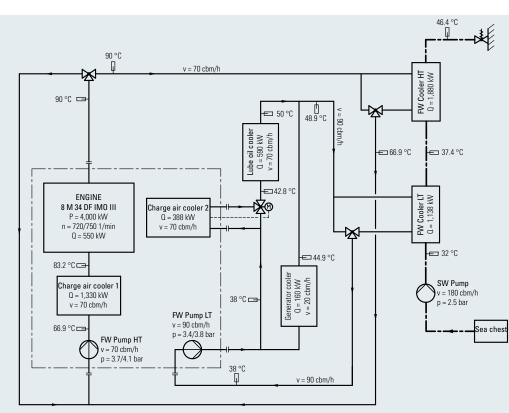
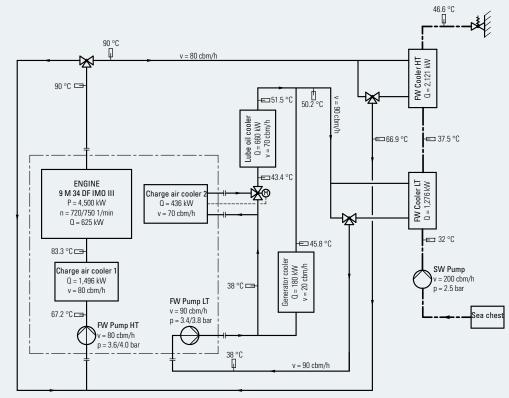
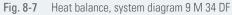




Fig. 8-6 Heat balance, system diagram 8 M 34 DF

8.6 Preheating (separate module)

8.6.1 Electrically heated

- The standard preheating system in plants delivered by Caterpillar Motoren is electrically heated.
- Consisting of baseframe mounted preheating pump FP7 (12 m³/h), electric heater FH5 (24 kW) and separate switch cabinet.

Voltage 400 - 690, frequency 50/60 Hz.

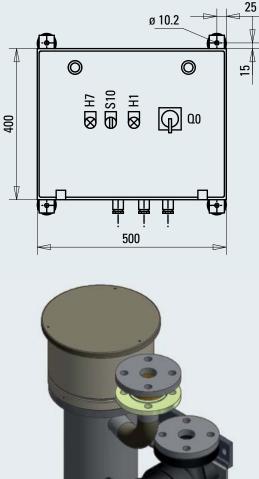


Fig. 8-8 Freshwater preheater FH5, preheating pump FP7

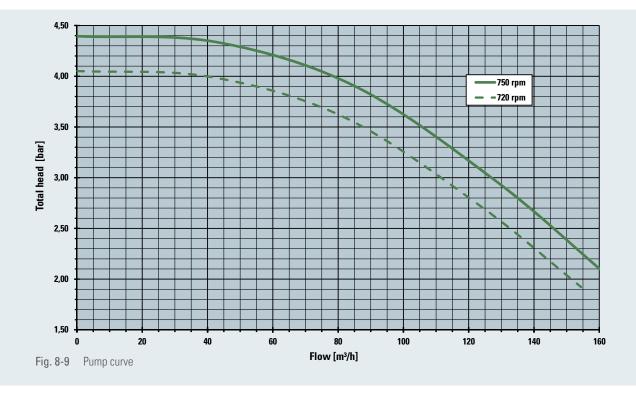
Mak

8.6.2 Other preheating systems

On request preheating systems heated by thermal oil or steam can be laid out and delivered by Caterpillar Motoren.

8.7 Box coolers system

On request box coolers can be laid out and delivered by Caterpillar Motoren.


8.8 Cooling circuit layout

80

The engine driven cooling water pumps are designed to provide the engine and it's systems with cooling water.

For a rough layout of these circuits, a pressure drop of 0.5 bar per component can be calculated: Taking the total estimated pressure loss of the whole circuit in account, the flow delivered by the pump can be read out from the pump performance curve.

Engine driven cooling water pumps (HT and LT) Performance curve

9.1 General

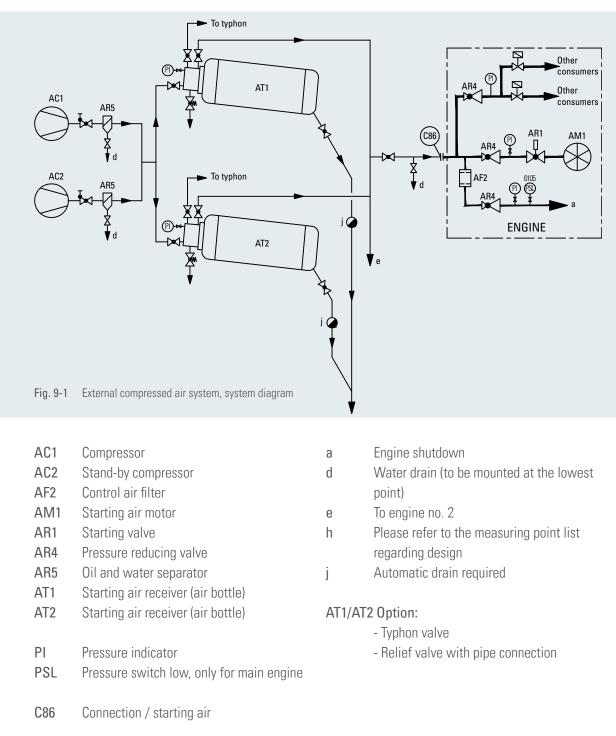
M 34 DF engines require compressed air for starting the engine and providing actuating energy for safety and control devices as well as for Flexible Camshaft Technology (FCT).

The compressed air system consists at least of two compressors, two air receivers and its accessories such as filters, dryers, regulating and control valves and the piping system, of a capacity and air delivery rating dependent of the load profile of the ship and to meet the requirements of the respective classification society.

To ensure always the functionality of the compressed air system, it has to be free of solid particles and oil, see chapter 8.4 Compressed air quality.

9.2 Internal compressed air system

The M 34 DF engine is started by means of compressed air with a nominal pressure of 30 bar by using air starting motors.


The start is performed by engaging the air starting motor that drives the flywheel to the required cranking speed.

09

9.3 External compressed air system

The entire external compressed air system has to be slightly inclined and equipped with manual or automatic draining at the lowest points.

Caterpillar Motoren recommends installing automatic drain valves.

9.3.1 Compressor AC1, stand-by compressor AC2

According to the requirements of the Marine Classification Society there should be minimum 2 starting air compressors with 50% total performance each.

The total performance has to be sufficient for refilling the starting air receivers to their normal pressure of 30 bar within one hour.

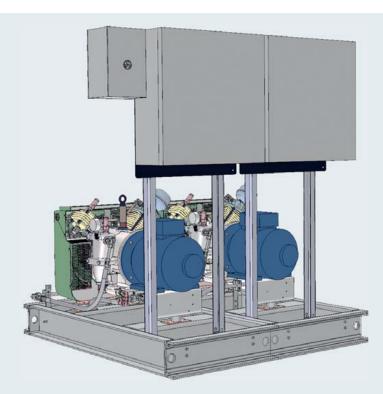


Fig. 9-2 Compressor AC1, AC2

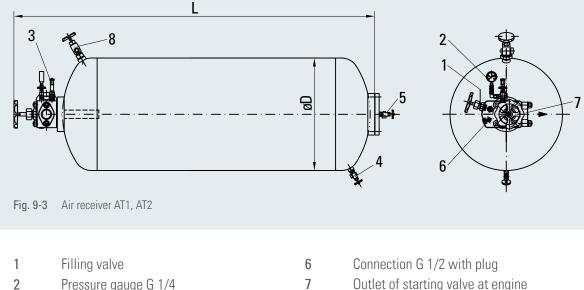
Capacity:

 $V [m^{3}/h] = \sum V_{Rec} \cdot 30$

V_{Rec.} Total receiver volume [m³]

Dimensions (approx.):

Width:1,250 mmLength:1,350 mmHeight:1,550 mmWeight:600 kg


9.3.2 Air receiver AT1, AT2

The starting air receivers are to be dimensioned for a nominal pressure of 30 bar.

M 34 DF engines require at least 15 bar as a minimum starting air pressure.

The total amount of air receivers and their capacity depend on the requirements of the classification societies and the type of installation.

It is required to install the receivers in a way, so that it can always sufficiently be drained manually or automatically at the deepest point of the receivers.

- Pressure gauge G 1/4
- 3* Relief valve DN 7

- 4 Drain valve DN 8
- 5 Drain position vertical

- 7
- Outlet of starting valve at engine
- 8 Typhon valve DN 16
- **Option:** * with pipe connection G 1/2

				Mak			
IR SYSTEM							
				01			
of classification societies:							
6 min. 2				03			
eiver volumes:				05			
				06			
lume				07			
on per start [Nm³] per of starting proc	edures in sequence			08			
ure [bar] eiver pressure (30 b				09			
iver pressure (15 b	ar)			10			
c. to GL recomm	endation AT1/AT2			11			
2 x 250 l				12			
2 x 500 l				13			
L	øD	Valve head	Weight				
[mm]	[mm]		approx. [kg]	14			
2,037	480	DN 38	280	15			
3,501	480	DN 50	460				
3,033	650	DN 50	625	16			
3,853	650	DN 50	810				
	anged in the engine	room, the blow-off co	onnection of the safety	17			
he outside.				18			
				19			

Normal requirements

No. of starts: No. of receivers:

Calculation of air rece

$$V = \frac{V_2 \cdot n \cdot P_{atm}}{P_{max} - P_{min}}$$

V =Air receiver volu $V_2 =$ Air consumption n = Required number

 $P_{atm} = P_{max} =$ Ambient pressu

Maximum receiv

P_{min}= Minimum receiv

Receiver capacity acc

Single-engine plant	2 x 250 l
Twin-engine plant	2 x 500 l

Receiver capacity	L	øD	Valve head	Weight
[1]	[mm]	[mm]		approx. [kg]
250	2,037	480	DN 38	280
500	3,501	480	DN 50	460
750	3,033	650	DN 50	625
1,000	3,853	650	DN 50	810

When CO₂ fire extinguish valve is to be piped to the

9.4 Compressed air quality

For a proper operation of the engine a compressed air quality of class 4 according ISO 8573-1 is required.

Instrument air specification:

Max. particle size:	15 µm
Max. particle density:	8 mg/m ³
Water pressure dew point:	3 °C
Water:	6.000 mg/m ³
Residual oil content:	5 mg/m ³

• Oil content

09

(Specification of aerosols and hydrocarbons which may be contained in the compressed air.)

• Particle size and density

(Specification of size and concentration of particles which still may be contained in the compressed air.)

• Pressure dew point

(Specification of the temperature on which the compressed air can cool down without the steam contained in it condensing. The pressure dew point changes with the air pressure.)

9.5 **Optional equipment**

Compressor module

Caterpillar Motoren can design, offer and deliver integrated compressor modules: Starting air receiver and compressors can be combined individually. For further information please contact Caterpillar Motoren, technical department.

COMBUSTION AIR SYSTEM

10.1 Engine room ventilation

To obtain good working conditions in the engine room and to ensure a trouble free operation of all equipment a properly designed engine room ventilation system with cooling air and combustion air is required.

10.2 Combustion air system design

Combustion air describes the air the engine requires to burn fuel. Combustion air demand see chapter 4, technical data.

10.2.1 Air intake from engine room (standard)

- Fans are to be designed for a slight overpressure in the engine room.
- On system side the penetration of water, sand, dust, and exhaust gas must be avoided.
- When operating under tropical conditions, the air flow must be conveyed directly to the turbocharger.

10.2.2 Air intake from outside

- The intake air duct is to be provided with a filter. Penetration of water, sand, dust and exhaust gas must be avoided.
- Connection to the turbocharger is to be established via an expansion joint.
 For this purpose the turbocharger will be equipped with a connection socket.

10.2.3 Air intake temperature from engine room and from outside

- Standard engine operation is possible with an air temperature at the turbocharger inlet above 0 °C.
- Engine operation below 0 °C requires an ignition pressure reduction via waste gate interaction (standard scope of supply) which could occur in a load reduction and / or in higher fuel consumption.

10.3 Cooling air

Cooling air refers to the flow of air that removes radiant heat from the engine, generator, other driven equipment and other engine room components.

