### Service Literature

### UNIT INFORMATION Corp. 1809-L2

Corp. 1809-L2 Revised 03/2019

### **KCB SERIES**

15, 17.5, 20, 25 ton 53, 62, 70, 88 kW

### KCB180S through 300S

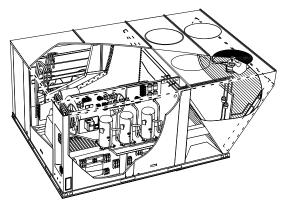
KCB180S, 210S, 240S and 300S units are available in 176,000 to 270,000 Btuh (52 to 79kW) standard efficiency cooling capacities. The 180S, 210S, 240S utilize three compressors and the 300S utilize four compressors.

Optional electric heat is field-installed. Electric heat operates in single or multiple stages depending on the kW input size. 15kW to 60kW heat sections are available for 180S units. 15kW to 90kW heat sections are available for the 210, 240 and 300.

Units equipped with an optional supply air inverter (VFD) are available. The blower will operate at lower speeds when cooling demand is low and increase to higher speeds when cooling demand is high. Refer to Supply Air Inverter Start-Up section.

All units are designed to accept any of several different energy management thermostat control systems with minimum field wiring.

Information contained in this manual is intended for use by qualified service technicians only. All specifications are subject to change. Procedures outlined in this manual are presented as a recommendation only and do not supersede or replace local or state codes.


If the unit must be lifted for service, rig unit by attaching four cables to the holes located in the unit base rail (two holes at each corner). Refer to the installation instructions for the proper rigging technique.

### WARNING

Improper installation, adjustment, alteration, service or maintenance can cause property damage, personal injury or loss of life. Installation and service must be performed by a licensed professional HVAC installer or equivalent or service agency.

### **ACAUTION**

As with any mechanical equipment, contact with sharp sheet metal edges can result in personal injury. Take care while handling this equipment and wear gloves and protective clothing.



### **AIMPORTANT**

The Clean Air Act of 1990 bans the intentional venting of refrigerant (CFC's and HCFC's) as of July 1, 1992. Approved methods of recovery, recycling or reclaiming must be followed. Fines and/or incarceration may be levied for non-compliance.

### **AWARNING**



Electric shock hazard. Can cause injury or death. Before attempting to perform any service or maintenance, turn the electrical power to unit OFF at disconnect switch(es). Unit may have multiple power supplies.

### **Table of Contents**

| Options / Accessories Page 2            |
|-----------------------------------------|
| Specifications Page 6                   |
| Blower Data Page 8                      |
| Electrical / Electric Heat Data Page 11 |
| Electric Heat Capacities Page 15        |
| Parts Arrangement Page 17               |
| I Unit Components Page 18               |
| Control BoxPage 18                      |
| Cooling Page 23                         |
| Blower Compartment                      |
| Electric Heat                           |
| II Placement and Installation Page 31   |
| III Start Up Page 31                    |
| IV Charging Page 32                     |
| V System Service Checks Page 43         |
| VI Maintenance Page 43                  |
| VII Accessories Page 44                 |
| VIII Diagrams Page 57                   |



|                                                              |                                                                |                   | Unit       | Model      | l No.      |          |
|--------------------------------------------------------------|----------------------------------------------------------------|-------------------|------------|------------|------------|----------|
| Item Description                                             | Model<br>Number                                                | Catalog<br>Number | KCB<br>180 | KCB<br>210 | KCB<br>240 | KC<br>30 |
| COOLING SYSTEM                                               |                                                                |                   |            |            |            |          |
| Condensate Drain Trap                                        | PVC - C1TRAP20AD2                                              | 76W26             | Χ          | Х          | Χ          | ×        |
|                                                              | Copper - C1TRAP10AD2                                           | 76W27             | Χ          | Х          | Х          | ×        |
| Corrosion Protection                                         |                                                                | Factory           | 0          | 0          | 0          | (        |
| Drain Pan Overflow Switch                                    | C1SNSR71FF1-                                                   | 10C24             | Χ          | Х          | Х          | >        |
| Efficiency                                                   | Standard or High                                               | Factory           | 0          | 0          | 0          | (        |
| Refrigerant Type                                             |                                                                | R-410A            | 0          | 0          | 0          | (        |
| BLOWER - SUPPLY AIR                                          |                                                                |                   |            |            |            |          |
| Blower Option                                                | CAV (Constant Air Volume)                                      | Factory           | 0          | 0          | 0          | (        |
|                                                              | MSAV® (Multi-Stage Air Volume)                                 | Factory           | 0          | 0          | 0          | (        |
| Motors - Constant Air Volume (CAV)                           | Belt Drive (standard efficiency) - 2 hp                        | Factory           |            |            |            |          |
|                                                              | Belt Drive (standard efficiency) - 3 hp                        | Factory           | 0          | 0          |            |          |
|                                                              | Belt Drive (standard efficiency) - 5 hp                        | Factory           | 0          | 0          | 0          | (        |
|                                                              | Belt Drive (standard efficiency) - 7.5 hp                      | Factory           | 0          | 0          | 0          | (        |
|                                                              | Belt Drive (standard efficiency) - 10 hp                       | Factory           |            |            | 0          | (        |
| Motors - MSAV® (Multi-Stage Air                              | Belt Drive (standard efficiency) - 2 hp                        | Factory           |            |            |            |          |
| Volume)                                                      | Belt Drive (standard efficiency) - 3 hp                        | Factory           | 0          | 0          |            |          |
|                                                              | Belt Drive (standard efficiency) - 5 hp                        | Factory           | 0          | 0          | 0          | (        |
|                                                              | Belt Drive (standard efficiency) - 7.5 hp                      | Factory           | 0          | 0          | 0          | (        |
|                                                              | Belt Drive (standard efficiency) - 10 hp                       | Factory           |            |            | 0          | (        |
| VFD Manual Bypass Kit<br>(for MSAV® equipped units) 2, 3, 5, | 2, 3, 5 hp (208/230V) KVFDB11C-1<br>7.5, 10 hp (460V and 575V) | 90W52             | Х          | Х          | Х          | >        |
|                                                              | 7.5, 10 hp (208/230V) KVFDB10C-1                               | 90W51             | Χ          | Χ          | Х          | >        |
| Drive Kits                                                   | Kit #1 535-725 rpm                                             | Factory           | 0          | 0          |            |          |
| See Blower Data Tables for usage and                         | Kit #2 710-965 rpm                                             | Factory           | 0          | 0          |            |          |
| selection                                                    | Kit #3 685-856 rpm                                             | Factory           | 0          | 0          | 0          | (        |
|                                                              | Kit #4 850-1045 rpm                                            | Factory           | 0          | 0          | 0          | (        |
|                                                              | Kit #5 945-1185 rpm                                            | Factory           | 0          | 0          | 0          | (        |
|                                                              | Kit #6 850-1045 rpm                                            | Factory           | 0          | 0          | 0          | (        |
|                                                              | Kit #7 945-1185 rpm                                            | Factory           | 0          | 0          | 0          | (        |
|                                                              | Kit #8 1045-1285 rpm                                           | Factory           | 0          | 0          | 0          | (        |
|                                                              | Kit #10 1045-1285 rpm                                          | Factory           |            |            | 0          | (        |
|                                                              | Kit #11 1135-1365 rpm                                          | Factory           |            |            | 0          | (        |
| CABINET                                                      |                                                                |                   |            |            |            |          |
| Hinged Access Panels                                         |                                                                | Factory           | 0          | 0          | 0          | (        |
| CONTROLS                                                     |                                                                |                   |            |            |            |          |
| NOTE - Also see Conventional Thermostat Con                  | trol Systems on page for additional conti                      | rol options       |            |            |            |          |
| Smoke Detector - Supply or Return (Power boa                 | rd and one sensor) C1SNSR44C-1                                 | 83W40             | Χ          | Χ          | Х          | )        |
| Smoke Detector - Supply and Return (Power bo                 | oard and two sensors) C1SNSR43C-1                              | 83W41             | Χ          | Х          | Х          | )        |
| L Connection® Building Automation System                     |                                                                |                   | Х          | Х          | Х          | )        |

NOTE - Catalog and model numbers shown are for ordering field installed accessories.

OX - Configure To Order (Factory Installed) or Field Installed

O = Configure To Order (Factory Installed)

X = Field Installed

|                                                                               |         | LS         |            |            |            |
|-------------------------------------------------------------------------------|---------|------------|------------|------------|------------|
|                                                                               |         | Unit       | Mode       | l No.      |            |
| em Description Mode<br>Number                                                 | - 3     | KCB<br>180 | KCB<br>210 | KCB<br>240 | KCB<br>300 |
| LECTRICAL                                                                     |         |            |            |            |            |
| oltage 60 hz 208/230V - 3 phase                                               | Factory | 0          | 0          | 0          | 0          |
| 460V - 3 phase                                                                | Factory | 0          | 0          | 0          | 0          |
| 575V - 3 phase                                                                | Factory | 0          | 0          | 0          | 0          |
| sconnect Switch 80 amp - C1DISC080C-                                          | 54W85   | ОХ         | ОХ         | ОХ         | ОХ         |
| ee Electric Heat Tables for usage) 150 amp - C1DISC150C-                      | 54W86   | ОХ         | ОХ         | ОХ         | ОХ         |
| 250 amp - C1DISC250C-                                                         | 54W87   | ОХ         | ОХ         | OX         | ОХ         |
| FI Service 15 amp non-powered, field-wired (208/230V, 460V only) LTAGFIK10/15 | 74M70   | ОХ         | ОХ         | ОХ         | ОХ         |
| utlets 20 amp non-powered, field-wired (575V only) C1GFCl20FF                 | 67E01   | Х          | Х          | Х          | Х          |
| eatherproof Cover for GFI C1GFCI99FF                                          | 10C89   | Х          | Х          | Х          | Х          |
| Phase Monitor C1PHZM01FF1                                                     | - 10C25 | Х          | Х          | Х          | Х          |
| ELECTRIC HEAT                                                                 | ,       |            |            |            |            |
| 5 kW 208/230V-3ph - C1EH0150C-1                                               | ′ 53W84 | ОХ         | ОХ         | ОХ         | ОХ         |
| 460V-3ph - C1EH0150C-10                                                       | 53W86   | OX         | ОХ         | ОХ         | ОХ         |
| 575V-3ph - C1EH0150C-1                                                        | 53W87   | ОХ         | ОХ         | ОХ         | ОХ         |
| ) kW 208/230V-3ph - C1EH0300C11                                               | ′ 53W88 |            |            |            |            |
| 460V-3ph - C1EH0300C110                                                       | 53W90   |            |            |            |            |
| 575V-3ph - C1EH0300C11                                                        | 53W91   |            |            |            |            |
| 208/230V-3ph - C1EH0300C21                                                    | ′ 53W92 | ОХ         | ОХ         | ОХ         | ОХ         |
| 460V-3ph - C1EH0300C21C                                                       | 53W94   | ОХ         | ОХ         | ОХ         | ОХ         |
| 575V-3ph - C1EH0300C21                                                        | 53W95   | ОХ         | ОХ         | ОХ         | ОХ         |
| 5 kW 208/230V-3ph - C1EH0450C11                                               | ′ 53W96 |            |            |            |            |
| 460V-3ph - C1EH0450C110                                                       | 53W98   |            |            |            |            |
| 575V-3ph - C1EH0450C11                                                        | 53W99   |            |            |            |            |
| 208/230V-3ph - C1EH0450C21                                                    | ′ 54W00 | ОХ         | ОХ         | ОХ         | ОХ         |
| 460V-3ph - C1EH0450C21C                                                       | 54W02   | ОХ         | ОХ         | ОХ         | ОХ         |
| 575V-3ph - C1EH0450C21                                                        | 54W03   | ОХ         | ОХ         | ОХ         | ОХ         |
| ) kW 208/230V-3ph - C1EH0600C11                                               | ′ 54W04 |            |            |            |            |
| 460V-3ph - C1EH0600C11C                                                       | 54W06   |            |            |            |            |
| 575V-3ph - C1EH0600C11                                                        | 54W07   |            |            |            |            |
| 208/230V-3ph - C1EH0600C21                                                    | ′ 54W08 | ОХ         | ОХ         | ОХ         | ОХ         |
| 460V-3ph - C1EH0600C21C                                                       | 54W10   | ОХ         | ОХ         | ОХ         | ОХ         |
| 575V-3ph - C1EH0600C21                                                        | 54W11   | ОХ         | ОХ         | ОХ         | ОХ         |
| ) kW 208/230V-3ph - C1EH0900C-1                                               | ′ 54W12 |            | ОХ         | ОХ         | ОХ         |
| 460V-3ph - C1EH0900C-10                                                       | 54W14   |            | ОХ         | ОХ         | ОХ         |
| 575V-3ph - C1EH0900C-1                                                        | 54W15   |            | ОХ         | OX         | OX         |

<sup>&</sup>lt;sup>1</sup> Factory installed on all MSAV® equipped units.

 $<sup>^{\</sup>rm 2}$  NOTE - Factory installed electric heat is only available with high efficiency models.

NOTE - Catalog and model numbers shown are for ordering field installed accessories.

OX - Configure To Order (Factory Installed) or Field Installed

O = Configure To Order (Factory Installed)

X = Field Installed

| OPTIONS / ACCESSORIES - STANDARD A                                                                                 |                               |                |            | Model      | No         |     |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------|------------|------------|------------|-----|
|                                                                                                                    | Model                         | Catalog        |            |            |            | KCI |
| Item Description                                                                                                   | Number                        | Number         |            | KCB<br>210 | KCB<br>240 | 300 |
| INDOOR AIR QUALITY                                                                                                 |                               |                |            |            |            |     |
| Air Filters                                                                                                        |                               |                |            |            |            |     |
| Healthy Climate <sup>®</sup> High Efficiency Air Filters                                                           | MERV 8 - C1FLTR15C-1-         | 54W67          | Χ          | Х          | Х          | Х   |
| 24 x 24 x 2 in. (Order 6 per unit)                                                                                 | MERV 13 - C1FLTR40C-1-        | 52W40          | X          | Х          | Х          | Χ   |
| Replacement Media Filter With Metal Mesh Frame (includes non-pleated filter media)                                 | C1FLTR30C-1-                  | 44N61          | Х          | Х          | Х          | Х   |
| Indoor Air Quality (CO <sub>2</sub> ) Sensors                                                                      |                               |                |            |            |            |     |
| Sensor - Wall-mount, off-white plastic cover with LCD display                                                      | C0SNSR50AE1L                  | 77N39          | X          | Χ          | Χ          | Χ   |
| Sensor - Wall-mount, off-white plastic cover, no display                                                           | C0SNSR52AE1L                  | 87N53          | X          | Χ          | Χ          | Х   |
| Sensor - Black plastic case with LCD display, rated for plenum mounting                                            | C0SNSR51AE1L                  | 87N52          | X          | X          | Χ          | X   |
| Sensor - Wall-mount, black plastic case, no display, rated for ple<br>mounting                                     | enum C0MISC19AE1              | 87N54          | X          | Х          | Х          | Х   |
| CO <sub>2</sub> Sensor Duct Mounting Kit - for downflow applications                                               | C0MISC19AE1-                  | 85L43          | X          | Χ          | Χ          | Χ   |
| Aspiration Box - for duct mounting non-plenum rated ${\rm CO_2}$ sensors (87N53 or 77N39)                          | C0MISC16AE1-                  | 90N43          | Х          | Χ          | Χ          | X   |
| UVC Germicidal Light Kit                                                                                           |                               |                |            |            |            |     |
| <sup>1</sup> Healthy Climate <sup>®</sup> UVC Light Kit (110/230V-1ph)                                             | C1UVCL10C-1                   | 54W65          | X          | Х          | Х          | X   |
| ECONOMIZER                                                                                                         |                               |                |            |            |            |     |
| Standard Economizer With Outdoor Air Hood (Not for Title 24)                                                       |                               |                |            |            |            |     |
| Standard Economizer                                                                                                | K1ECON20C-3                   | 13U48          | X          | OX         | OX         | OX  |
| Downflow or Horizontal Applications - Includes Outdoor<br>Air Hood, order Downflow or Horizontal Barometric Relief |                               |                |            |            |            |     |
| Dampers separately                                                                                                 |                               |                |            |            |            |     |
| Standard Economizer Controls (Not for Title 24)                                                                    |                               |                |            |            |            |     |
| Single Enthalpy Control                                                                                            | C1SNSR64FF1                   | 53W64          | X          | ОХ         | OX         | ОХ  |
| Differential Enthalpy Control (order 2)                                                                            | C1SNSR64FF1                   | 53W64          | X          | Х          | Х          | Х   |
| High Performance Economizer With Outdoor Air Hood (For Title                                                       | e 24) / AMCA Class 1A Certifi | ed             |            |            |            |     |
| High Performance Economizer                                                                                        | K1ECON22C-3                   | 16Y99          | X          | ОХ         | OX         | ОХ  |
| Downflow or Horizontal Applications - Includes Outdoor                                                             |                               |                |            |            |            |     |
| Air Hood, order Downflow or Horizontal Barometric Relief<br>Dampers separately                                     |                               |                |            |            |            |     |
| High Performance Economizer Controls (Not for Title 24)                                                            |                               |                |            |            |            |     |
| Single Enthalpy Control                                                                                            | C1SNSR60FF1                   | 10Z75          | X          | OX         | OX         | ОХ  |
| Differential Enthalpy Control (order 2)                                                                            | C1SNSR60FF1                   | 10Z75          | X          | X          | X          | X   |
| Barometric Relief Dampers With Exhaust Hood                                                                        | 010110110111                  | 10210          |            |            |            |     |
| Downflow Barometric Relief Dampers                                                                                 | C1DAMP50C                     | 54W78          | X          | ОХ         | OX         | ОХ  |
| Horizontal Barometric Relief Dampers                                                                               | LAGEDH18/24                   | 16K99          | X          | X          | X          | X   |
| OUTDOOR AIR                                                                                                        |                               | 10100          | , <b>\</b> |            |            |     |
| Outdoor Air Dampers With Outdoor Air Hood                                                                          |                               |                |            |            |            |     |
| Motorized                                                                                                          | C1DAMP20C-1                   | 13U04          | X          | ОХ         | OX         | ОХ  |
| Manual                                                                                                             | C1DAMP10C-2                   | 13U05          | X          | OX         | OX         | OX  |
| POWER EXHAUST (DOWNFLOW APPLICATIONS ONL                                                                           |                               |                | -/\        |            | ٠,٠        | 37  |
| · · · · · · · · · · · · · · · · · · ·                                                                              | 208/230V - C1PWRE11C-1Y       | 75W90          | ~          |            | Х          | X   |
| Standard Static 2                                                                                                  | 200/230V - CIPVVKFIIC-IX      | / 50090        | ^          |            | ^          |     |
| Standard Static 2                                                                                                  | 460V - C1PWRE11C-1G           | 75W90<br>75W91 | X<br>X     | X          | X          | X   |

<sup>&</sup>lt;sup>1</sup> Lamps operate on 110-230V single-phase power supply. Step-down transformer must be field supplied for field installation in 460V and 575V rooftop units (transformer is furnished for factory installed light kits). Alternately, a separate 110V power supply may be used to directly power the UVC ballast(s)

NOTE - Catalog and model numbers shown are for ordering field installed accessories.