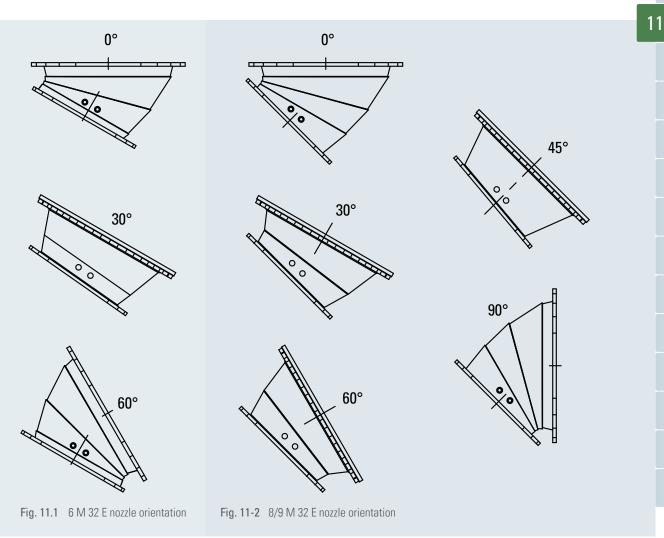
To dissipate the radiated heat a slight and evenly distributed air flow is to be led along the engine exhaust gas manifold starting from the turbocharger.

NOTE:

Radiated heat see technical data.

10.4 Condensed water from charge air duct

Operating the engine in tropical conditions, high ambient temperature and high humidity, may generate condensate (water) that needs to be drained.


The exhaust gas system discharges the exhaust gases, emitted from the engine, through a piping system to the atmosphere. To provide maximum efficiency of the engine, the resistance to the gas flow should be minimized. The back pressure (directly after the turbocharger, influenced by the design of the exhaust gas piping) and all installed components like exhaust gas boilers, catalysts and scrubbers is limited to 30 mbar. Higher values will increase the thermal load of the engine and may lead to higher fuel consumption.

11.1 Components

11.1.1 Exhaust gas nozzle – preliminary

For an optimal integration of the engine in the engine room, regarding the discharge of the emitted exhaust gases different positions of the exhaust gas nozzle are possible. The basic orientation of the exhaust gas nozzle for all M 34 DF engines, achieved by a transition piece

from the vertical line, are: 0 °, 30 °and 60 °. For the 8 and 9 M 34 DF engines additional standard orientations of 45 ° and 90 ° from the vertical line are available.

11.1.2 Exhaust gas compensator

The connection of the engine to the piping system of the ship has to be flexible to compensate possible engine vibrations, movements of resilient mounted engines and to reduce the forces generated by the thermal expansion of the exhaust gas piping acting to the turbocharger. For this connection, a special type of approved exhaust gas compensator, which is flexible in all directions, is available. It is highly recommended to install these exhaust gas compensator directly after the above mentioned exhaust gas nozzle. If it is necessary to isolate the compensator area it must be possible that the compensator is able to expand and contract freely.

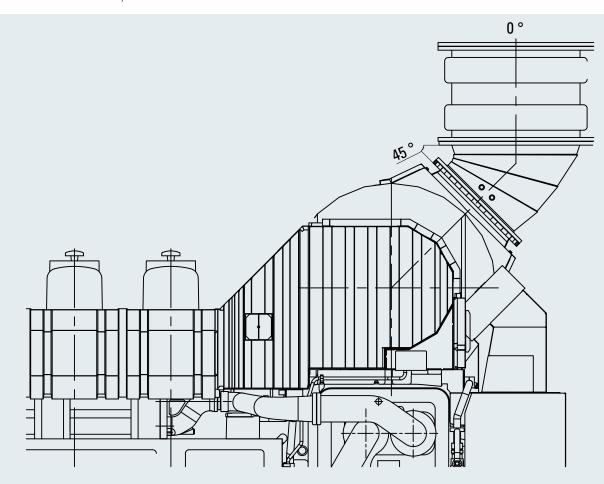


Fig. 11-3 Exhaust gas compensator

11

Basic design values of the standard exhaust gas compensators.

Turna	Diameter	Length	Weight
Туре	[mm]	[mm]	[kg]
6 M 34 DF	600	450	107
8 M 34 DF	700	520	137
9 M 34 DF	800	500	145

11.1.3 Exhaust gas piping system

To minimize the forces acting through the compensator to the turbocharger and to guarantee a long lifetime of the compensator it is highly recommended to position a fixed point piping support directly after the compensator.

Each engine requires a separate exhaust gas pipe. The exhaust gas piping system from two or more engines is not allowed to be joined in one.

In order to minimize the pressure loss of the complete exhaust gas system it is recommended to use a suitable pipe diameter for the entire exhaust gas line.

According to the dimensions of the compensators (see table chapter 10.1.2) there are standard diameters proposed for the respective engine type in relation to the exhaust gas mass flow. In case multiple of bends and other components integrated in the exhaust gas system it might be necessary to increase the pipe diameter.

For guidance the exhaust gas flow velocity should be less than 40 m/s.

NOTE:

Max. pressure loss (incl. silencer and exhaust gas boiler): 30 mbar (lower values will reduce thermal load of the engine).

Resistance in exhaust gas piping

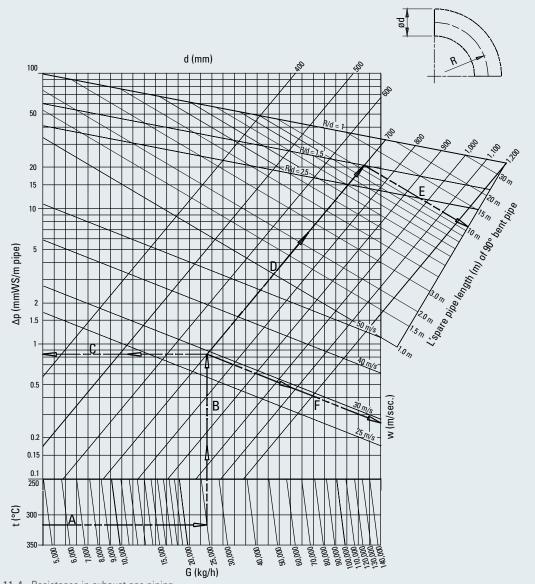


Fig. 11-4 Resistance in exhaust gas piping

11

Example (based on diagram data A to E): T = 335 °C, G = 25,000 kg/h L = 15 m straight pipe length, d = 700 mm 3 off 90 ° bend R/d = 1.5 1 off 45 ° bend R/d = 1.5 Δ Pg = ?

$$\begin{split} \Delta p &= 0.83 \text{ mm WC/m} \\ L' &= 3 \cdot 11 \text{ m} + 5.5 \text{ m} \\ L &= I + L' = 15 \text{ m} + 38.5 \text{ m} = 53.5 \text{ m} \\ \Delta Pg &= \Delta p \cdot L = 0.83 \text{ mm WC/m} - 53.5 \text{ m} = 44.4 \text{ mm WC} \end{split}$$

t = Exhaust gas temperature [°C] G = Exhaust gas massflow [kg/h] Δp = Resistance/m pipe length [mm WC/m] d = Inner pipe diameter [mm] w = Gas velocity [m/s] I = Straight pipe length [m] L' = Spare pipe length of 90 ° bent pipe [m] L = Effective substitute pipe length [m] ΔPg = Total resistance [mmWC]

11.1.4 Silencer

General

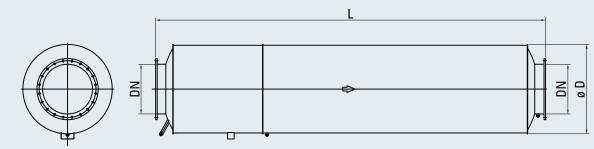
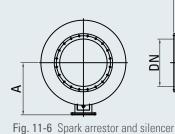
Design according to the absorption principle with wide-band attenuation over a wide frequency range and low pressure loss due to straight direction of flow. Sound absorbing filling consisting of resistant mineral wool.

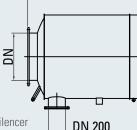
Dimension

Installation: vertical to horizontal Flanges according to DIN 86044 Incl. counterflanges, screws and gaskets Without supports and insulation

Silencer

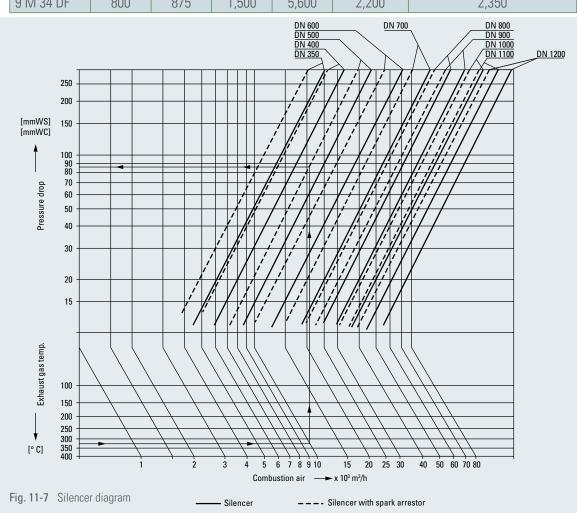
Sound level reduction 35 dB(A) (standard). Max. permissible flow velocity 40 m/s.


Fig. 11-5 Silencer

Silencer with spark arrestor

Soot separation by means of a swirl device (particles are spun towards the outside and separated in the collecting chamber). Sound level reduction 35 dB(A). Max. permissible flow velocity 40 m/s. Silencers are to be insulated by the yard. Foundation brackets can be provided as an option.


11

L

Тиро	Dimensions [mm]				Weight	Weight with spark arrestor
Туре	DN	A	D	L	[kg]	[kg]
6 M 34 DF	600	675	1,100	4,800	1,300	1,350
8 M 34 DF	700	775	1,300	5,200	1,650	1,800
	800	975	1 500	5 600	2 200	2 250

11.1.5 Exhaust gas boiler

ATTENTION:

Each engine should have a separate exhaust gas boiler. Alternatively, a common boiler with separate gas sections for each engine is acceptable.

Especially when exhaust gas boilers are installed attention must be paid not to exceed the maximum recommended back pressure.

NOTE:

Exhaust gas boilers are available through Caterpillar Marine.

	1

11.2 Turbocharger

11.2.1 Turbine cleaning system

Turbine cleaning is required for HFO operation. The cleaning is carried out with clean fresh water "wet cleaning" during low load operation at regular intervals, depending on the fuel quality, 150 hours.

NOTE:

Duration of the cleaning period is approx. 10 minutes (2 intervals). Fresh water of 1.5 bar for 6 M 34 DF and 2.5 bar for 8/9 M 34 DF is required.

NOTE:

During cleaning the water drain should be checked. Therefore, the shipyard has to install a funnel after connection point C36.

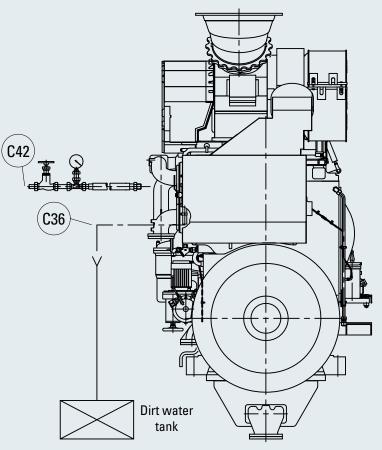


Fig. 11-8 Connection points fresh water and drain

C42	Fresh water supply, DN 12
	Connection with C42 with quick coupling device
C36	Drain, DN 30

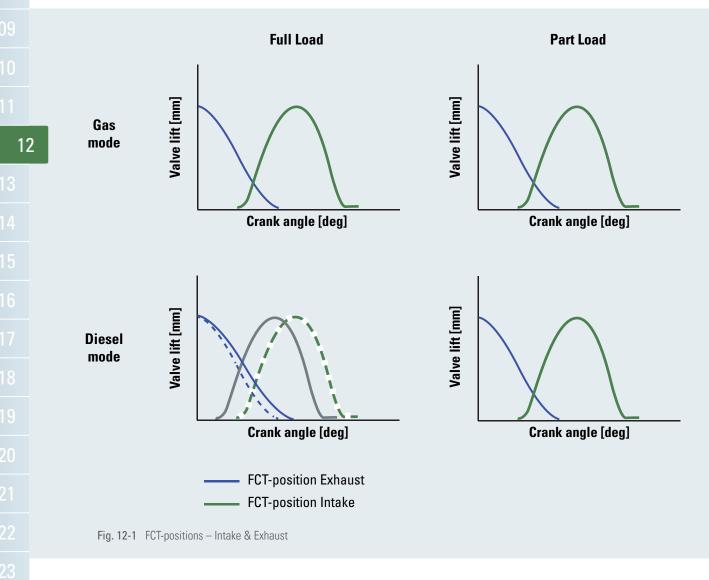
Tuno	Water flow	Injection time	
Туре	[l/min]	[min]	
6 M 34 DF	12	10	
8/9 M 34 DF	18	10	

11.2.2 Compressor cleaning system

The components for cleaning (dosing vessel, pipes, shut-off valve) are engine mounted.