OX - Configure To Order (Factory Installed) or Field Installed

O = Configure To Order (Factory Installed)

X = Field Installed

|                                                                |                 |                   | Unit       | Mode       | l No.      |     |
|----------------------------------------------------------------|-----------------|-------------------|------------|------------|------------|-----|
| Item Description                                               | Model<br>Number | Catalog<br>Number | KCB<br>180 | KCB<br>210 | KCB<br>240 | 300 |
| ROOF CURBS                                                     |                 |                   |            |            |            |     |
| Hybrid Roof Curbs, Downflow                                    |                 |                   |            |            |            |     |
| 8 in. height                                                   | C1CURB70C-1     | 11F58             | Х          | Х          | Χ          | Χ   |
| 14 in. height                                                  | C1CURB71C-1     | 11F59             | Х          | Х          | Х          | Χ   |
| 18 in. height                                                  | C1CURB72C-1     | 11F60             | Х          | Х          | Χ          | Χ   |
| 24 in. height                                                  | C1CURB73C-1     | 11F61             | Х          | Х          | Х          | Χ   |
| Adjustable Pitch Curb                                          |                 |                   |            |            |            |     |
| 14 in. height                                                  | L1CURB55C       | 43W26             | Х          | Х          | Х          | Χ   |
| Standard Roof Curbs, Horizontal - Requires Horizontal Return A | Air Panel Kit   |                   |            |            |            |     |
| 26 in. height - slab applications                              | C1CURB14C-1     | 11T89             | Х          | Χ          | Х          |     |
| 30 in. height - slab applications                              | C1CURB15C-1     | 11T90             |            |            |            | Χ   |
| 37 in. height - rooftop applications                           | C1CURB16C-1     | 11T96             | Х          | Х          | Х          |     |
| 41 in. height - rooftop applications                           | C1CURB17C-1     | 11T97             |            |            |            | Х   |
| Insulation Kit For Standard Horizontal Curbs                   |                 |                   |            |            |            |     |
| for C1CURB14C-1                                                | C1INSU11C-1-    | 73K32             | Х          | Χ          | Χ          |     |
| for C1CURB15C-1                                                | C1INSU12C-1-    | 73K33             |            |            |            | Χ   |
| for C1CURB16C-1                                                | C1INSU13C-1-    | 73K34             | Х          | Х          | Х          |     |
| for C1CURB17C-1                                                | C1INSU14C-1-    | 73K35             |            |            |            | Χ   |
| Horizontal Return Air Panel Kit                                |                 |                   |            |            |            |     |
| Required for Horizontal Applications with Roof Curb            | C1HRAP10C-1-    | 87M00             | Х          | Χ          | Χ          | Х   |
| CEILING DIFFUSERS                                              |                 |                   |            |            |            |     |
| Step-Down - Order one                                          | RTD11-185S      | 13K63             | Χ          |            |            |     |
|                                                                | RTD11-275S      | 13K64             |            | Х          | Х          | Χ   |
| Flush - Order one                                              | FD11-185S       | 13K58             | Χ          |            |            |     |
|                                                                | FD11-275S       | 13K59             |            | Х          | Х          | Х   |
| Transitions (Supply and Return) - Order one                    | C1DIFF33C-1     | 12X68             | Χ          |            |            |     |
|                                                                | C1DIFF34C-1     | 12X70             |            | Х          | Χ          | Х   |

NOTE - Catalog and model numbers shown are for ordering field installed accessories.

OX - Configure To Order (Factory Installed) or Field Installed

O = Configure To Order (Factory Installed)

X = Field Installed

| OPTIONS / ACCESSORIES - STANDARD                                                 | EFFICIENCY MODELS ONLY                 |                   |             |             |             |             |
|----------------------------------------------------------------------------------|----------------------------------------|-------------------|-------------|-------------|-------------|-------------|
|                                                                                  |                                        |                   |             | Unit Mo     | del No.     |             |
| Item Description                                                                 | Model<br>Number                        | Catalog<br>Number | KCB<br>180S | KCB<br>210S | KCB<br>240S | KCB<br>300S |
| COOLING SYSTEM                                                                   |                                        |                   |             |             |             |             |
| Conventional Fin/Tube Condenser Coil (replaces (Required for Humiditrol® option) | Environ™ Coil System)                  | Factory           | 0           | 0           | 0           | 0           |
| Low Ambient Control                                                              | K1LOAM53C11                            | 10T63             | Χ           | Χ           |             |             |
|                                                                                  | K1LOAM53C21                            | 10T64             |             |             | Χ           |             |
|                                                                                  | K1LOAM54C21                            | 10T65             |             |             |             | Χ           |
| CABINET                                                                          |                                        |                   |             |             |             |             |
| Combination Coil/Hail Guards                                                     | Environ™ Coil System - C1GARD52C12     | 15T92             | Χ           | Χ           |             |             |
|                                                                                  | Environ™ Coil System - C1GARD52C22     | 15T93             |             |             | Χ           | Χ           |
| Conventional                                                                     | Fin/Tube Condenser Coil - C1GARD51C11  | 13T08             | Χ           | Χ           |             |             |
| Conventional                                                                     | Fin/Tube Condenser Coil - C1GARD51C21  | 13T12             |             |             | Χ           | Χ           |
| humiditrol® condenser reheat option                                              |                                        |                   |             |             |             |             |
| NOTE - See Conventional Thermostat Control Sy                                    | stems on page for additional Humiditro | l® control o      | options.    |             |             |             |
| Humiditrol® Dehumidification Option (includes ren                                | ote mounted Dehumidistat)              | Factory           | 0           | 0           | 0           | 0           |

NOTE - Catalog and model numbers shown are for ordering field installed accessories.

OX - Configure To Order (Factory Installed) or Field Installed

O = Configure To Order (Factory Installed)

X = Field Installed

| JJ                  | CATIONS - STANDARD EFFIC                    | ILITOI                                  |                       |                      |                  |  |  |  |  |  |  |
|---------------------|---------------------------------------------|-----------------------------------------|-----------------------|----------------------|------------------|--|--|--|--|--|--|
| General Data        | Nominal Tonnage                             | 15 Ton                                  | 15 Ton                | 17.5 Ton             | 17.5 Ton         |  |  |  |  |  |  |
|                     | Model Number                                | KCB180S4B                               | KCB180S4M             | KCB210S4B            | KCB210S4M        |  |  |  |  |  |  |
|                     | Efficiency Type                             | Standard                                | Standard              | Standard             | Standard         |  |  |  |  |  |  |
|                     | Blower Type                                 | CAV                                     | MSAV®                 | CAV                  | MSAV®            |  |  |  |  |  |  |
|                     | · .                                         | (Constant Air                           | (Multi-Stage Air      | (Constant Air        | (Multi-Stage Air |  |  |  |  |  |  |
|                     |                                             | ` Volume)                               | ` Volume)             | ` Volume)            | Volume)          |  |  |  |  |  |  |
| Cooling             | Gross Cooling Capacity - Btuh               | 182,000                                 | 182,000               | 206,000              | 206,000          |  |  |  |  |  |  |
| Performance         | <sup>1</sup> Net Cooling Capacity - Btuh    | 176,000                                 | 176,000               | 200,000              | 200,000          |  |  |  |  |  |  |
|                     | AHRI Rated Air Flow - cfm                   | 6000                                    | 6000                  | 5700                 | 5700             |  |  |  |  |  |  |
|                     | Total Unit Power - kW                       | 16.0                                    | 16.0                  | 18.2                 | 18.0             |  |  |  |  |  |  |
|                     | <sup>1</sup> EER (Btuh/Watt)                | 11.0                                    | 11.0                  | 11.0                 | 11.0             |  |  |  |  |  |  |
|                     | <sup>2</sup> IEER (Btuh/Watt)               | 12.4                                    | 13.8                  | 12.4                 | 13.5             |  |  |  |  |  |  |
| Refrigerant         | Refrigerant Type                            | R-410A                                  | R-410A                | R-410A               | R-410A           |  |  |  |  |  |  |
|                     | Environ™ Coil System Circuit 1              | 5 lbs. 14 oz.                           | 5 lbs. 14 oz.         | 6 lbs. 8 oz.         | 6 lbs. 8 oz.     |  |  |  |  |  |  |
| Charge              | ,                                           |                                         |                       |                      |                  |  |  |  |  |  |  |
|                     | Circuit 2                                   | 5 lbs. 11 oz.                           | 5 lbs. 11 oz.         | 6 lbs. 4 oz.         | 6 lbs. 4 oz.     |  |  |  |  |  |  |
|                     | Circuit 3                                   | 5 lbs. 13 oz.                           | 5 lbs. 13 oz.         | 6 lbs. 2 oz.         | 6 lbs. 2 oz.     |  |  |  |  |  |  |
|                     | Conventional Fin/Tube Circuit 1             | 12 lbs. 7 oz.                           | 12 lbs. 7 oz.         | 11 lbs. 0 oz.        | 11 lbs. 0 oz.    |  |  |  |  |  |  |
|                     | Coil Option Circuit 2                       | 12 lbs. 0 oz.                           | 12 lbs. 0 oz.         | 11 lbs. 0 oz.        | 11 lbs. 0 oz.    |  |  |  |  |  |  |
|                     | Circuit 3                                   | 11 lbs. 3 oz.                           | 11 lbs. 3 oz.         | 11 lbs. 0 oz.        | 11 lbs. 0 oz.    |  |  |  |  |  |  |
|                     | Conventional Fin/Tube Circuit 1             | 12 lbs. 10 oz.                          | 12 lbs. 10 oz.        | 10 lbs. 10 oz.       | 10 lbs. 10 oz.   |  |  |  |  |  |  |
|                     | with Humiditrol® Option Circuit 2           | 12 lbs. 10 oz.                          | 12 lbs. 10 oz.        | 10 lbs. 15 oz.       | 10 lbs. 15 oz.   |  |  |  |  |  |  |
|                     | Circuit 3                                   | 11 lbs. 12 oz.                          | 11 lbs. 12 oz.        | 10 lbs. 7 oz.        | 10 lbs. 7 oz.    |  |  |  |  |  |  |
|                     | vailable, see page 12                       |                                         | 5-60 kW               |                      | -60-90 kW        |  |  |  |  |  |  |
| Compressor Ty       |                                             | Scroll (3)                              | Scroll (2)            | Scroll (3)           | Scroll (3)       |  |  |  |  |  |  |
| Outdoor Coils       | Net face area (total) - sq. ft.             | 41.4                                    | 41.4                  | 41.4                 | 41.4             |  |  |  |  |  |  |
| Environ™            | Number of rows                              | 1 (2)                                   | 1 (2)                 | 1 (2)                | 1 (2)            |  |  |  |  |  |  |
| (Fin/Tube)          | Fins per inch                               | 23 (20)                                 | 23 (20)               | 23 (20)              | 23 (20)          |  |  |  |  |  |  |
| Outdoor Coil        | Motor - (No.) horsepower                    | (3) 1/3                                 | (3) 1/3               | (3) 1/3              | (3) 1/3          |  |  |  |  |  |  |
| Fans                | Motor rpm                                   | 1075                                    | 1075                  | 1075                 | 1075             |  |  |  |  |  |  |
|                     | Total Motor watts                           | 1100                                    | 1100                  | 1100                 | 1100             |  |  |  |  |  |  |
|                     | Diameter - (No.) in.                        | (3) 24                                  | (3) 24                | (3) 24               | (3) 24           |  |  |  |  |  |  |
|                     | Number of blades                            | 3                                       | 3                     | 3                    | 3                |  |  |  |  |  |  |
|                     | Total Air volume - cfm                      | 12,000                                  | 12,000                | 12,000               | 12,000           |  |  |  |  |  |  |
| Indoor Coils        | Net face area (total) - sq. ft.             | 21.4                                    | 21.4                  | 21.4                 | 21.4             |  |  |  |  |  |  |
|                     | Tube diameter - in.                         | 3/8                                     | 3/8                   | 3/8                  | 3/8              |  |  |  |  |  |  |
|                     | Number of rows                              | 3                                       | 3                     | 4                    | 4                |  |  |  |  |  |  |
|                     | Fins per inch                               | 14                                      | 14                    | 14                   | 14               |  |  |  |  |  |  |
|                     | Drain connection - No. and size             | (1) 1 in. FPT                           | (1) 1 in. FPT         | (1) 1 in. FPT        | (1) 1 in. FPT    |  |  |  |  |  |  |
|                     | Expansion device type                       |                                         | nt Metering Orifice ( |                      |                  |  |  |  |  |  |  |
|                     | Expansion dovide type                       |                                         | d port TXV, removal   |                      |                  |  |  |  |  |  |  |
| <sup>3</sup> Indoor | Nominal motor output                        | Dalariood                               | 3 hp, 5 h             |                      | ог орион         |  |  |  |  |  |  |
| Blower              | Maximum usable motor output (US Only)       |                                         |                       | 5 hp, 8.62 hp        |                  |  |  |  |  |  |  |
| and                 | Motor - Drive kit number                    |                                         |                       | h <b>p</b>           |                  |  |  |  |  |  |  |
| Drive               | Wotor - Drive Kit Hurriber                  |                                         |                       | i-725 rpm            |                  |  |  |  |  |  |  |
| Selection           |                                             |                                         |                       | 1-965 rpm            |                  |  |  |  |  |  |  |
| Selection           |                                             |                                         |                       | •                    |                  |  |  |  |  |  |  |
|                     |                                             |                                         |                       | hp                   |                  |  |  |  |  |  |  |
|                     |                                             |                                         |                       | -856 rpm             |                  |  |  |  |  |  |  |
|                     |                                             | <b>Kit 4</b> 850-1045 rpm               |                       |                      |                  |  |  |  |  |  |  |
|                     |                                             | <b>Kit 5</b> 945-1185 rpm <b>7.5 hp</b> |                       |                      |                  |  |  |  |  |  |  |
|                     |                                             |                                         |                       | •                    |                  |  |  |  |  |  |  |
|                     |                                             |                                         |                       | -1045 rpm            |                  |  |  |  |  |  |  |
|                     |                                             |                                         |                       | -1185 rpm            |                  |  |  |  |  |  |  |
|                     |                                             | (0) :=                                  | Kit 8 1045            | •                    | (0) := :         |  |  |  |  |  |  |
|                     | Blower wheel nominal diameter x width - in. | (2) 15 x 15                             | (2) 15 x 15           | (2) 15 x 15          | (2) 15 x 15      |  |  |  |  |  |  |
| Filters             | Type of filter                              |                                         |                       | disposable           |                  |  |  |  |  |  |  |
|                     | Number and size - in.                       |                                         |                       | ( 24 x 2             |                  |  |  |  |  |  |  |
| Electrical char     |                                             |                                         |                       | 5V - 60 hertz - 3 ph |                  |  |  |  |  |  |  |