NOTE:

Water is fed every 24 hours before compressor wheel via injection pipes during full load operation.


FLEXIBLE CAMSHAFT TECHNOLOGY (FCT)

12.1 Flexible Camshaft Technology (FCT)

The dual fuel engine has a modified FCT system, to ensure an optimal engine operation in all operating modes over the entire load range. The FCT system is basically known from the M 32 C diesel engine, where this technology is already validated.

Flexible Camshaft Technology (FCT):

- High potential for smoke reduction
- Low complexity •
- Low technical risk-application of existing technology
- Minimized methane slip

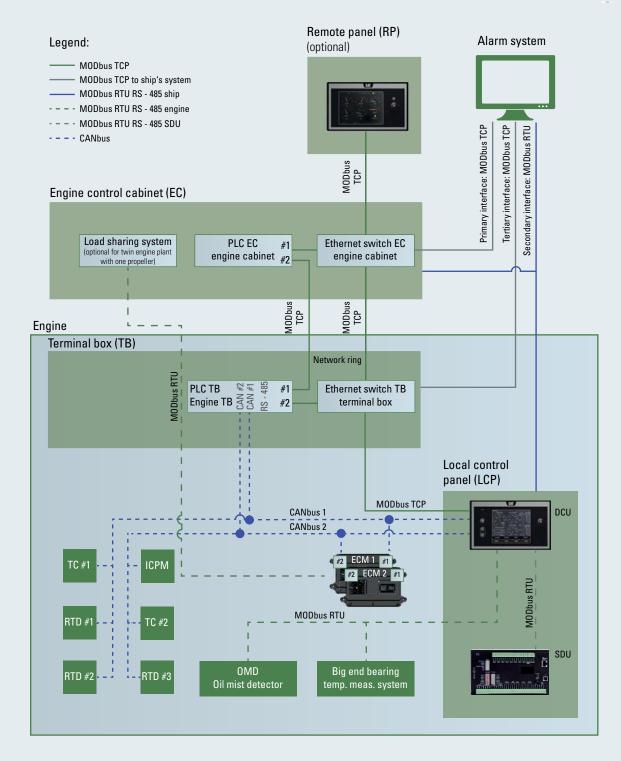
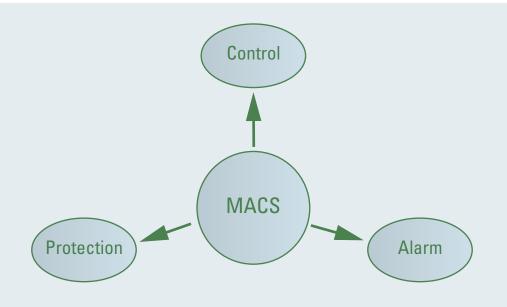

	Mak
CONTROL AND MONITORING SYSTEM	
13.1 Local control panel (LCP)	01 02
	03 04 05 06 07 08
	09 10 11 12
	13 14 15 16 17

Fig. 13-1 Local control panel

- 1 DCU
- 2 Reset
- 3 0 = Repair, 1 = Engine, 2 = Remote
- 4 Slow turn
- Emergency stop 5
- Diesel mode indication, lamp test 6
- 7 Gas mode indication

8	Start
9	Stop
10	Lower
11	Raise
12	Gas shut-off
13	Emergency start

13.2 Data link overview



SDU		02
Protection system in local control panel DCU		02
Display and alarm system in local control panel		03
PLC	MACS	
PLC in engine cabinet (EC) PLC in engine terminal box on engine (TB)	IMAGS	05
RTD	Modular Alarm Control System	00
PT100 module #1 e.g. charge air temperature PT100 module #2 e.g. lube oil temperature		06
PT100 module #3 e.g. cooling water HT		
TC Exhaust temperature module #1 (thermocouples)		08
Exhaust temperature module #2 (thermocouples)		
RP		09
Remote panel (optional) ECM		
Engine control module OMD		11
The oil mist detector measures each cylinder.		12
Load sharing system		
I oad sharing system for isochronous load sharing (on	tional)	
Load sharing system for isochronous load sharing (op CTM	tional)	13
CTM Big end bearing temperature monitoring (optional)	tional)	13 14
СТМ	tional)	14
CTM Big end bearing temperature monitoring (optional) Each cylinder is measured by the CTM. ICPM The "In-cylinder pressure monitoring" computes comb		
CTM Big end bearing temperature monitoring (optional) Each cylinder is measured by the CTM. ICPM		14
CTM Big end bearing temperature monitoring (optional) Each cylinder is measured by the CTM. ICPM The "In-cylinder pressure monitoring" computes comb knock intensity per cylinder		14 15
CTM Big end bearing temperature monitoring (optional) Each cylinder is measured by the CTM. ICPM The "In-cylinder pressure monitoring" computes comb knock intensity per cylinder	oustion characteristics for each cylinder including	14 15 16 17
CTM Big end bearing temperature monitoring (optional) Each cylinder is measured by the CTM. ICPM The "In-cylinder pressure monitoring" computes comb knock intensity per cylinder Regardless of RTU or TCP, the MODbus address regist MODbus TCP	bustion characteristics for each cylinder including ters are the same. Just the hardware protocol differs. MODbus RTU	14 15 16 17 18
CTM Big end bearing temperature monitoring (optional) Each cylinder is measured by the CTM. ICPM The "In-cylinder pressure monitoring" computes comb knock intensity per cylinder Regardless of RTU or TCP, the MODbus address regist MODbus TCP At MODbus TCP a connection between server and	oustion characteristics for each cylinder including ters are the same. Just the hardware protocol differs.	14 15 16 17
CTM Big end bearing temperature monitoring (optional) Each cylinder is measured by the CTM. ICPM The "In-cylinder pressure monitoring" computes comb knock intensity per cylinder Regardless of RTU or TCP, the MODbus address regist MODbus TCP	bustion characteristics for each cylinder including ters are the same. Just the hardware protocol differs. MODbus RTU	14 15 16 17 18
CTM Big end bearing temperature monitoring (optional) Each cylinder is measured by the CTM. ICPM The "In-cylinder pressure monitoring" computes comb knock intensity per cylinder Regardless of RTU or TCP, the MODbus address regist MODbus TCP At MODbus TCP a connection between server and client will be established. Therefore an IP address	bustion characteristics for each cylinder including ters are the same. Just the hardware protocol differs. MODbus RTU	14 15 16 17 18 19
CTM Big end bearing temperature monitoring (optional) Each cylinder is measured by the CTM. ICPM The "In-cylinder pressure monitoring" computes comb knock intensity per cylinder Regardless of RTU or TCP, the MODbus address regist MODbus TCP At MODbus TCP a connection between server and client will be established. Therefore an IP address will be assigned.	oustion characteristics for each cylinder including ters are the same. Just the hardware protocol differs. MODbus RTU The MODbus device address will be assigned.	14 15 16 17 18 19 20
CTM Big end bearing temperature monitoring (optional) Each cylinder is measured by the CTM. ICPM The "In-cylinder pressure monitoring" computes comb knock intensity per cylinder Regardless of RTU or TCP, the MODbus address regist MODbus TCP At MODbus TCP a connection between server and client will be established. Therefore an IP address will be assigned. MODbus settings Type: MODbus TCP Interface: ethernet	bustion characteristics for each cylinder including ters are the same. Just the hardware protocol differs. MODbus RTU The MODbus device address will be assigned. MODbus settings Type: MODbus RTU Baud rate: 19,200	14 15 16 17 18 19 20 21 22
CTM Big end bearing temperature monitoring (optional) Each cylinder is measured by the CTM. ICPM The "In-cylinder pressure monitoring" computes comb knock intensity per cylinder Regardless of RTU or TCP, the MODbus address regist MODbus TCP At MODbus TCP a connection between server and client will be established. Therefore an IP address will be assigned. MODbus settings Type: MODbus TCP Interface: ethernet IP: will be assigned	bustion characteristics for each cylinder including ters are the same. Just the hardware protocol differs. MODbus RTU The MODbus device address will be assigned. MODbus settings Type: MODbus RTU Baud rate: 19,200 Device address (ID): will be assigned	14 15 16 17 18 19 20 21
CTM Big end bearing temperature monitoring (optional) Each cylinder is measured by the CTM. ICPM The "In-cylinder pressure monitoring" computes comb knock intensity per cylinder Regardless of RTU or TCP, the MODbus address regist MODbus TCP At MODbus TCP a connection between server and client will be established. Therefore an IP address will be assigned. MODbus settings Type: MODbus TCP Interface: ethernet	bustion characteristics for each cylinder including ters are the same. Just the hardware protocol differs. MODbus RTU The MODbus device address will be assigned. MODbus settings Type: MODbus RTU Baud rate: 19,200	14 15 16 17 18 19 20 21 22

13

13.3 Components

Modular Alarm and Control System (MACS)

The M 34 DF engines will be provided with a new Modular Alarm and Control System, called MACS. The basic engine control and monitoring system will be installed in the local control panel. Where extension modules are necessary external plc based I/O extension modules will be installed.

The main functions of the control systems are:

- Alarm management
- Local start and stop, emergency start and stop from the engine control panel
- Remote start and stop from the power management system (PMS)
- Start and stop sequence control
- Critical parameter monitoring
- Slow turn control
- Flexible camshaft technology (FCT monitoring)
- Exhaust gas termpertature monitoring
- Main and big end bearings temperature monitoring (optional)
- Ignition fuel system control
- Ventilation module control
- Crankcase gas detection module control

Engine control module (ECM)

The engine control module controls the fuel system, air fuel ratio, engine speed and Flexible Camshaft Technology (FCT). The module has its own set of sensors for all control relevant functions and can operate independently from start/stop system, alarm system (DCU) or protection system (SDU).

Load sharing system (optional)

For isochronous load sharing a load sharing system is necessary. The load sharing system is determining the desired load and system status for each engine to the ECM via MODbus RTU.

Oil mist detector

The oil mist detector measures the oil mist concentration for each cylinder compartment and generate an alarm for high oil mist concentration. The data are available by MODbus RTU at the DCU. Hardwired outputs are also provided.

Big end bearing temperature measuring system (optional)

The big end bearing temperature measuring system measures the temperature for each big end bearing and generates an alarm for high temperature. The data are available by MODbus RTU at the DCU. Hardwired outputs are also provided.

Gas valve unit

The gas valve unit provides the engine with the desired gas fuel pressure and is controlled by the engine's control and monitoring system (MACS). It has several features (e.g. double block and bleed valve) to safety cut the engine from the gas train and to remove the gas fuel from the piping system (flushing).

Crankcase gas detection

The crankcase gas detection system monitors the actual concentration of explosive atmosphere in the crankcase. If the concentration increases above a fixed value an alarm is triggered and in a second step the engine switches back to diesel mode.

Ventilation module

The aim of the ventilation module is to detect a leakage in the double walled gas pipes at the engine. The air in the double walled gas pipe will be ventilated and the gas concentration will be measured.

Ignition fuel control system

The ignition fuel control system provides the required ignition fuel oil quality for the engine's ignition system.

Exhaust gas ventilation module

The exhaust gas module is installed to ventilate the ship side exhaust gas system after an emergency stop of the engine in gas mode. The module consists of a ventilation fan, a separation butterfly valve and exhaust gas compensator for the conntection to the exhaust gas system.

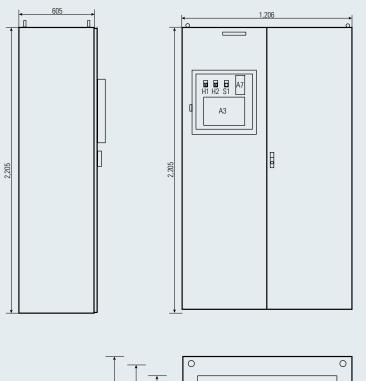
Slow turn

The slow turn function is used to detect water in the combustion chamber, e.g. after a long non-operation period.

Mak

13

13.4 Genset control


13.5 Control cabinet

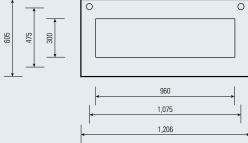
Each engine is equipped with a separate control cabinet. The control cabinet acts as an interface between engine and external devices. Information about the engine status are available via MODbus TCP or MODbus RTU.

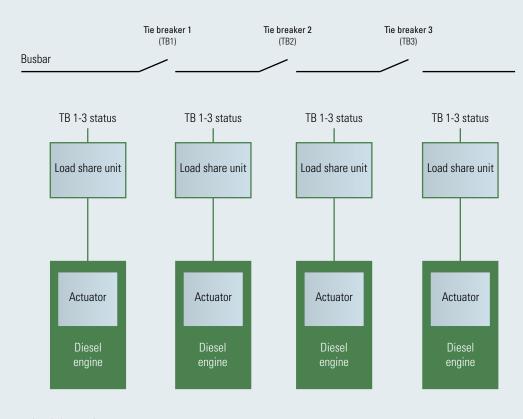
External signals for the engine control, monitoring and alarm system (for example gearbox, CPP control system,...) can be transferred as 4-20 mA, binary, or PT100 signal.

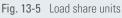
Safety relevant signals to the PLC are wire break and short circuit monitored.

The remote panel or the temperature controller can be optionally integrated in the control cabinet.

H1:	Main supply without failure
H2:	Back up supply without failure
S1:	Lamp test
Optional	in the control cabinet integrated
A3:	Remote panel
A7:	Charge air temperature controller
Degree of	f protection: IP54
Weight:	Approx. 246 kg




Fig. 13-4 Control panel


Generator application

The engines are equipped with a CAT standard actuator in accordance with class requirements for generator application. The electronic load share units are delivered as loose part. It comprises the following features:

- Speed setting range to be entered via parameters
- Adjustable acceleration and deceleration times
- Starting fuel limiter
- Input for stop (not emergency stop)
- 18 32 V DC voltage supply
- Alarm output

- Droop operation
- Isochronous load distribution by master/slave principle
- Protection class of equipment: IP54

13.6 Requirements

13.6.1 Requirements on power management system

Standard interface to power management system

Standard Interface to power	manayements	system		
External starting interlock	Binary contact		24 V DC	External starting interlock
External engine shutdown	Binary contact		24 V DC	External engine shutdown
Blackout	Binary contact		24 V DC	Blackout (start release of starting interlock prelubri- cation)
Indication shutdown undelayed/delayed	24 V DC	+	Binary contact	Shutdown undelayed/delayed
Load signal from kW transducer ^{*)}	4-20 mA	-	Max. load 250 Ω	Load signal from kW transducer
Raise / lower (remote)	Binary contact		24 V DC	Raise / lower (remote)
Isochronous / droop *)	Binary contact	-	24 V DC	On = isochronous Off = droop
Status circuit breaker	Binary contact	\rightarrow	24 V DC	Circuit breaker closed (on for closed)
Bus tie signal	Binary contact	\rightarrow	24 V DC	Bus tie is closed
Manual activation slow turn	Binary contact		24 V DC	Slow turn mode change
Automatic slow turn	Binary contact	\rightarrow	24 V DC	Slow turn selected for automatic
Start/stop remote	Binary contact		24 V DC	Start/stop in remote mode
Change genset	24 V DC	-	Binary contact	Engine fault - change genset
Normal stop indication	24 V DC	-	Binary contact	Normal stop indication
Start initiation indication	24 V DC	+	Binary contact	Start initiation indication
Starting interlock indication	24 V DC	-	Binary contact	Starting interlock indication
Remote control active	24 V DC	+	Binary contact	Remote control active
Ready to start, indication	24 V DC	-	Binary contact	Ready to start, indication
False start indication	24 V DC	-	Binary contact	False start indication
rpm contact	24 V DC	-	Binary contact	rpm contact
Offload *)	Binary contact		24 V DC	Offload
Isochronous selected *)	24 V DC	-	Binary contact	Isochronous selected
Emergency stop from PMS	Binary contact	\rightarrow	24 V DC	External emergency stop (from PMS)

*) For optionally isochronous load sharing.

Mak

13.6.2 Requirements on gas system

The table below shows the standard interface between the gas system and the dual fuel engine.

Standard interface to the gas system

-	Indication diesel mode	24 V DC	t	binary		
	Indication gas mode	24 V DC	+	binary		
	Activate gas supply to gas valve unit	24 V DC	t	binary		
	Switch over to gas operation failed	24 V DC	+	binary		
	Gas operation shut off machinery space	24 V DC	t	binary		
E	Gas operation shut off engine	24 V DC	╇	binary	inet	
system	Gas mode interlock	24 V DC	Ŧ	binary	Engine cabinet	
Gas	Gas operation shut down	binary		24 V DC	Engin	
	Gas mode interlock	binary		24 V DC		
	Diesel mode select	binary		24 V DC		
	Gas mode select	binary	1	24 V DC		
	Inert gas supply pressure	4-20 mA		Analogue output		
	Pressure transmitter fuel gas supply to engine room	4-20 mA		Analogue output		

Caterpillar Motoren scope of supply

Yard scope of supply

13

Gas system Gas tank Gas handling unit Gas valve unit Engine with engine cabinet Control of the system Control

Fig. 13-6 Basic overview: dual fuel engine gas system

13.7 List of measuring points, exhaust gas monitoring

This list is only a general overview for genset / DE application.

Meas. point	Description	Signal range	Remarks	
Lube oil				
1104	Pressure switch lube oil pressure low	start pump	binary	
1105	Pressure switch lube oil pressure low	alarm	4-20 mA	
1106	Pressure switch lube oil pressure low	shutdown	binary	
1112.1 1112.2	Differential pressure lube oil automatic filter high	pre-alarm alarm	binary	1 evaluation unit for 1112.1/.2 Only existing, when automatic filter is mounted on the engine.
1142	Pre lube oil pressure low	start interlock	binary	
1202 1203	Lube oil temperature at engine inlet high	alarm change genset	PT 100	
1311	Lube oil level low	alarm	binary	
1312	Lube oil level high	alarm	binary	
Oil mist c	letector			
1251 1251.1 1253	Oil mist concentration in crankcase high	alarm pre-alarm shutdown	binary	
1254	Indication of opacity for compartment (each cyl.)	indication		
9631	Oil mist detector failure	alarm	binary	
Fresh wa	ter HT			
2102	Cooling water pressure HT at engine inlet low	alarm	4-20 mA	40 kPa below ope- rating pressure
2103	Cooling water pressure HT at engine inlet low	shutdown	binary	60 kPa below ope- rating pressure delay: 20s
2201	Cooling water temperature HT at engine inlet	alarm	PT 100	
2211 2213	Cooling water temperature HT at engine outlet high	alarm shutdown	PT100	
2321	Oil ingress in fresh water at cooler outlet	alarm	binary	Depending on HT and LT system
Fresh wa	ter LT			
2112	Cooling water pressure LT at engine outlet low	alarm	binary	40 kPa below ope- rating pressure
2229	Cooling water temperature LT at engine inlet	alarm	PT 100	

- 0:

- ____

Page 118 /	′ M 34 DF G	enerator Set /	11.2014
------------	-------------	----------------	---------

Meas. point	Description			Remarks
Fuel oil				
5102	Fuel oil pressure at engine inlet low	alarm	4-20 mA	
5111	Differential pressure fuel oil filter high	alarm	binary	
5201	Fuel oil temperature at engine inlet low	alarm	PT 100	1 sensor for 5201 + 5202 (not in use
5202	Fuel oil temperature at engine inlet high	alarm	PT 100	with HFO)
5301	Leakage fuel oil niveau at engine high	alarm	binary	
Air				
6101	Starting air at engine inlet low	alarm	4-20 mA	
6108	Stopping air pressure at engine low	alarm	4-20 mA	Alarm delayed: 2s
6181	Intake air pressure in engine room	indication	4-20 mA	
Charge a	ir			
7109	Charge air pressure at engine inlet	indication	4-20 mA	
7201	Charge air temperature at engine inlet high	alarm	PT 100	
7206	Intake air temperature at turbocharger inlet	indication	PT 100	
7301	Condense water in charge air canal	alarm	binary	
7307	Charge air differential pressure at charge air cooler	indication	4-20 mA	
7309	Charge air temperature at charge air cooler inlet	indication	NiCr-Ni (mV)	
FCT				
49323 49335 49332 49336 49338	FCT position failure in gas and diesel mode	shutdown	binary	
49315	FCT common alarm	common alarm	binary	
49317 49318 49319 49401	Data link error Load signal ECM driver position Charge air pressure	alarm	binary	
49324 49335	FCT position failure	alarm	binary	
49337	Actual FCT position doesn't match gas operation	SHOGE		
Electrical	status			
9717.1 - 9717.11	Voltage failure electrical devices	alarm	binary	
9751.1	Voltage failure at charge air temperature controller	alarm	binary	

Meas. point	Description		Signal range	Remarks
Electrical	status		, <u> </u>	
9971	Emergency stop ECR diabled	alarm	binary	
99935.1	Status network failure MODbus TCP	alarm	binary	
99937.1	Status failure RS232	alarm	binary	
99938.1	Status CAN 1CANbus J1939 failure	alarm	binary	
99938.2	Status CAN 2CANbus J1939 failure	alarm	binary	
99939	Fuel bus failure - common alarm	alarm	binary	
99940	Sensor / Isolation fault - common alarm	alarm	binary	
99941	Device status monitoring system - common alarm	alarm	binary	
99942	Device status protection system	alarm	binary	
99970	Alarm system / DCU common alarm	alarm	binary	
Engine st	atus			
9404	Engine overspeed	shutdown	binary	Overspeed alarm generated via 9419.1 / 9419.2
9419.1 - 9419.11	Engine speed, pick-up signal	indication		Used for indica- tion and functions
9429	Turbocharger speed	indication	4-20 mA	
9509	Distance sensor, fuel setting	indication	0-20 mA	
9513.1	Ready primary ECM diesel ready	start interlock	binary	
9561	Turning gear engaged	start interlock	binary	
Power su	pply engine cabinet			
99973.1	Main power supply failure	alarm	binary	
99973.2	Back-up power supply failure	alarm	binary	
99974	Power supply isolation failure	alarm	binary	
Exhaust ç	jas	1		
8211	Exhaust gas temperature after cylinder (each cylinder)	indication	NiCr-Ni (mV)	
8218	Exhaust gas temperature after cylinder (each cylinder)	change genset	binary	Calculated from 8211
8219	Exhaust gas temperature after cylinder (aech cylinder)	alarm	binary	Calculated from 8211
8214	Mean average exhaust gas temperature	indication	function	Calculated from 8211
8213 8216	Deviation from mean average (each cylin- der)	alarm change genset	binary	Calculated from 8214
8221	Exhaust gas temperature at turbocharger outlet	indication	NiCr-Ni (mV)	
8222	Exhaust gas temperature at turbocharger outlet	alarm	binary	Calculated from 8221

.