NOTE - Net capacity includes evaporator blower motor heat deduction. Gross capacity does not include evaporator blower motor heat deduction.

<sup>1</sup> AHRI Certified to AHRI Standard 340/360; 95°F outdoor air temperature and 80°F db/67°F wb entering evaporator air; minimum external duct static pressure.

 $<sup>^{\</sup>rm 2}$  Integrated Energy Efficiency Ratio tested according to AHRI Standard 340/360.

<sup>&</sup>lt;sup>3</sup> Using total air volume and system static pressure requirements determine from blower performance tables rpm and motor output required. Maximum usable output of motors furnished are shown. In Canada, nominal motor output is also maximum usable motor output. If motors of comparable output are used, be sure to keep within the service factor limitations outlined on the motor nameplate.

NOTE – Units equipped with MSAV® (Multi-Stage Air Volume) option are limited to a motor service factor of 1.0.

| General Data        | TIONS - STANDARD EFFI                    | l Tonnage      | 20 Ton         | 20 Ton                                | 25 Ton               | 25 Ton           |
|---------------------|------------------------------------------|----------------|----------------|---------------------------------------|----------------------|------------------|
| Octricial Data      |                                          | el Number      | KCB240S4B      | KCB240S4M                             | KCB300S4B            | KCB300S4M        |
|                     |                                          | ency Type      | Standard       | Standard                              | Standard             | Standard         |
|                     |                                          | ower Type      | CAV            | MSAV®                                 | CAV                  | MSAV®            |
|                     | Bic.                                     | Swell Type     | (Constant Air  | (Multi-Stage Air                      | (Constant Air        | (Multi-Stage Air |
|                     |                                          |                | Volume)        | Volume)                               | Volume)              | Volume)          |
| Cooling             | Gross Cooling Capa                       | city - Rtuh    | 236,000        | 236,000                               | 282,000              | 282,000          |
| Performance         | <sup>1</sup> Net Cooling Capa            |                | 230,000        | 230,000                               | 270,000              | 270,000          |
| CHOITHANGC          | AHRI Rated Air                           |                | 6000           | 6000                                  | 8400                 | 8400             |
|                     | Total Unit Po                            |                | 20.9           | 20.9                                  | 25.7                 | 25.7             |
|                     |                                          | Btuh/Watt)     | 11.0           | 11.0                                  | 10.5                 | 10.5             |
|                     |                                          | Btuh/Watt)     | 12.4           | 13.6                                  | 11.6                 | 13.8             |
| Refrigerant         |                                          | erant Type     | R-410A         | R-410A                                | R-410A               | R-410A           |
| Charge              | Environ™ Coil System                     | Circuit 1      | 7 lbs. 0 oz.   | 7 lbs. 0 oz.                          | 6 lbs. 4 oz.         | 6 lbs. 4 oz.     |
| onargo              |                                          | Circuit 2      | 6 lbs. 15 oz.  | 6 lbs. 15 oz.                         | 5 lbs. 10 oz.        | 5 lbs. 10 oz.    |
|                     |                                          | Circuit 3      | 6 lbs. 12 oz.  | 6 lbs. 12 oz.                         | 6 lbs. 6 oz.         | 6 lbs. 6 oz.     |
|                     |                                          | Circuit 4      |                |                                       | 6 lbs. 0 oz.         | 6 lbs. 0 oz.     |
|                     | Conventional Fin Tube                    | Circuit 1      | 14 lbs. 0 oz.  | 14 lbs. 0 oz.                         | 10 lbs. 8 oz.        | 10 lbs. 8 oz.    |
|                     | Coil Option                              | Circuit 2      | 13 lbs. 12 oz. | 13 lbs. 12 oz.                        | 10 lbs. 0 oz.        | 10 lbs. 0 oz.    |
|                     | Con Option                               | Circuit 3      | 12 lbs. 0 oz.  | 12 lbs. 0 oz.                         | 9 lbs. 12 oz.        | 9 lbs. 12 oz.    |
|                     |                                          | Circuit 4      |                |                                       | 9 lbs. 12 oz.        | 9 lbs. 12 oz.    |
|                     | Conventional Fin/Tube                    | Circuit 1      | 14 lbs. 10 oz. | 14 lbs. 10 oz.                        | 12 lbs. 12 oz.       | 12 lbs. 12 oz.   |
|                     | with Humiditrol® Option                  | Circuit 2      | 13 lbs. 4 oz.  | 13 lbs. 0 oz.                         | 11 lbs. 12 oz.       | 11 lbs. 12 oz.   |
|                     | marriannana opiion                       | Circuit 3      | 12 lbs. 14 oz. | 12 lbs. 14 oz.                        | 9 lbs. 12 oz.        | 9 lbs. 12 oz.    |
|                     |                                          | Circuit 4      |                |                                       | 9 lbs. 12 oz.        | 9 lbs. 12 oz.    |
| Electric Heat A     | vailable, see page 2                     |                |                | 15-30-45-                             | 60-90 kW             |                  |
| Compressor T        |                                          |                | Scroll (3)     | Scroll (3)                            | Scroll (4)           | Scroll (4)       |
| Outdoor Coils       | Net face area (tot                       | tal) - sq. ft. | 55.2           | 55.2                                  | 55.2                 | 55.2             |
| Environ™            | Numb                                     | er of rows     | 1 (2)          | 1 (2)                                 | 1 (2)                | 1 (2)            |
| (Fin/Tube)          | Fir                                      | ns per inch    | 23 (20)        | 23 (20)                               | 23 (20)              | 23 (20)          |
| Outdoor Coil        | Motor - (No.) ho                         |                | (4) 1/3        | (4) 1/3                               | (6) 1/3              | (6) 1/3          |
| Fans                |                                          | Motor rpm      | 1075           | 1075                                  | 1075                 | 1075             |
|                     |                                          | lotor watts    | 1665           | 1665                                  | 1950                 | 1950             |
|                     | Diameter                                 | - (No.) in.    | (4) 24         | (4) 24                                | (6) 24               | (6) 24           |
|                     |                                          | r of blades    | 3              | 3                                     | 3                    | 3                |
|                     | Total Air vol                            | lume - cfm     | 16,000         | 16,000                                | 20,000               | 20,000           |
| Indoor Coils        | Net face area (tot                       | tal) - sq. ft. | 21.4           | 21.4                                  | 21.4                 | 21.4             |
|                     | Tube dia                                 | meter - in.    | 3/8            | 3/8                                   | 3/8                  | 3/8              |
|                     | Numb                                     | er of rows     | 4              | 4                                     | 4                    | 4                |
|                     | Fir                                      | ns per inch    | 14             | 14                                    | 14                   | 14               |
|                     | Drain connection - N                     |                | (1) 1 in. FPT  | (1) 1 in. FPT                         | (1) 1 in. FPT        | (1) 1 in. FPT    |
|                     | Expansion d                              | evice type     | Refrigera      | nt Metering Orifice (                 | RFC) - No Humidi     | trol®Option      |
|                     |                                          |                | Balance        | d port TXV, removal                   | ole head - Humiditre | ol® Option       |
| <sup>3</sup> Indoor | Nominal mo                               | otor output    |                | 5 hp, 7.5                             | hp, 10 hp            |                  |
| Blower              | Maximum usable motor output              | (US Only)      |                | 5.75 hp, 8.62                         | 2 hp, 11.5 hp        |                  |
| and                 | Motor - Drive I                          | kit number     |                | 5                                     | hp                   |                  |
| Drive               |                                          |                |                | <b>Kit 3</b> 685                      | 5-856 rpm            |                  |
| Selection           |                                          |                |                | Kit 4 850-                            | -1045 rpm            |                  |
|                     |                                          |                |                | <b>Kit 5</b> 945                      | -1185 rpm            |                  |
|                     |                                          |                |                |                                       | hp                   |                  |
|                     |                                          |                |                |                                       | -1045 rpm            |                  |
|                     |                                          |                |                |                                       | -1185 rpm            |                  |
|                     |                                          |                |                |                                       | 5-1285 rpm           |                  |
|                     |                                          |                |                |                                       | hp                   |                  |
|                     |                                          |                |                |                                       | -1185 rpm            |                  |
|                     |                                          |                |                |                                       | •                    |                  |
|                     |                                          |                |                |                                       | 5-1285 rpm           |                  |
| DI                  | ower wheel persinal diameter w           | width in       | (2) 15 × 15    | Kit 11 1135                           |                      | (2) 1E v 1E      |
|                     | ower wheel nominal diameter x            |                | (2) 15 x 15    | (2) 15 x 15                           | (2) 15 x 15          | (2) 15 x 15      |
| Filters             |                                          | pe of filter   |                |                                       | disposable           |                  |
| Electrical char     | Number an                                | u Size - Ifi.  | 200            | (6) <u>24 )</u><br>8/230V, 460V or 57 | ( 24 x 2             | 200              |
|                     | city includes evaporator blower motor he | at doduction ( |                |                                       |                      | asc              |
|                     |                                          |                |                |                                       |                      |                  |