-

Λ

Meas. point	Description		Signal range	Remarks
Exhaust g	gas			
8224	Exhaust gas temperature at turbocharger outlet	change genset	binary	Calculated from 8221
8231	Exhaust gas temperature at turbocharger inlet	indication	NiCr-Ni (mV)	
8232	Exhaust gas temperature at turbocharger inlet	alarm	binary	Calculated from 8231
Big end t	pearing (optional)			
1231	High temperature conrod big end bearing (each bearing)	indication	analogue	
1232	High temperature conrod big end bearing (each bearing)	alarm	binary	Calculated from 1231
1238	High temperature conrod big end bearing (each bearing)	shutdown	binary	Calculated from 1231
1235	Mean average temperature of big end bearings	indication	function	Calculated from 1231
1236 1237	Max. positive temperature deviation from mean average	alarm shutdown	binary	Calculated from 1235
Main bea	aring (optional)			
1211	High temperature main bearing (each bearing)	indication	analogue	
1212 1218	High temperature main bearing (each bearing)	alarm shutdown	binary	Calculated from 1211
1215	Mean average temperature of main bea- rings	indication	function	Calculated from 1211
1216 1217	Max. positive deviation from mean average of main bearing	alarm shutdown	binary	Calculated from 1215
.oad sha	re unit (optional)			
9615	Minor alarm load share unit	alarm	binary	
9616	Major alarm load share unit	shutdown	binary	
⁻ uel oil m	nodule (optional)			
5105	Fuel oil pressure low	stand-by pump		
5112	Fuel oil differential pressure at automatic filter	alarm		
5115	Fuel oil differential pressure at circulating pump	stand-by pump		
5116	Fuel oil differential pressure at circulating pump	alarm		
5251 5252	Fuel oil viscosity at engine inlet high	alarm		
5333	Fuel oil level mixing tank	indication		

13

CONTROL AND MONITORING SYSTEM

Meas. point	Description	Signal range	Remarks	
Gas valve	e unit			
45301 45302	Position of block valve 1 open/close	alarm/SHOGE	binary	
45303 45304	Position of block valve 2 open/close	alarm/SHOGE	binary	
45305 45306	Position of bleed valve 1 open/close	alarm/SHOGE	binary	
45307 45308	Position of bleed valve 2 open/close	alarm/SHOGE	binary	
45309 45310	Position of bleed valve 3 open/close	alarm/SHOGE	binary	
45101	Fuel gas pressure at GVU inlet	alarm/SHOGE	4-20 mA	
45102	Pressure between block valve 1 and 2 at GVU	function	4-20 mA	
45108 45122	Flow of fuel gas volume at GVU inlet	indication function	4-20 mA pulse	
45103 45104	Fuel gas pressure at GVU outlet	SHOGE indication	4-20 mA 4-20 mA	
45201	Fuel gas temperature at GVU inlet	alarm/SHOGE	PT 100	
Ignition fu	uel module			
45312 45313 45315	HIHI Level switch circulation tank HI Level switch circulation tank LOLO Level switch circulation tank	alarm	binary	
45314 45316 45317 45318 45319	LSLL Level switch feed tank HIHI Level switch feed tank HI Level switch feed tank LO Level switch feed tank LOLO Level switch feed tank	alarm	binary	
45320	Filling valve	function	binary	
45321 45322	Limit switch 1 filling valve Limit switch 2 filling valve	function	binary	
45323	Transfer valve	function	binary	
45324 45325	Limit switch 1 transfer valve Limit switch 2 transfer valve	function	binary	
	Circulation pump	function	binary	
45326			1.1	
45326 45327	Feeding pump	function	binary	
	Feeding pump Differential pressure switch duplex filter 1	function status alarm	binary	
45327 45109		status		

 $\textbf{SHOGE:} \ \textbf{Shut-off gas supply to individual engine}$

- 13 14 15 16

Meas. point	Description	Signal range	Remarks	
Ignition fu	uel module			
45105.1 45105.2	Differential pressure ignition fuel oil filter high	pre-alarm alarm	binary	
45329.1 - 45329.8	Diesel oil circulation pump DP10, DP11, (on, off tripped)	indication alarm	binary	
45329.9 45329.10	Change over valce DR4 manual/auto	indication	binary	
45329.11 45329.12	Change over valve DR5 manual/auto	indication	binary	
45328	Feeding pump in back-up	alarm	binary	
49122	ESD active – back-up feeding pump	alarm	binary	
45301 45302 45303 45304	Diesel oil ignition supply pump DP12 on Diesel oil ignition supply pump DP12 manual Diesel oil ignition supply pump DP12 auto Diesel oil ignition supply pump DP12 tipped	indication	binary	
Crankcas	e gas detection			
45401	Gas detector fuel gas concentration high	alarm/SHOGE	4-20 mA 0-100% LEL	
45403	Media flow monitor	indication	binary	
45404	Media pump control	indication	binary	
Exhaust g	jas ventilation	' 	1	
99989	Start exhaust gas ventilation	function	binary	
99990 99991	Motor flap EGMV command open Motor flap EGMV command close	function	binary	
99992	Ventilator fault	function	binary	
99993	Motor flap fault	function	binary	
99994 99995	Motor flap position switch open Motor flap position switch close	function	binary	
99996	Differential pressure switch / air after fan	function	binary	
99997	Temperature air after fan	function	binary	
Slow turn	device			
9829.1 9829.2	Stop position switch close Stop position switch open	function	binary	
99950	Mode change	indication	binary	
9846	Automatic mode	indication	binary	

SHOGE: Shut-off gas supply to individual engine

13.8 Local and remote indicators

Local indication	Remote indicators
	96 x 96 mm
Installed at the engine	(optional)
Fuel oil temperature at engine inlet	X ²⁾
Fuel oil differential pressure at filter	
Fuel rack position (mean injection pump rack)	X ²⁾
Lube oil temperature at engine inlet	X ²)
Lube oil differential pressure at filter	
Fresh water temp. at engine inlet (HT circuit)	
Fresh water temp. at engine outlet (HT circuit)	X ²⁾
Fresh water temperature (LT circuit)	X ²⁾
Fresh water temperature cooler inlet	
Fresh water temperature cooler outlet	
Charge air temperature cooler inlet	
Charge air temperature engine inlet	X ²⁾
Fuel oil pressure	X ²⁾
Lube oil pressure	X ²⁾
Fresh water pressure (HT circuit)	X ²⁾
Fresh water pressure (LT circuit)	X ²⁾
Start air pressure	X ²⁾
Charge air pressure cooler outlet	X ²⁾
Stop air pressure	
Engine speed	X ¹⁾
Turbocharger speed	X ¹⁾
Charge air temp. cooler inlet (digital value)	
Exhaust gas temp. after cylinder (digital value)	
Exhaust gas temp. before / after turbocharger (digital value)	

1) 144 x 144 mm possible / 2) Signal is supplied by the alarm system

13.9 Condition monitoring

New diagnostic system for on-line engine data transmission

Based on several years of Caterpillar experience, Caterpillar Motoren will launch a new diagnostic system in 2015. The new system will be based on data transfer via internet to a central Caterpillar warehouse and offers intensive diagnostics by Caterpillar engine specialists and use of a common data base. The DICARE system has been discontinued and will not be offered due to lack of ability to support the software platform in the future.

For detailed information please contact Caterpillar Motoren, application and installation department, + (49) 431-39 95 01.

13.10 Safety

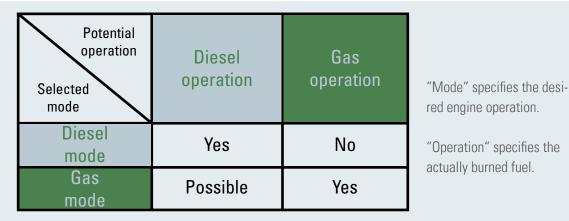


Fig. 13-7 Definition: "Mode" vs. "Operation"

Additional safety requirements need to be fulfilled to operate a dual fuel engine in a marine application. The safety concept for the MaK dual fuel engine is designed according the upcoming IGF code to provide a gas safe machinery space.

13.10.1 Safety concept

13

The main intention of the safety concept for the new dual fuel engine is to prevent the formation of a hazardous explosive atmosphere. Therefore a gas detection system is used in combination with automatic safety actions that will finally result in changeover to diesel and flushing of the gas supply line. Additionally a ventilation system for the exhaust pipe will inhibit an accumulation of fuel gas.

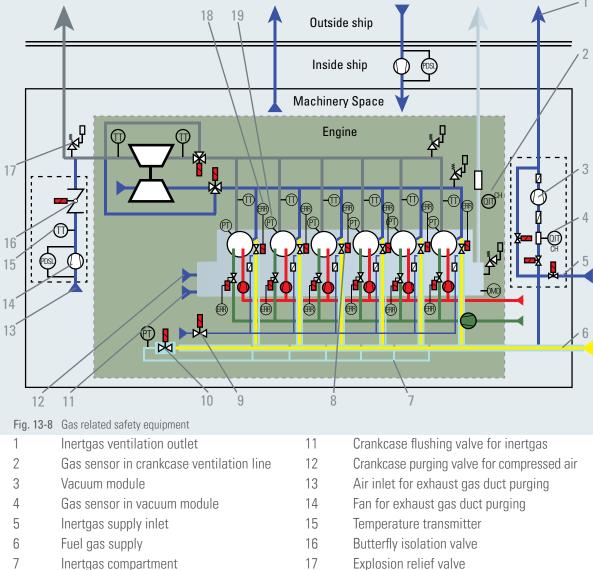
Already during the design phase ignition sources have been considered and were excluded where possible. The aim was to create a robust design.

This safety concept for the dual fuel engine is based on a gas-safe machinery space. This means that in case of a malfunction the dual fuel engine won't shut down, instead the fuel supply will switch over to fuel oil. The switchover from fuel oil to fuel gas or vice versa will be bumpless and without any losses in power performance of the engine.

To create a gas-safe machinery space the fuel gas pipes in the machinery space are double-walled from the gas valve unit throughout the cylinders. A leakage monitoring system is installed. To ensure the gas safe machinery space at all times the following requirements need to be fulfilled in addition:

- Fuel gas piping in machinery space needs to be double-walled.
- All parts of the engine's fuel gas supply system inside the machinery space need to be double-walled.
- The double wall permanently needs to be checked for leakage while containing fuel gas.
- Purging the fuel gas line with inert gas needs to be possible.
- Machinery space ventilation needs to be monitored (30 air changed per hour by two separate systems).
- Gas concentration of the crankcase outlet needs to be monitored.

Mak


13

CONTROL AND MONITORING SYSTEM

- Means are to be provided to inert and vent the crankcase for maintenance reasons.
- No direct access to gas hazardous areas is allowed.
- In case of an emergency shut down of the engine while running on fuel gas, the exhaust system needs to be ventilated.
- At each engine stop after gas operation the fuel gas supply lines need to be flushed.

Additionally to the machinery space special attention needs to be paid to the gas handling room and all rooms adjacent to possibly hazardous areas.

The engine control, monitoring and protection system, called MACS (Modular Alarm Control System), consists of different functional components. It will include the start-stop system, the gas management, the monitoring system and the engine protection system. A screen is fitted in the local control panel and will show measurement data as well as disgnostics and engine status.

18

- 7 Inertgas compartment
- 8 GAV (Gas Admission Valve)
- 9 Fresh air flushing valve
- 10 Inertgas flushing valve

19 In cylinder pressure transmitter

In cylinder pressure sensor

INSTALLATION AND ARRANGEMENT

14.1 Resilient mounting of genset

Engine and generator are rigidly connected with the baseframe. The baseframe is resilient mounted at the ship's foundation via conical rubber elements.

For each individual order the resilient mounting will be checked and the position of the mountings may be redefined depending on the generator weight to achieve almost an equal load distribution to realize the best possible structure borne noise attenuation.

The used conical design provides high deflection and load capacity combined with long service life and have been approved from all relevant classification societies.

An adjustable central bugger controls the mounted equipment displacements due to ship movements vertically and horizontally within defined limits, so there is no need for separate stoppers.

Engine	Conical elements required
6 M 34 DF	10 x RD214x
8 M 34 DF	12 x RD214x
9 M 34 DF	12 x RD214x

14

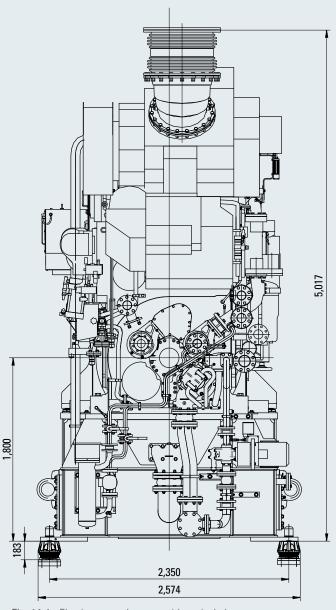
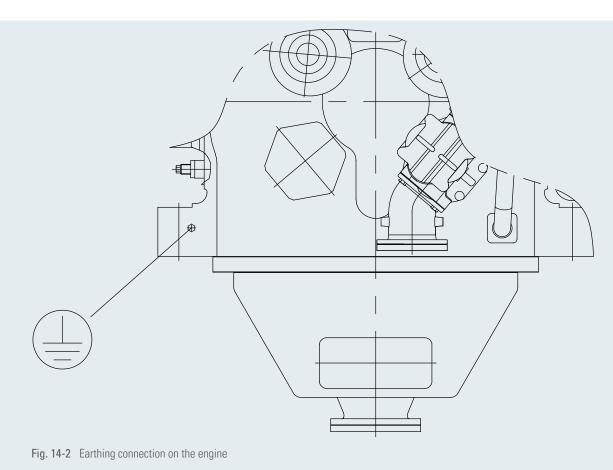


Fig. 14-1 Elastic mounted genset with conical elements

INSTALLATION AND ARRANGEMENT

14.2 Earthing of engine


Information about the execution of the earthing

The earthing has to be carried out by the shipyard during the assembly on board.

The engine is already equipped with M 16, 25 mm deep threaded holes with the earthing symbol in the engine foot.

If the engine is resiliently mounted it is important to use flexible conductors.

In case of using welding equipment it is important to earth the welding equipment close to the welding area (the distance should not exceed 10 m).

Page 127 / M 34 DF Generator Set / 11.2014

VIBRATION AND NOISE

Mak

15.1 Data for torsional vibration calculation

To determine the location and resonance points of each engine and equipment Caterpillar Motoren calculates the torsional vibration behaviour of the engine, including all components, such as coupling, gearboxes, shaft lines and propellers, pumps, and generators.

The normal as well as the emergency operating mode is covered.

The classification societies require a complete torsional vibration calculation.

To be able to provide a correct torsional vibration calculation, we would like to ask you to fill in the documents in the appendix, according to your scope of supply.

Please send the completed data to your local dealer 6 month prior to the engine delivery at the latest. For further information please compare the data sheet for torsional vibration calculation. (following 3 pages).

CAT	Main drive	Shipyard:	
Additional engine	Aux. Engine	Shipowner:	
plant data part "B"	DE drive	Type of vessel:	
plant data <u>part p</u>	KtrNo.:	Newbuilding No.:	
<u>Remark:</u>			
	ted "Additional engi	ine plant data sheet" part	livered not later than 6 weeks "B". The "Additional engine
General information, re	quired for all app	lications:	
Flag state (needed for EIAF	PP cert):		
weeks prior to the engine d has not been provided to C Statement of Compliance"	<u>lelivery date</u> as per the aterpillar Motoren ur which has to be converted authorization. In this authorization. In this authorization.	he Sales Contract (Append ntil such date, Caterpillar M verted into "EAPP Docume	nation is provided at <u>least eight (8)</u> dix 1). In case such information Notoren will provide an "EAPP ents of Compliance" or an "EIAPP I costs for the before mentioned
Alarm system			
yard maker:	type:	yard contact mana	ager:
Make of automation/bus	system		
yard maker:	-	yard contact mana	ager:
		4	
Additional information	for cooling water	<u>system</u> :	
Add. heat exchanger integrate		es 🗌 No, if " <u>Yes</u> " please pro	ovide the following data:
number of aux. engine			
heat dissipation		red water flow m ³ /h	pressure drop <u>bar</u>
☐ oil cooler gear box ☐ heat dissipation		er of cooler ed water flow m³/h	pressure drop bar
\square air cond. unit		er of air cond. unit	
heat dissipation		red water flow m ³ /h	pressure drop bar
others		pecify:	· · ·
heat dissipation		red water flow m ³ /h	pressure drop bar
Comments/Remarks			
Comments/Remarks:			
Caterpillar Confidential: Green			

Fig. 15-1 Additional engine plant data, part "B" (1/3)

VIBRATION AND NOISE

CAT		Additional eng	jine plant data , <u>part "B"</u>
TVC data -	Information for mai	n engine(s) only	<i>[</i> :
Flex. couplin	g main engine:		
Supplied by C	Caterpillar 🗌 Yes 🛛 🗌	No, if " <u>No</u> " please pro	vide the following data:
🗌 Vulkan		Stromag	Centa
Type:		Size:	TVC scheme attached
		Drawing attache	ed Drawing attached
	naker		
Туре: _		Size:	 TVC scheme attached Drawing attached
	al torque [kNm]:		Perm. vibratory torque [kNm]:
	oower loss [kW]:		Perm. rotational speed [1/min]:
Dyn. to	rsinal stiffness[kNm/rad]:		Relative damping:
Flex. couplin	g engine PTO shaft (on	engine free-end)	
Supplied by C	Caterpillar 🗌 Yes 🛛 🗌	Not applicable] No, if " No " please provide the following data:
UVulkan		Stromag	Centa
Type:		Size:	TVC scheme attached
		Drawing attache	ed Drawing attached
Other n	naker		
Type: _		Size:	TVC scheme attached Drawing attached
Normin	al torque [kNm]:		Perm. vibratory torque [kNm]:
Perm. I	oower loss [kW]:		Perm. rotational speed [1/min]:
Dyn. to	rsinal stiffness[kNm/rad]:		Relative damping:
Flex. couplin	g gearbox PTO		
Supplied by C	Caterpillar 🗌 Yes 🛛 🗌	Not applicable] No, if " No " please provide the following data:
🗌 Vulkan		Stromag	Centa
Type:		Size:	TVC scheme attached
		Drawing attache	ed Drawing attached
🗌 Other r	naker		
Type:		Size:	TVC scheme attached
			Drawing attached
	al torque [kNm]:		Perm. vibratory torque [kNm]:
	power loss [kW]:		Perm. rotational speed [1/min]:
Dyn. io	rsinal stiffness[kNm/rad]:		Relative damping:
Gearbox			
Supplied by C	Caterpillar 🗌 Yes 🛛 🗌	No, if " <u>No</u> " please pro	vide the following data:
Maker:		Type:	TVC scheme attached
	issible PTO output [kW]:		Drawing attached
Front gearbo	ox for engine PTO		
-		Not applicable] No, if " No " please provide the following data:
Maker:		Туре:	TVC scheme attached
	issible PTO output [kW]:		Drawing attached
PTO shaft ge	enerator/fire fighting pur	np or similar consu	umer, driven by engine PTO shaft/front step up gear
Supplied by C	Caterpillar 🗌 Yes 🛛 🗌	Not applicable] No, if " <u>No</u> " please provide the following data:
Malaan		Туре:	
Maker:			
Maker: Output [kV	V]: earing, external lubricatio	rpm [1/min]:	TVC scheme attached

Fig. 15-2 Additional engine plant data, part "B" (2/3)

VIBRATION AND NOISE

	Additional engine plant data, part "B"
TVC data - Informatio	on for main engine(s) only:
PTO shaft generator, driv	
Supplied by Caterpillar Maker: Output [kVA]: PTI operation	-
Shaft arrangement betwe	
Supplied by Caterpillar	
Maker: Propeller and propeller s	TVC scheme attached detail drawing:
Supplied by Caterpillar CPP FPP numbers of blades: Moments of inertia in w Maker:	□ Voith □ Rudder FPP/CPP □ Others Ø propeller [mm]:
Supplied by Caterpillar Wake field attached Comments/Remarks:	
•••••••••••••••••••••••••••••••••••••••	
Confirmed by buyer:	
Confirmed by buyer:	
Date:	
Date: Stamp and signature: Caterpillar cannot be held Components not mentione	liable for any mistakes made by the buyer. d in Cat's technical specification/No, dd and essential for
Date: Stamp and signature: Caterpillar cannot be held Components not mentione	

VIBRATION AND NOISE

Mak

15.2 Sound levels

15.2.1 Airborne noise

The airborne noise level requirement in the engine room specified by IMO Resolution A.468 will be satisfied by M 34 DF (even for multiple installations).

The airborne noise level is measured in a test cell according to EN ISO 9614-2.

15.3 Vibration

The vibration level of M 34 DF engines complies with ISO 20283-4 and ISO 10816-6. From these ISO standards, the following values are an applicable guideline:

Displacement	S _{eff}	< 0.448 mm	f> 2 Hz < 10 Hz
Vibration velocity	V _{eff}	< 28.2 mm/s	f> 10 Hz < 250 Hz
Vibration acceleration	a _{eff}	< 44.2 m/s ²	f> 250 Hz < 1,000 Hz

16.1 Flexible coupling

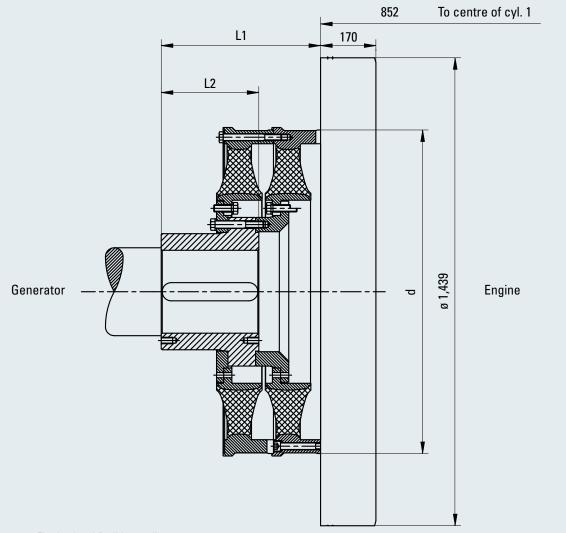


Fig. 16-1 Flywheel and flexible coupling

	Power	Speed	Nominal torque of				We	ight
	ruvei	Speeu	coupling	d	L1 ⁴⁾	L2 ³⁾	1)	2)
	[kW]	[rpm]	[kNm]	[mm]	[mm]	[mm]	[kg]	[kg]
6 M 34 DF	3,000	720/750	50.0	995	495	285	381	465
8 M 34 DF	4,000	720/750	80.0	995	495	285	381	465
9 M 34 DF	4,500	720/750	80.0	1,070	530	285	464	556

1) Outer part/ 2) Inner part / 3) Length of hub / 4) Alignment control (recess depth 5 mm)

)7

9

11

13

PIPING DESIGN

17.1 Pipe dimensions

The external piping systems are to be installed and connected to the engine by the shipyard. Piping systems are to be designed so as to keep the pressure losses at a reasonable level. To achieve this at justifiable costs, it is recommended to keep flow rates as indicated below (see chapter 19.2).

Nevertheless, depending on specific conditions of piping systems, it may be necessary to adopt even lower flow rates.

ATTENTION:

Generally it is not recommended to adopt higher flow rates.

17.2 Flow velocities in pipes

	Recommended flow rates [m/s]				
	Suction side	Delivery side	Kind of system		
Fresh water (cooling water)	1.5 - 3.0	1.5 - 3.0	Closed		
Lube oil	0.5 - 1.0	1.5 - 2.5	Open		
Sea water	1.0 - 1.5	1.5 - 2.5	Open		
Diesel fuel oil	0.5 - 1.0	1.5 - 2.5	Open		
Heavy fuel oil	0.3 - 0.8	1.0 - 1.5	Open / closed pressurized system		
Exhaust gas	2	Open			

17.3 Trace heating

Trace heating is highly recommended for all pipes carrying HFO or leak oil. For detailed explanation see fuel oil diagrams, showing the trace heated pipes marked as

17.4 Insulation

All pipes with a surface temperature > 60 °C should be insulated to avoid risk of physical injury. This applies especially to exhaust gas piping.

To avoid thermal loss, all trace heated pipes should be insulated.

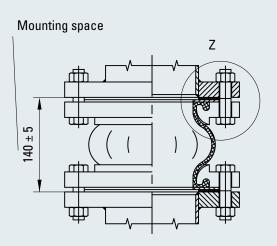
Additionally, lube oil circulating pipes, the piping between engine and lube oil separator as well as the cooling water pipes between engine and preheater set should be insulated.

PIPING DESIGN

Mak

17.5 Flexible pipe connections

Flexible pipe connections become necessary to connect resilient mounted engines with external piping systems. these components have to compensate the dynamic movements of the engine in relation to the external piping system.


The shipyard's pipe system must be exactly arranged so that the flanges or screw connections fit without lateral or angular offset. It is recommended to adjust the final position of the pipe connections after engine alignment is completed.

It is important to support as close as possible to the flex connection and stronger than normal. The pipes outside the flexible connection must be well fixed and clamped to prevent from vibrations, which could damage the flexible connections.

Installation of steel compensators

Steel compensators can compensate movements in line and transversal to their center line. They are not suitable for compensating twisting movements. Compensators are very stiff against torsion.

It is very important that all steel compensators are not allowed to be installed on resilient mounted engines in vertical direction.