NOTE - Net capacity includes evaporator blower motor heat deduction. Gross capacity does not include evaporator blower motor heat deduction.

<sup>&</sup>lt;sup>1</sup>AHRI Certified to AHRI Standard 340/360; 95°F outdoor air temperature and 80°F db/67°F wb entering evaporator air; minimum external duct static pressure.

<sup>&</sup>lt;sup>2</sup> Integrated Energy Efficiency Ratio tested according to AHRI Standard 340/360.

<sup>&</sup>lt;sup>3</sup> Using total air volume and system static pressure requirements determine from blower performance tables rpm and motor output required. Maximum usable output of motors furnished are shown. In Canada, nominal motor output is also maximum usable motor output. If motors of comparable output are used, be sure to keep within the service factor limitations outlined on the motor nameplate.

NOTE – Units equipped with MSAV® (Multi-Stage Air Volume) option are limited to a motor service factor of 1.0.

### **BLOWER DATA**

# BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY WITH DRY INDOOR COIL & AIR FILTERS IN PLACE

FOR ALL UNITS ADD:

1 - Wet indoor coil air resistance of selected unit.

2 - Any factory installed options air resistance (electric heat, economizer, etc.)3 - Any field installed accessories air resistance (electric heat, duct resistance, diffuser, etc.)

Then determine from blower table blower motor output and drive required.

See page 10 for wet coil and option/accessory air resistance data. See page 10 for factory installed drive kit specifications.

## MINIMUM AIR VOLUME REQUIRED FOR USE WITH OPTIONAL ELECTRIC HEAT

KCA156H units require 5200 cfm minimum air with electric heat.

All other units require 6000 cfm minimum air with electric heat.

|                                                 |        | BHP      | ;      | :        | ;       | ;     | ;        | 15     | 4.45    | 4.70   | 5.00    | 5.30   | 5.60   | 5.90   | 6.25     | 6.55   | 06.9   | 7.25   | 7.60   | 8.00   | 8.35     | 8.75   | 9.15     | 9.60    | 10.05    | 10.45 | 10.90   | 11.40   | 1       | :        | ;             | :       | ;        | :       | ;         |      |
|-------------------------------------------------|--------|----------|--------|----------|---------|-------|----------|--------|---------|--------|---------|--------|--------|--------|----------|--------|--------|--------|--------|--------|----------|--------|----------|---------|----------|-------|---------|---------|---------|----------|---------------|---------|----------|---------|-----------|------|
|                                                 | 2.60   | $\vdash$ | 1      | '        | 1       | 1     | 1        | )5 4.  |         |        |         |        |        |        |          |        |        | _      |        |        | _        |        | _        |         |          | _     | _       | •       | -       | 1        | -             | -       | 1        | '       | 1         |      |
|                                                 |        | RPM      | -      | -        | -       | ;     | -        | 5 1205 | 0 1210  | 5 1215 | _       | 0 1230 | 0 1235 | 0 1240 | 0   1250 | 0 1255 | 5 1265 | 5 1270 | 0 1275 | 5 1285 | 5   1290 | 5 1300 | _        | 0 1315  | 0   1325 | `     | 30 1340 | 30 1350 | 0:      | :        | -             | :       | -        | :       | :         |      |
|                                                 | 2.40   | I BHP    | ;      | :        | -       | -     | <u> </u> | 3.85   | 5 4.10  | 5 4.35 |         | 5 4.90 | 5 5.20 | 5.50   | 5.80     | 6.10   | 6.45   | 6.75   |        |        | 7.85     | 8.25   | 5 8.60   | 9.00    | 0   9.40 | 9.85  | 0 10.30 | 10.80   | 5 11.20 | :        | <u>:</u><br>_ | :       | -        | -       | -         |      |
|                                                 |        | RPM      | :      | -        | -       | -     | :        | _      |         |        |         |        | 1195   | 1200   | 1205     | 1215   | 1220   | 1225   | 1235   | 1240   | 1250     | 1260   | <u>`</u> | 1275    | `        | _     | 1300    | 1310    | 1315    | :        | -             | :       | -        | -       | -         |      |
|                                                 | 2.20   | BHP      | 1      |          | -       | -     | 3.30     | 3.55   | 3.75    | 4.05   | 4.25    | 4.50   | 4.80   | 5.10   | 5.35     | 5.65   | 5.95   | 6.30   | 09.9   | 6.95   |          |        | 8.05     | 8.40    | 8.85     | 9.25  | 9.65    | `       | 10.55   | 11.05    | 11.50         | -       | -        | :       | :         |      |
|                                                 | 2      | RPM      | 1      |          | -       | :     | 1110     | 1115   | 1120    | 1130   | 1135    | 1140   | 1150   | 1155   | 1160     | 1170   | 1175   | 1185   | 1190   | 1200   | 1205     | 1215   | 1225     | 1230    | 1240     | 1250  | 1255    | 1265    | 1275    | 1285     | 1295          | :       | -        | :       | -         |      |
|                                                 | 00     | BHP      | :      |          | ;       | ;     | 3.00     | 3.25   | 3.45    | 3.65   | 3.90    | 4.15   | 4.40   | 4.70   | 4.95     | 5.20   | 5.50   | 5.85   | 6.10   | 6.45   | 6.75     | 7.15   | 7.50     | 7.85    | 8.25     | 8.65  | 9.05    | 9.40    | 9.85    | 10.30    | 10.80         | 11.25   | ;        | ;       | :         |      |
|                                                 | 2.     | RPM      | 1      |          | 1       | :     | 1060     | 1070   | 1075    | 1080   | 1085    | 1095   | 1100   | 1110   | 1115     | 1120   | 1130   | 1140   | 1145   | 1155   | 1160     | 1170   | 1180     | 1185    | 1195     | 1205  | 1215    | 1220    | 1230    | 1240     | 1250          | 1260    | 1        | ;       | :         |      |
|                                                 | 0      | BHP      | -      |          | 1       | 2.55  | 2.70     | 2.90   | 3.10    | 3.30   | 3.55    | 3.80   | 4.00   | 4.25   | 4.50     | 4.80   | 5.05   | 5.35   | 5.60   | 5.95   | 6.25     | 09.9   | 06.9     | 7.25    | 7.65     | 8.05  | 8.35    | 8.75    | 9.20    | 9.60     | 10.05         | 10.50   | 11.00    | 11.45   | :         |      |
| (Pa)                                            | 1.80   | RPM      | :      |          | 1       | 1005  | 1010     | 1020   | 1025    | 1030   | 1040    | 1045   | 1050   | 1060   | 1065     | 1075   | 1080   | 1090   | 1095   | 1105   | 1115     | 1125   | 1130     | 1140    | 1150     | 1160  | 1165    | 1175    | 1185    | 1195     | 1205          | 1215    | 1225     | 1235    | :         |      |
| Gauge                                           |        | BHP      | 1 1    | :        | 2.10    | 2.25  | 2.45     | 2.60   | 2.80    | 3.00   | 3.20    | 3.40   | 3.65   | 3.85   | 4.10     | 4.35   | 4.60   | 4.85   | 5.10   | 5.40   | 5.75     | 6.05   | 6.35     | 0.70    | 7.05     | 7.40  | 7.75    | 8.15    | 8.55    | 8.95     | 9.40          | 9.80    | 10.25    | 10.70   | 11.20     |      |
| Water                                           | 1.60   | RPM      | :      |          | 920     | 955   | 096      | 965    | 026     | 086    | 985     | 995    | 1000   |        | 1015     | 1025   | 1030   | 1040   | 1045   | 1055   |          | 1075   | 1080     |         | 1100     |       |         | 1130    |         | 1150     | 1160          | 1170    | 1180 1   | 1190    | ,   0021  |      |
| TOTAL STATIC PRESSURE - Inches Water Gauge (Pa) |        | BHP F    | :      | 02.1     | 1.85    | 2.00  | 2.15     | 2.30   | 2.45    | 2.65   | 2.85    | 3.05   | 3.25   | 3.45   | 3.65     | 3.90   | 4.15   | 4.40   | 4.65   | 4.95   | 5.25     | 5.50   | 5.80     | 6.10    |          |       | 7.15    | 7.50    | 7.85    | 3.25     | 8.65          | 9.05    | 9.55     | 00.01   | 10.45     | 0    |
| URE -                                           | 1.40   | RPM E    | :      | 885 1    | 390 1   | 900   | 905   2  |        | 915 2   |        | 930   5 | _      | 945    | _      |          |        | 975 4  | _      | 995 4  | 005 4  | 015 5    | 1020   | 1030     |         | 1050     |       |         |         | _       | 1100     | 1110          | 1120    | 1135   6 | 1145 1  | 1155 1    | 7707 |
| PRESS                                           |        | BHP R    | 30     | .45      | 09:     | .70   | .85      |        | 2.15    |        | 2.50    |        |        | _      | 3.25     | _      | 3.70   | 3.95   | 4.20   | _      | 4.65     | 4.95   | 5.25     | 5.50 1  | 5.85     | _     | 6.45 1  | 6.80    | .20 1   | <u> </u> | .95           | .35     | .75 1    | .20     | .65       | 100  |
| TATIC                                           | 1.20   | RPM B    | 820 1  | 825 1    | 830 1   | 840 1 | 845 1    | 850 2  | 855 2   | 865 2  | _       | 880 2  | 890 2  | 895 3  | 905 3    | 910 3  | 920 3  | 930 3  | 940 4  | 950 4  | 955 4    | 965 4  | 975   5  | 985   5 |          |       |         | 025 6   | _       | 1050 7   | 1060   7      | 070 8   | 8 080    | 095     | 1105 9    | 7445 |
| TAL S                                           |        |          | .10 8. |          | 1.30    | _     | _        | _      |         | _      | 2.15 8  | _      |        |        |          |        |        |        |        |        | 4.15 9   |        | 4.70 9   |         | 5.25     |       | _       | 6.15 10 | _       | <u>`</u> | <u> </u>      | 7.60 10 | 8.00 10  | 8.40 10 | 8.85   11 | 7    |
| ĭ                                               | 1.00   | M BHP    | _      |          |         | _     |          | _      |         | _      |         | _      |        | _      |          | _      |        | _      |        | _      | _        |        | _        |         | _        | _     |         | _       | _       |          | _             |         |          | _       | 055 8.8   | 100  |
|                                                 |        | P RPM    | 0 755  | 0   760  | _       | 0 775 | _        |        | 5 795   | _      |         |        | 0 825  |        | 5 840    |        | 0 860  | 0 870  | 0 880  | 0 890  | _        | 5 910  | 0   920  | 5 930   |          |       | 096   0 | 0   620 | _       | 5 995    | <u>`</u>      | 5 1015  | 0   1030 | 5 1040  | _         | 70,  |
|                                                 | 0.80   | / BHP    | 06.0   | 5   1.00 |         | _     | 0 1.30   | 5 1.40 |         | _      | _       | _      |        | _      |          | _      |        |        |        |        | 5 3.65   |        | 5 4.10   |         | _        | _     | _       | _       | _       |          | 0.55          |         | 7.20     | 5 7.65  | 0 8.05    | C    |
|                                                 |        | RPM      | 089 (  | 5 685    | 5   695 | 2 700 | 5 710    |        | 5   725 | _      | 5   740 |        |        | 5 765  |          | _      |        | _      |        | _      | _        |        | _        | ) 865   | 088 (    |       |         | 5 910   |         | 5 935    | 5   950       | 960     | 5   970  | 5 985   | _         | 1010 |
|                                                 | 09.0   | BHP      | 0.70   | 0.75     | 0.85    | 0.95  | 1.05     | 1.10   | 1.25    | _      | _       |        | 1.70   |        | 2.00     | _      | 2.35   | _      |        | 2.90   | _        | _      | _        | 3.80    | _        | _     | _       | 4.85    |         | 5.45     | 5.75          | 6.15    | 6.45     | 6.85    | 7.25      | 1    |
|                                                 | ٥      | RPM      | 009    | 610      | _       | 620   | _        | 635    | _       |        | _       | _      |        | 069    |          |        |        | _      |        | _      | 765      |        | 790      |         |          |       |         |         | _       | 875      |               | 900     | _        |         | 940       | 040  |
|                                                 | 0.40   | BHP      | 0.50   | 0.55     | 09.0    | 0.70  | 0.75     | 0.85   | 06.0    | 1.00   | 1.10    | 1.25   | 1.35   | 1.45   | 1.60     | 1.75   | 1.90   | 2.05   | 2.20   | 2.35   | 2.60     | 2.75   | 3.00     | 3.20    | 3.40     | 3.65  | 3.90    | 4.20    | 4.45    | 4.75     | 5.05          | 5.40    | 5.65     | 00.9    | 6.40      | 000  |
|                                                 | 0.4    | RPM      | 505    | 515      | 520     | 530   | 540      | 545    | 222     | 292    | 575     | 585    | 262    | 605    | 615      | 630    | 640    | 650    | 999    | 675    | 069      | 200    | 715      | 725     | 740      | 750   | 292     | 780     | 790     | 805      | 820           | 835     | 845      | 860     | 875       | 000  |
|                                                 | o<br>O | BHP      | 0.30   | 0.35     | 0.40    | 0.45  | 0.50     | 0.55   | 09.0    | 0.70   | 0.75    | 0.85   | 0.95   | 1.05   | 1.15     | 1.30   | 1.40   | 1.55   | 1.70   | 1.85   | 2.00     | 2.20   | 2.40     | 2.55    | 2.80     | 3.00  | 3.25    | 3.50    | 3.75    | 4.00     | 4.30          | 4.60    | 4.90     | 5.20    | 5.55      | 00   |
|                                                 | 0.20   | RPM      | 385    | 395      | 405     | 415   | 425      | 435    | 445     | 455    | 470     | 480    | 495    | 202    | 520      | 530    | 545    | 260    | 220    | 585    | 009      | 615    | 630      | 640     | 655      | 029   | 685     | 200     | 715     | 730      | 745           | 092     | 775      | 790     | 802       | 000  |
| Air                                             | Volume | ctm<br>F | 2750   | 3000     | 3250    | 3500  | 3750     | 4000   | 4250    | 4500   | 4750    | 2000   | 5250   | 2200   | 2750     | 0009   | 6250   | 9029   | 6750   | 2000   | 7250     | 7500   | 7750     | 8000    | 8250     | 8500  | 8750    | 0006    | 9250    | 9200     | 9750          | 10,000  | 10,250   | 10,500  | 10,750    | 000  |

### **BLOWER DATA**

### FACTORY INSTALLED BELT DRIVE KIT SPECIFICATIONS

| Motor Efficiency | Nominal hp | Maximum hp | Drive Kit Number | RPM Range   |
|------------------|------------|------------|------------------|-------------|
| Standard or High | 2          | 2.30       | 1                | 535 - 725   |
| Standard or High | 2          | 2.30       | 2                | 710 - 965   |
| Standard         | 3          | 3.45       | 1                | 535 - 725   |
| Standard         | 3          | 3.45       | 2                | 710 - 965   |
| Standard         | 5          | 5.75       | 3                | 685 - 856   |
| Standard         | 5          | 5.75       | 4                | 850 - 1045  |
| Standard         | 5          | 5.75       | 5                | 945 - 1185  |
| Standard         | 7.5        | 8.63       | 6                | 850 - 1045  |
| Standard         | 7.5        | 8.63       | 7                | 945 - 1185  |
| Standard         | 7.5        | 8.63       | 8                | 1045 - 1285 |
| Standard         | 10         | 11.50      | 7                | 945 - 1185  |
| Standard         | 10         | 11.50      | 10               | 1045 - 1285 |
| Standard         | 10         | 11.50      | 11               | 1135 - 1365 |

NOTE - Using total air volume and system static pressure requirements determine from blower performance tables rpm and motor output required. Maximum usable output of motors furnished are shown. In Canada, nominal motor output is also maximum usable motor output. If motors of comparable output are used, be sure to keep within the service factor limitations outlined on the motor nameplate.

NOTE – Units equipped with MSAV® (Multi-Stage Air Volume) option are limited to a motor service factor of 1.0.