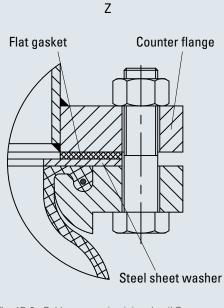


Fig. 17-2 Rubber expansion joint, detail Z

17

Fig. 17-1 Rubber expansion joint

ENGINE ROOM LAYOUT

18.1 Engine center distances

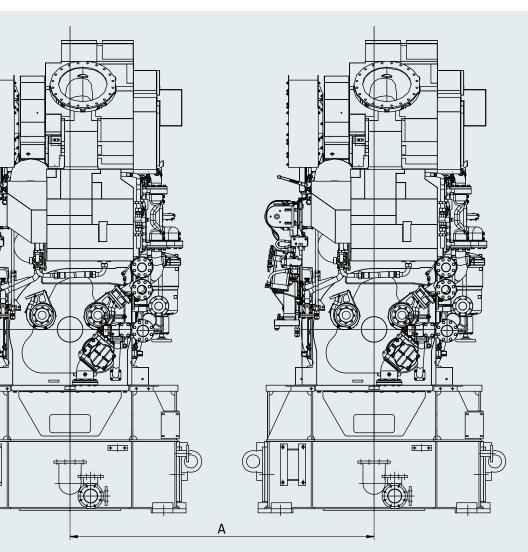
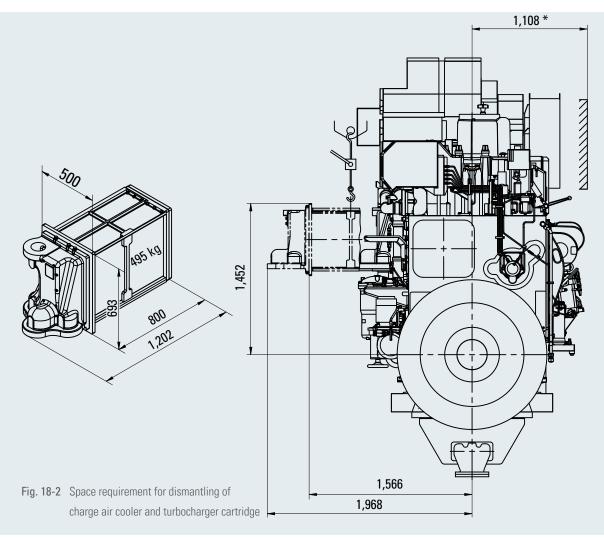


Fig. 18-1 Center distance of twin-engine plants


Туре	Dimensions [mm] A
6/8/9 M 34 DF	3,000

Mak

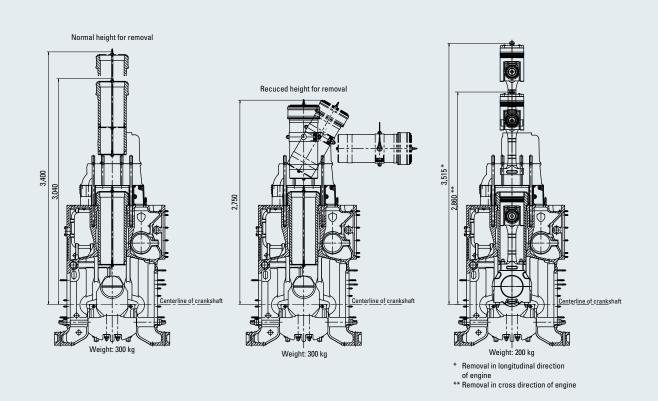
ENGINE ROOM LAYOUT

18.2 Space requirement for maintenance

18.2.1 Removal of charge air cooler and turbocharger cartridge

Туре	Dimensions [mm]						Weight charge air cooler	Weight turbocharger cartridge
	Α	В	С	D	E	F	[kg]	[kg]
6 M 34 DF	1,413	1,980	676	520	1,160	850	495	1,200
8/9 M 34 DF	1,625	2,015	870	720	1,180	1,640	495	2,000

Charge air cooler cleaning


Cleaning is carried out with charge air cooler dismantled. A container to receive the cooler and cleaning liquid is to be supplied by the yard. Intensive cleaning is achieved by using ultra sonic vibrators.

Turbocharger dismantling

Removal of cartridge must be carried out with compressor delivery casing after removal of air filter silencer.

ENGINE ROOM LAYOUT

18

Mak

	Mak
PAINTING, PRESERVATION	
	01
19.1 Inside preservation	02
10.1.1 Eastery standard NE76.2.2 Incide procernation	03
19.1.1 Factory standard N 576-3.3 – Inside preservation	04
Components	05
Main running gear and internal mechanics	06
Application	
Max. 2 years	07
NOTE:	08
Inside preservation does not have to be removed when the engine is commissioned.	09
	10
19.2 Outside preservation	11
	12
19.2.1 Factory standard N 576-3.2 – Outside preservation VCI 368	13
Conditions	
	14
Europe and overseasSea and land transportation	15
• Storage in the open, protected from moisture max. 2 years with additional VCI packaging	16
Appearance of the engine	17
Castings with red oxide antirust paint	18
 Pipes and machined surfaces left as bare metal Attached components with colours of the manufacturers 	
Attached components with colours of the manufacturers	19
NOTE:	20
Outside preservation must be removed before commissioning of the engines. Environmentally compatible disposal is to be ensured.	
Durability and effect depend on proper packaging, transportation, and storage (i.e. protected from moistu-	
re, stored at a dry place and sufficiently ventilated). Inspections are to be carried out at regular intervals	
re, stored at a dry place and sufficiently ventilated). Inspections are to be carried out at regular intervals.	21 22 23

PAINTING, PRESERVATION

19.2.2 Factory standard N 576-4.1 – Clear varnish

Conditions

- Europe
- Roofed land transportation
- Storage in a dry and tempered atmosphere, protected from moisture max. 1 year with additional VCI packaging

NOTE:

Clear varnish is not permissible for sea transportation of engine and storage of engines in the open, even if they are covered with tarpaulin.

Appearance of the engine

- Castings with red oxide antirust paint
- Pipes and machined surfaces left as bare metal
- Attached components with colours of the manufacturers
- Surfaces sealed with clear varnish
- Bare metal surfaces provided with VCI 368 preservation

NOTE:

VCI packaging as per factory standard N 576-5.2 is generally required!

Durability and effect depend on proper packaging, transportation, and storage (i.e. the engine is to be protected from moisture, VCI film not ripped or destroyed).

Inspections are to be carried out at regular intervals.

If the above requirements are not met, all warranty claims in connection with corrosion damage shall be excluded.

	Mak
PAINTING, PRESERVATION	
19.2.3 Factory standard N 576-4.3 – Painting	02
Conditions	03
Europe and overseas	04
Sea and land transportationShort-term storage in the open, protected from moisture up to max. 4 weeks	05
 Longer than 4 weeks VCI packaging as per factory standard N 576-5.2 is required Max. 2 years with additional VCI packaging 	06
Appearance of the engine	07
	08
Surfaces mostly painted with varnishBare metal surfaces provided with VCI 368 preservation	
NOTE:	09
Durability and effect depend on proper packaging, transportation, and storage (i.e. the engine is to be protected from moisture, VCI film not ripped or destroyed).	10
Inspections are to be carried out at regular intervals.	11
	12
19.2.4 Factory standard N 576-5.2 – VCI packaging	13
Conditions	14
 Engines with outside preservation VCI 368 as per factory standard N 576-3.2 	15
Engines with clear varnish as per factory standard N 576-4.1 NOTE:	16
These engines are always to be delivered with VCI packaging!	17
 Nevertheless, they are not suitable for storage in the open! Engine or engine generator sets with painting as per factory standard N 576-4.3 	18
Europe and overseasStorage in the open, protected from moisture	19
NOTE:	20
Durability and effect depend on proper packaging, transportation, and storage (i.e. the engine is to be protected from moisture, VCI film not ripped or destroyed).	21
Inspections are to be carried out at regular intervals.	22
	22

Apperance of the engine

- Bare metal surfaces provided with VCI 368 or VCI oil
- VCI impregnated flexible PU foam mats attached to the engine using tie wraps. Kind and scope depending on engine type. The attached mats should not come into contact with the painted surface.
- Cover the engine completely with air cushion film VCI 126 LP. Air cushions are to face inwards! The air cushion film is fastened to the transportation skid (wooden frame) by means of wooden laths. Overlaps at the face ends and openings for the lifting gear are to be closed by means of PVC scotch tape. In case of engines delivered without oil pan, the overhanging VCI film between engine and transport frame is to be folded back upwards before fastening the air cushion film.

ATTENTION:

The corrosion protection is only effective if the engine is completely wrapped in VCI film. The protective space thus formed around the component can be openend for a short time by slitting the film, but afterwards it must be closed again with adhesive tape.

19.2.5 Factory standard N 576-5.2 Suppl. 1 – Information panel for VCI preservation and inspection

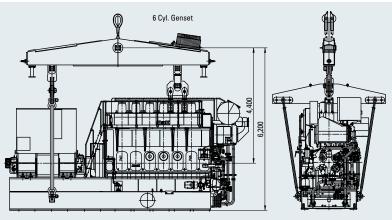
An information panel for VCI preservation and inspection will be supplied.

Application

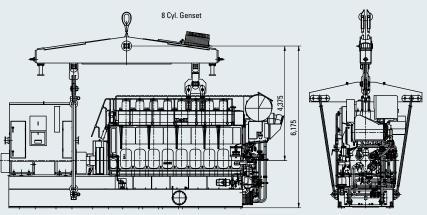
• Engines with VCI packaging as per factory standard N 576-5.2

Description

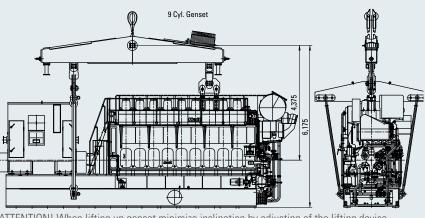
- This panel provides information on initial preservation and instructions for inspection.
- Arranged on the transport frame on each side so as to be easily visible.


PAINTING, PRESERVATION				
	01			
19.3 Factory standard N 576-6-1 – Protection period, check, and represervation	02			
19.3.1 Protection period	03			
There will only be an effective corrosion protection of the engine if the definitions and required work	04			
according to factory standard N 576-6.1 are duly complied with.	05			
Normally, the applied corrosion protection is effective for a period of max. 2 years, if the engine or engine generator set is protected from moisture.	06			
After two years represervation must be carried out. However, depending on the execution of the preservation or local conditions shorter periods may be	07			
recommended.				
	08			
19.3.2 Protection check	09			
Every 3 month specific inspections of the engine or engine generator set are to be carried out at defined	10			
inspection points. Any corrosion and existing condensation water are to be removed immediately.				
	12			
19.3.3 Represervation as per factory standard N 576-6.1	13			
After 2 years represervation must be carried out.				
	14			
	15			
	16			
	17			
	18			
	- -			
	19			
	20			
	21			
	22			
	00			

Mak

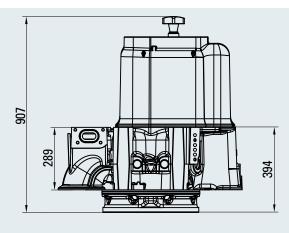

TRANSPORT, DIMENSIONS AND WEIGHTS

20.1 Lifting of engines


For the purpose of transport the genset is equipped with a lifting device, which shall remain the property of Caterpillar Motoren. It has to be returned in usable condition free of charge.

ATTENTION! When lifting up genset minimize inclination by adjusting of the lifting device. Weight: 6 Cyl. Generator Set max. 140 t, lifting device ca. 7 t

ATTENTION! When lifting up genset minimize inclination by adjusting of the lifting device. Weight: 8 Cyl. Generator Set max. 140 t, lifting device ca. 7 t



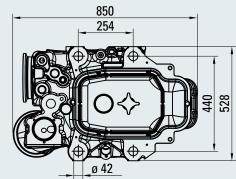

ATTENTION! When lifting up genset minimize inclination by adjusting of the lifting device. Weight: 9 Cyl. Generator Set max. 140 t, lifting device ca. 7 t

Fig. 20-1 Transport of engine

TRANSPORT, DIMENSIONS AND WEIGHTS

20.2 Dimensions of main components

153

120

Fig. 20-2 Cylinder head, weight 460 kg

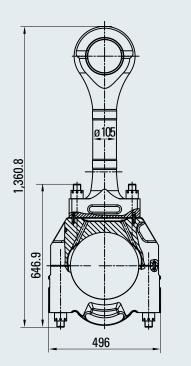


Fig. 20-4 Connecting rod, weight 224 kg

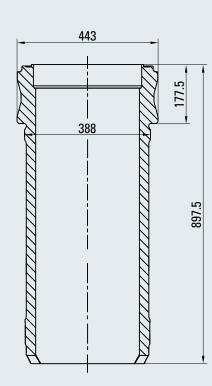


Fig. 20-3 Cylinder liner, weight 221 kg

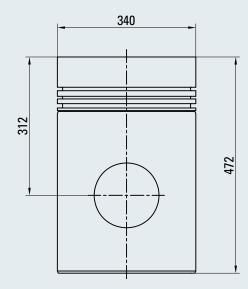
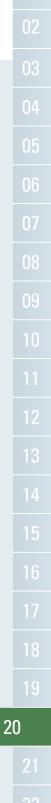



Fig. 20-5 Piston, weight 97.6 kg

STANDARD ACCEPTANCE TEST RUN

21.1 Standard acceptance test run

The acceptance test run is carried out on the testing bed with customary equipment and auxiliaries using exclusively MDO and under the respective ambient conditions of the testing bed. During this test run the fuel rack will be blocked at the contractual output value. In case of deviations from the contractual ambient conditions the fuel consumption will be converted to standard reference conditions. The engine will be run at the following load stages according to the rules of the classification societies.