### FACTORY INSTALLED OPTIONS/FIELD INSTALLED ACCESSORY AIR RESISTANCE - in w.g.

|                   | Wet Ind              | oor Coil                             |                                            |                  |            | Filt   | ers     | Horizontal        | Roof Curb |
|-------------------|----------------------|--------------------------------------|--------------------------------------------|------------------|------------|--------|---------|-------------------|-----------|
| Air Volume<br>cfm | 156H<br>180S<br>180H | 210S<br>210H<br>240H<br>240S<br>300S | Humiditrol®<br>Condenser<br>Reheat<br>Coil | Electric<br>Heat | Economizer | MERV 8 | MERV 13 | 156H thru<br>240H | 300S      |
| 2750              | .01                  | .02                                  | .01                                        |                  |            | .01    | .03     | .03               | -         |
| 3000              | .01                  | .02                                  | .01                                        |                  |            | .01    | .03     | .04               | -         |
| 3250              | .01                  | .03                                  | .01                                        |                  |            | .01    | .04     | .04               | .01       |
| 3500              | .01                  | .03                                  | .02                                        |                  |            | .01    | .04     | .05               | .01       |
| 3750              | .01                  | .03                                  | .02                                        |                  |            | .01    | .04     | .05               | .01       |
| 4000              | .02                  | .04                                  | .02                                        |                  |            | .01    | .04     | .06               | .02       |
| 4250              | .02                  | .04                                  | .02                                        |                  |            | .01    | .05     | .07               | .02       |
| 4500              | .02                  | .05                                  | .02                                        |                  |            | .01    | .05     | .07               | .02       |
| 4750              | .02                  | .05                                  | .02                                        |                  |            | .02    | .05     | .08               | .03       |
| 5000              | .02                  | .05                                  | .02                                        |                  |            | .02    | .06     | .08               | .03       |
| 5250              | .02                  | .06                                  | .03                                        |                  |            | .02    | .06     | .09               | .04       |
| 5500              | .02                  | .07                                  | .03                                        |                  |            | .02    | .06     | .10               | .04       |
| 5750              | .03                  | .07                                  | .03                                        |                  |            | .02    | .07     | .11               | .05       |
| 6000              | .03                  | .08                                  | .03                                        | .01              |            | .03    | .07     | .11               | .06       |
| 6250              | .03                  | .08                                  | .03                                        | .01              | .01        | .03    | .07     | .12               | .07       |
| 6500              | .03                  | .09                                  | .04                                        | .01              | .02        | .03    | .08     | .13               | .08       |
| 6750              | .04                  | .10                                  | .04                                        | .01              | .03        | .03    | .08     | .14               | .08       |
| 7000              | .04                  | .10                                  | .04                                        | .01              | .04        | .04    | .08     | .15               | .09       |
| 7250              | .04                  | .11                                  | .04                                        | .01              | .05        | .04    | .09     | .16               | .10       |
| 7500              | .05                  | .12                                  | .05                                        | .01              | .06        | .04    | .09     | .17               | .11       |
| 8000              | .05                  | .13                                  | .05                                        | .02              | .09        | .05    | .10     | .19               | .13       |
| 8500              | .06                  | .15                                  | .05                                        | .02              | .11        | .05    | .10     | .21               | .15       |
| 9000              | .07                  | .16                                  | .06                                        | .04              | .14        | .06    | .11     | .24               | .17       |
| 9500              | .08                  | .18                                  | .07                                        | .05              | .16        | .07    | .12     | .26               | .19       |
| 10,000            | .08                  | .20                                  | .07                                        | .06              | .19        | .07    | .12     | .29               | .21       |
| 10,500            | .09                  | .22                                  | .08                                        | .09              | .22        | .08    | .13     | .31               | .24       |
| 11,000            | .11                  | .24                                  | .08                                        | .11              | .25        | .09    | .14     | .34               | .27       |

### **BLOWER DATA**

### CEILING DIFFUSER AIR RESISTANCE - in. w.g.

| Δ:            |             |                       | Step-Dow                 | n Diffuser                          |            |                          | Flush D   | Diffuser |
|---------------|-------------|-----------------------|--------------------------|-------------------------------------|------------|--------------------------|-----------|----------|
| Air<br>Volume |             | RTD11-185S            |                          |                                     | RTD11-275S |                          |           |          |
| cfm           | 2 Ends Open | 1 Side/2 Ends<br>Open | All Ends &<br>Sides Open | 2 Ends Open   1 Side/2 Ends<br>Open |            | All Ends &<br>Sides Open | FD11-185S | FD11-275 |
| 5000          | .51         | .44                   | .39                      |                                     |            |                          | .27       |          |
| 5200          | .56         | .48                   | .42                      |                                     |            |                          | .30       |          |
| 5400          | .61         | .52                   | .45                      |                                     |            |                          | .33       |          |
| 5600          | .66         | .56                   | .48                      |                                     |            |                          | .36       |          |
| 5800          | .71         | .59                   | .51                      |                                     |            |                          | .39       |          |
| 6000          | .76         | .63                   | .55                      | .36                                 | .31        | .27                      | .42       | .29      |
| 6200          | .80         | .68                   | .59                      |                                     |            |                          | .46       |          |
| 6400          | .86         | .72                   | .63                      |                                     |            |                          | .50       |          |
| 6500          |             |                       |                          | .42                                 | .36        | .31                      |           | .34      |
| 6600          | .92         | .77                   | .67                      |                                     |            |                          | .54       |          |
| 6800          | .99         | .83                   | .72                      |                                     |            |                          | .58       |          |
| 7000          | 1.03        | .87                   | .76                      | .49                                 | .41        | .36                      | .62       | .40      |
| 7200          | 1.09        | .92                   | .80                      |                                     |            |                          | .66       |          |
| 7400          | 1.15        | .97                   | .84                      |                                     |            |                          | .70       |          |
| 7500          |             |                       |                          | .51                                 | .46        | .41                      |           | .45      |
| 7600          | 1.20        | 1.02                  | .88                      |                                     |            |                          | .74       |          |
| 8000          |             |                       |                          | .59                                 | .49        | .43                      |           | .50      |
| 8500          |             |                       |                          | .69                                 | .58        | .50                      |           | .57      |
| 9000          |             |                       |                          | .79                                 | .67        | .58                      |           | .66      |
| 9500          |             |                       |                          | .89                                 | .75        | .65                      |           | .74      |
| 10,000        |             |                       |                          | 1.00                                | .84        | .73                      |           | .81      |
| 10,500        |             |                       |                          | 1.10                                | .92        | .80                      |           | .89      |
| 11,000        |             |                       |                          | 1.21                                | 1.01       | .88                      |           | .96      |

### CEILING DIFFUSER AIR THROW DATA

| Madal                        | Air Volume               | <sup>1</sup> Effective Thr | ow Range - ft.     | — Model I | Air Volume | <sup>1</sup> Effective Thr | ow Range - ft.    |
|------------------------------|--------------------------|----------------------------|--------------------|-----------|------------|----------------------------|-------------------|
| Model<br>No.                 | cfm                      | RTD11-185S<br>Step-Down    | FD11-185S<br>Flush | No.       | cfm        | RTD11-275<br>Step-Down     | FD11-275<br>Flush |
|                              | 5600                     | 39 - 49                    | 28 - 37            |           | 7200       | 33 - 38                    | 26 - 35           |
|                              | 5800                     | 42 - 51                    | 29 - 38            |           | 7400       | 35 - 40                    | 28 - 37           |
| 156                          | 6000                     | 44 - 54                    | 40 - 50            |           | 7600       | 36 - 41                    | 29 - 38           |
| 180                          | 6200                     | 45 - 55                    | 42 - 51            | 210       | 7800       | 38 - 43                    | 40 - 50           |
|                              | 6400                     | 46 - 55                    | 43 - 52            | 240       | 8000       | 39 - 44                    | 42 - 51           |
|                              | 6600                     | 47 - 56                    | 45 - 56            | 300       | 8200       | 41 - 46                    | 43 - 52           |
|                              | ntal or vertical distanc |                            | O .                | -         | 8400       | 43 - 49                    | 44 - 54           |
| or diffuser before the open. | ne maximum velocity is   | s reduced to 50 ft. per    | minute. Four sides |           | 8600       | 44 - 50                    | 46 - 57           |
| - I · · ·                    |                          |                            |                    |           | 9900       | 17 EE                      | 40 E0             |

### POWER EXHAUST FAN PERFORMANCE

| FOWER EXHAUST FAIN FERFORMANCE    | <u> </u>             |
|-----------------------------------|----------------------|
| Return Air System Static Pressure | Air Volume Exhausted |
| in. w.g.                          | cfm                  |
| 0.00                              | 8630                 |
| 0.05                              | 8210                 |
| 0.10                              | 7725                 |
| 0.15                              | 7110                 |
| 0.20                              | 6470                 |
| 0.25                              | 5790                 |
| 0.30                              | 5060                 |
| 0.35                              | 4300                 |
| 0.40                              | 3510                 |
| 0.45                              | 2690                 |
| 0.50                              | 1840                 |
|                                   |                      |