Diesel mode

Load [%]	Duration [min]
Diesel mode	
25	20
50	20
75	20
85	30 (contractual fuel consumption measurement)
100	60
110	45
Gas mode	
25	20
50	20
75	20
85	30 (contractual fuel consumption measurement)
100	20

The load stages above can vary according to the requirements of the classification societies.

After reaching steady state conditions of pressures and temperatures these will be recorded and registered according to the form sheet of the acceptance test certificate.

Additional functional tests

In addition to the acceptance test run the following functional tests will be carried out:

- Governor test
- Overspeed test

21

- Emergency shut-down via minimum oil pressure
- Start/stop via central engine control
- Starting trials up to a minimum air pressure of 10 bar
- Measurement of crank web deflection (cold/warm condition)

After the acceptance, main running gear, camshaft drive and timing gear train will be inspected through the opened covers. Individual inspection of special engine components such as piston or bearings is not intended, because such inspections are carried out by the classification societies at intervals on series engines.

22.1 Required spare parts (Marine Classification Society MCS)

Classification societies	GL	RS	KR	CCS
Rules references	Pt. 1, Ch. 17	Pt. 7, Ch. 10	Pt. 5, Ch. 1	Ch. 15, Sec. 1&2
Parts				
Main bearing	1	1	1	1
Thrust washer	1	1	1	1
Cylinder liner, complete	1	1	1	1
Cylinder head, complete	1	1	1	1
Cylinder head, only with valves (w/o injection valve)	_	-	_	_
Set of gaskets for one cylinder head	_	_	_	_
Set bolts and nuts for cylinder head	1/2	1/2	1/2	1/2
Set of exhaust valves for one cylinder head	1	(2)*	2	2
Set of intake valves for one cylinder head	1	(1)*	1	1
Starting air valve, complete	1	1	1	1
Relief valve, complete	1	1	1	1
Injection valve, complete	_	_	_	_
Set of injection valves, complete, for one engine	1	1	1	1
Set of conrod top & bottom bearing for one cylinder	1	1	1	1
Piston, complete	1	1	1	1
Piston, without piston pin + piston rings	_	_	_	_
Connecting rod	1	1	1	1
Big end bearing	_	_	_	_
Gudgeon pin with bushing for one cylinder	1	1	1	1
Set of piston rings	1	1	1	1
Fuel injection pump	1	1	1	1
Fuel injection piping	1	1	1	1
Set of gaskets and packing for one cylinder	1	1	1	1
Exhaust compensators between cylinders	1	_	1	1
Turbocharger rotor, complete		(1)*	_	_
Set of gear wheels		_	_	_
Only for electronic speed setting Pick up for electronic speed setting	_	_	_	_
Only if oil mist detector is provided Sintered bronze filter (for crankcase monitor)	_	_	_	_

* Recommendation only

23

ENGINE PARTS

22.2 Recommended spare parts

Classification societies	ABS	DNV	LR	BV **	RINA **
	Pt. 4,	Pt. 4,	Pt. 5,	Pt. A,	Pt. A,
Rules references	Ch. 2	Ch. 1,	Ch. 16,	Ch. 1,	Ch. 1,
	Sec. 1	Sec. 5	Sec. 1	Sec. 1	Sec. 1
Parts					
Main bearing	1	1	1	—	_
Thrust washer	1	1	1	_	_
Cylinder liner, complete	1	1	1	—	_
Cylinder head, complete	1	1	1	_	-
Cylinder head, only with valves (w/o injection valve)	-	_	_	_	_
Set of gaskets for one cylinder head		_		_	
Set bolts and nuts for cylinder head	1/2	1/2	1/2	_	_
Set of exhaust valves for one cylinder head	2	2	2	—	_
Set of intake valves for one cylinder head	1	1	1	—	_
Starting air valve, complete	1	1	1	—	_
Relief valve, complete	1	1	1	_	_
Injection valve, complete	_	_	_	_	_
Set of injection valves, complete, for one engine	1	1	1	_	_
Set of conrod top & bottom bearing for one cylinder	1	1	1	_	_
Piston, complete	1	1	1	_	_
Piston, without piston pin + piston rings	_	_	_	_	_
Connecting rod	1	1	1	_	_
Big end bearing	_	_	_	_	_
Gudgeon pin with bushing for one cylinder	1	1	1	_	_
Set of piston rings	1	1	1	_	_
Fuel injection pump	1	1	1		_
Fuel injection piping	1	1	1	_	_
Set of gaskets and packing for one cylinder	1	1	1	_	_
Exhaust compensators between cylinders	1	_	1	_	_
Turbocharger rotor, complete	_	_	_	_	_
Set of gear wheels	1	_	_	_	_
Only for electronic speed setting Pick up for electronic speed setting	-	_	_	_	_
Only if oil mist detector is provided Sintered bronze filter (for crankcase monitor)	_	_	_	_	_

* Recommendation only / ** Owner's responsibility

23

ENGINE PARTS

Caterpillar recommendation	Caterpillar
Rules references	
Parts	
Main bearing	1
Thrust washer	_
Cylinder liner, complete	1
Cylinder head, complete	-
Cylinder head, only with valves (w/o injection valve)	1
Set of gaskets for one cylinder head	1
Set bolts and nuts for cylinder head	1/2
Set of exhaust valves for one cylinder head	-
Set of intake valves for one cylinder head	-
Starting air valve, complete	-
Relief valve, complete	-
Injection valve, complete	1
Set of injection valves, complete, for one engine	-
Set of conrod top & bottom bearing for one cylinder	-
Piston, complete	-
Piston, without piston pin + piston rings	1
Connecting rod	-
Big end bearing	1
Gudgeon pin with bushing for one cylinder	-
Set of piston rings	1
Fuel injection pump	1
Fuel injection piping	1
Set of gaskets and packing for one cylinder	-
Exhaust compensators between cylinders	1
Turbocharger rotor, complete	-
Set of gear wheels	_
Only for electronic speed setting Pick up for electronic speed setting	1
Only if oil mist detector is provided Sintered bronze filter (for crankcase monitor)	1

ENGINE PARTS

Caterpillar recommendation	Caterpillar
Rules references	
Dual fuel diesel mode	
ECM	1
Speed pick up camshaft	1
Speed pick up crankshaft	1
Dual fuel gas mode	
Gas admission valve	2
Ingnition injector	2
Cylinder pressure sensor	1
Set of DF gaskets	1
Rail pressure sensor	1
Gas compensator	1
Only for electronic speed setting Pick up for electronic speed setting	1
Only if oil mist detector is provided Sintered bronze filter (for crankcase monitor)	1

* Recommendation only

Mak

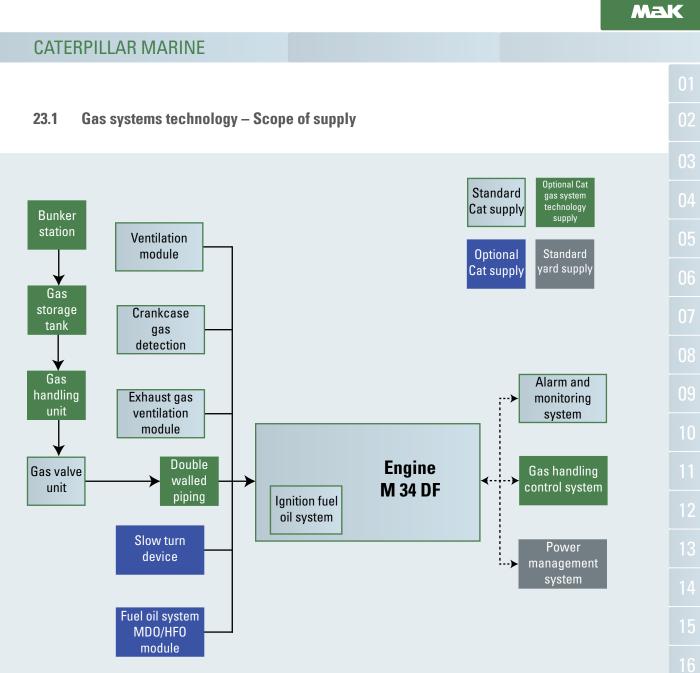


Fig. 23-1 Scope of supply M 34 DF Gas systems technology – block diagram

CATERPILLAR MARINE

23.2 Caterpillar Propulsion

Performance You Can Rely On

Caterpillar Propulsion supplies complete, world-leading propulsion systems.

Custom-designed and optimized for uptime and cost-effective operations, our top-of-the-line controllable pitch propellers, thrusters, control systems, and hubs are all manufactured at our state-of-the-art production facilities in Sweden and Singapore.

We are experts in innovative hydrodynamics to ensure heavy-duty, reliable performance for our customers.

How we deliver uptime

Our guiding principle is to deliver maximum uptime for our customers' peace-of-mind and profitability.

For us, this means using more material to ensure our propulsion systems are built to last even in the most extreme conditions. And with extreme attention to detail, we study your vessel's design, the waters it travels, the job at hand – anything and everything that affects the hydrodynamics.

Using all our expertise, we're not finished until the system is as optimized and reliable as possible. Please visit us at catpropulsion.com.

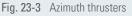


Fig. 23-4 Tunnel thrusters

Fig. 23-5 Remote control system

Fig. 23-2 Main propeller

The Power You Need.

The Cat[®] and MaK[™] brands of Caterpillar Marine offer premier high- and medium-speed propulsion, auxiliary, and generator set solutions, as well as optional dual fuel, diesel-electric, and hybrid system configurations. With the launch of Caterpillar Propulsion our comprehensive and evolving product line gives customers one source for the most extensive engine power range available, complete propulsion systems, controllable pitch propellers, transverse and azimuth thrusters, and controls. Cat and MaK products and technologies are proven reliable and are built to last in all marine applications, demonstrating superior productivity and the lowest lifecycle cost.

The Cat Global Dealer Network, more than 2,200 global service locations strong, ensures that you'll have local expertise, highly-trained technicians, rapid parts delivery, and the proper equipment and services to keep you working – anytime, anywhere.

Construction, term, or repower financing through Cat Financial helps you make Cat and MaK power a reality. With our knowledge of customer needs, local markets, and legal and regulatory requirements, we've been providing tailored financing solutions and exceeding expectations since our start in 1986.

For more information and to find your local dealer, please visit our website: **MARINE.CAT.COM** Visit Cat Financial at: **CatPowerFinance.com**

BUILT FOR IT."

Caterpillar Marine

Europe, Africa, Middle East	Americas	Asia Pacific	
Caterpillar Marine A Division of Caterpillar Motoren GmbH & Co. KG	MaK Americas Inc.	Caterpillar Marine Trading (Shanghai) Co., Ltd.	Caterpillar Marine Asia Pacific Pte Ltd. No. 5 Tukang
Neumühlen 9	3450 Executive Way	25/F, Caterpillar Marine Center	Innovation Grove
22763 Hamburg	Miramar Park of Commerce	1319, Yan'an West Road	Singapore 618304
Germany	Miramar, FL. 33025/USA	200050 Shanghai/P.R. China	Republic of Singapore
Phone: +49 40 2380-3000	Phone: +1 954 885 3200	Phone: +86 21 6226 2200 Telefax: +86 21 6226 4500	Phone: +65 68287-600
Telefax. +49 40 2380-3535	Telefax: +1 954 885 3131		Telefax: +65 68287-625

For more information please visit our website: MARINE.CAT.COM

Subject to change without notice. Leaflet No. 266 · 11.14 · e · L+S · VM3 LEBM0036-00

© 2014 Caterpillar All Rights Reserved. Printed in Germany.

CAT, CATERPILLAR, their respective logos, MaK, "Caterpillar Yellow" and the POWER EDGE trade dress, as well as corporate identity used herein, are trademarks of Caterpillar and may not be used without permission.

Caterpillar Marine is committed to sustainability. This document is printed on PEFC certificated paper.

Please check out for more literature by scanning the QR tag.