| ELECTRIC                            | CAL/ELECTR                            | IC HE                              | AT D           | ATA            |                |          |       |       |       |         |       |       | 1:      | 5 TON |
|-------------------------------------|---------------------------------------|------------------------------------|----------------|----------------|----------------|----------|-------|-------|-------|---------|-------|-------|---------|-------|
| 15 TON STA                          | NDARD EFFICI                          | ENCY                               |                |                |                |          |       |       |       |         |       |       | KCB'    | 18054 |
| <sup>1</sup> Voltage - 60h          | Z                                     |                                    |                | 2              | 208/230        | V - 3 PI | h     |       | 46    | 80V - 3 | Ph    | 57    | 75V - 3 | Ph    |
| Compressor 1                        | Rated Lo                              | ad Amps                            |                |                | 11             | .6       |       |       |       | 6.3     |       |       | 4.9     |       |
|                                     | Locked Ro                             |                                    |                |                | 9              | 3        |       |       |       | 60      |       |       | 41      |       |
| Compressor 2                        | Rated Lo                              | ad Amps                            |                |                | 11             | .6       |       |       |       | 6.3     |       |       | 4.9     |       |
|                                     | Locked Ro                             |                                    | _              |                |                | 3        |       |       |       | 60      |       |       |         |       |
| Compressor 3                        | Rated Lo                              |                                    |                |                |                |          |       |       | 6.3   |         |       |       |         |       |
|                                     | Locked Ro                             |                                    | _              |                |                | 3        |       |       |       | 60      |       |       | 41      |       |
| Outdoor Fan                         | Full Lo                               | ad Amps                            |                | 2.             |                |          |       |       | 1.3   |         |       | 1 (3) |         |       |
| Motors (3)                          | er Exhaust Full Load Ai<br>.33 HP (to |                                    |                |                |                | .2)      |       |       |       | (3.9)   |       |       |         |       |
| Power Exhaust                       |                                       |                                    | 1              |                |                | .4       |       |       | 1.3   |         |       |       | 1       |       |
| (2) 0.33 HP                         |                                       |                                    |                |                |                | .8)      |       |       |       | (2.6)   |       |       | (2)     |       |
|                                     | 115V GFI (amps)                       |                                    |                |                |                | 5        | ı     |       |       | 15      |       |       | 20      |       |
| Indoor Blower                       |                                       | sepower                            | -              | 3              |                | 5        | -     | .5    | 3     | 5       | 7.5   | 3     | 5       | 7.5   |
| Motor                               |                                       | ad Amps                            |                | ).6            |                | 5.7      |       | 1.2   | 4.8   | 7.6     | 11    | 3.9   | 6.1     | 9     |
| <sup>2</sup> Maximum<br>Overcurrent |                                       | Jnit Only                          | +              | 0              |                | 0        |       | 00    | 35    | 35      | 45    | 25    | 30      | 35    |
| Protection                          |                                       | 0.33 HP<br>Exhaust                 |                | 0              | 8              | 0        | 10    | 00    | 35    | 40      | 50    | 25    | 30      | 35    |
| <sup>3</sup> Minimum                | l                                     | Jnit Only                          | 5              | 6              | 6              | 3        | 7     | '3    | 30    | 33      | 37    | 23    | 26      | 29    |
| Circuit                             |                                       | 0.33 HP                            |                | 1              | 6              | 8        | 7     | '8    | 32    | 35      | 40    | 25    | 28      | 31    |
| Ampacity                            | Exhaust                               |                                    |                |                |                |          |       |       |       |         |       |       |         |       |
| ELECTRIC H                          |                                       |                                    | 208V           | 240V           | 208V           | 240V     | 208V  | 240V  | 480V  | 480V    | 480V  | 600V  | 600V    | 600V  |
| Electric Heat Vo                    | Unit+                                 | 15 kW                              | 60             | 60             | 70             | 70       | 90    | 90    | 35    | 35      | 45    | 25    | 30      | 35    |
| Overcurrent                         | Electric Heat                         | 30 kW                              | 100            | 110            | 100            | 125      | 110   | 125   | 60    | 60      | 60    | 45    | 45      | 50    |
| Protection                          |                                       | 45 kW                              | 150            | 150            | 150            | 175      | 150   | 175   | 80    | 80      | 90    | 60    | 70      | 70    |
|                                     | -                                     | 60 kW                              | 150            | 175            | 150            | 175      | 175   | 175   | 80    | 90      | 90    | 70    | 70      | 70    |
| <sup>3</sup> Minimum                | Unit+                                 | 15 kW                              | 56             | 59             | 63             | 66       | 73    | 76    | 30    | 33      | 37    | 23    | 26      | 30    |
| Circuit                             | Electric Heat                         | 30 kW                              | 92             | 104            | 100            | 112      | 109   | 121   | 52    | 55      | 59    | 41    | 44      | 48    |
| Ampacity                            | _                                     | 45 kW                              | 131            | 149            | 139            | 157      | 148   | 166   | 74    | 78      | 82    | 60    | 62      | 66    |
|                                     | -                                     | 60 kW                              | 139            | 158            | 146            | 166      | 156   | 175   | 79    | 82      | 86    | 63    | 66      | 69    |
| <sup>2</sup> Maximum                | Unit+                                 | 15 kW                              | 70             | 70             | 80             | 80       | 100   | 100   | 35    | 40      | 50    | 30    | 30      | 35    |
| Overcurrent                         | Electric Heat                         | 30 kW                              | 100            | 110            | 110            | 125      | 125   | 150   | 60    | 60      | 70    | 45    | 50      | 50    |
| Protection                          | and (2) 0.33 HP                       | 45 kW                              | 150            | 175            | 150            | 175      | 175   | 175   | 80    | 90      | 90    | 70    | 70      | 70    |
|                                     | Power Exhaust -                       | 60 kW                              | 150            | 175            | 175            | 175      | 175   | 200   | 90    | 90      | 90    | 70    | 70      | 80    |
| <sup>3</sup> Minimum                | Unit+                                 | 15 kW                              | 61             | 65             | 68             | 72       | 78    | 82    | 32    | 36      | 40    | 26    | 29      | 32    |
| Circuit                             | Electric Heat -                       | 30 kW                              | 98             | 110            | 106            | 118      | 115   | 127   | 55    | 58      | 63    | 44    | 47      | 50    |
| Ampacity                            | and (2) 0.33 HP                       | 45 kW                              | 137            | 155            | 145            | 163      | 154   | 172   | 77    | 81      | 85    | 62    | 65      | 68    |
|                                     | Power Exhaust -                       | 60 kW                              | 145            | 164            | 152            | 172      | 162   | 181   | 82    | 85      | 90    | 66    | 68      | 72    |
| ELECTRICAL                          | ACCESSORIES                           |                                    |                |                |                |          |       |       |       |         |       |       |         |       |
|                                     |                                       | Jnit Only                          | 54W85          | 54W85          | 54W85          | 54W85    | 54W85 | 54W85 | 54W85 | 54W85   | 54W85 | 54W85 | 54W85   | 54W85 |
|                                     | ,                                     |                                    | E 414/0 E      | 54W85          | 54W85          | 54W85    | 54W86 | 54W86 | 54W85 | 54W85   | 54W85 | 54W85 | 54W85   | 54W85 |
|                                     | Unit + Power                          | Exhaust                            | 547785         | 011100         |                |          |       |       |       |         |       | l     | 1       |       |
|                                     |                                       |                                    |                |                |                | 54W85    | 54W85 | 54W85 | 54W85 | 54W85   | 54W85 | 54W85 | 54W85   | 54W85 |
| Disconnect                          | Unit + Power                          | at <b>15 kW</b>                    | 54W85          | 54W85          | 54W85          |          |       |       |       |         | +     |       |         | _     |
|                                     | Unit + Power<br>Unit + Electric Hea   | at <b>15 kW</b><br>at <b>30 kW</b> | 54W85<br>54W86 | 54W85<br>54W86 | 54W85<br>54W86 | 54W86    | 54W86 | 54W86 | 54W85 | 54W85   | 54W85 | 54W85 | 54W85   | 54W85 |

NOTE - All units have a minimum Short Circuit Current Rating (SCCR) of 5000 amps.

Unit + Power Exhaust + Elec. Heat **15 kW** 54W85 54W85

 $<sup>^{\</sup>mbox{\tiny 1}}$  Extremes of operating range are plus and minus 10% of line voltage.

<sup>&</sup>lt;sup>2</sup> HACR type breaker or fuse.

<sup>&</sup>lt;sup>3</sup> Refer to National or Canadian Electrical Code manual to determine wire, fuse and disconnect size requirements.

| ELECTRICA                  | AL/ELECTRIC HE      | EAT DA    | TA       |                 |                  |                  |                  |         |        |             |        |          | 17.         | 5 TON |
|----------------------------|---------------------|-----------|----------|-----------------|------------------|------------------|------------------|---------|--------|-------------|--------|----------|-------------|-------|
|                            | TANDARD EFFI        | CIENCY    | <u> </u> |                 |                  |                  |                  |         |        |             |        | KCB210S4 |             |       |
| <sup>1</sup> Voltage - 60h |                     |           |          |                 | 208/230          | V - 3 P          | h                |         | 46     | 60V - 3     | Ph     | 57       | 75V - 3     | Ph    |
| Compressor 1               | Rated Lo            |           |          |                 |                  | 9.6              |                  |         |        | 8.2         |        |          | 6.6         |       |
|                            | Locked Rot          |           |          |                 |                  | 36               |                  |         |        | 66.1        |        |          | 55.3        |       |
| Compressor 2               |                     |           |          |                 |                  | 9.6              |                  |         |        | 8.2         |        |          | 6.6         |       |
|                            | Locked Rot          |           |          |                 |                  | 36               |                  |         |        | 66.1        |        | 55.3     |             |       |
| Compressor 3               |                     |           |          |                 |                  | 9.6              |                  |         |        | 8.2         |        | 6.6      |             |       |
|                            | Locked Rot          |           |          |                 |                  | 36               |                  |         |        | 66.1        |        | 55.3     |             |       |
| Outdoor Fan                | Full Lo             | ad Amps   |          |                 |                  | .4               |                  |         |        | 1.3         |        | 1        |             |       |
| Motors (3)                 |                     | (total)   |          |                 |                  | .2)              |                  |         |        | (3.9)       |        |          | (3)         |       |
| Power Exhaus               | t Full Lo           | ad Amps   |          |                 | 2                | .4               |                  |         |        | 1.3         |        |          | 1           |       |
| (2) 0.33 HP                |                     | (total)   |          |                 |                  | .8)              |                  |         |        | (2.6)       |        |          | (2)         |       |
| Service Outlet             | 115V GFI (amps)     |           |          |                 |                  | 5                |                  |         |        | 15          |        |          | 20          |       |
| Indoor Blower              |                     | sepower   |          | 3               |                  | 5                |                  | .5      | 3      | 5           | 7.5    | 3        | 5           | 7.5   |
| Motor                      | Full Lo             | ad Amps   |          | ).6             |                  | 6.7              | +                | 4.2     | 4.8    | 7.6         | 11     | 3.9      | 6.1         | 9     |
| <sup>2</sup> Maximum       |                     | Jnit Only | 10       | 00              | 10               | 00               | 1                | 10      | 40     | 45          | 50     | 30       | 35          | 40    |
| Overcurrent                |                     | 0.33 HP   | 1        | 00              | 1.               | 10               | 1:               | 25      | 45     | 45          | 50     | 35       | 35          | 45    |
| Protection                 | Power               | Exhaust   |          |                 |                  |                  |                  |         |        |             |        |          |             |       |
| <sup>3</sup> Minimum       |                     | Jnit Only | 8        | 32              | 8                | 88               | Ç                | 97      | 36     | 39          | 43     | 29       | 31          | 35    |
| Circuit                    |                     | 0.33 HP   |          | 7 <u>-</u><br>7 |                  | 3                |                  | 02      | 38     | 41          | 45     | 31       | 33          | 37    |
| Ampacity                   |                     | Exhaust   |          | ,,              |                  | ,0               |                  | 02      |        | "'          | 70     | "        |             | 0,    |
| ELECTRIC I                 |                     |           | 1        |                 |                  |                  | 1                |         | 1      | 1           | l      | 1        | 1           |       |
| Electric Heat V            |                     |           | 208V     | 240V            | 208V             | 240V             | 208V             | 240V    | 480V   | 480V        | 480V   | 600V     | 600V        | 600V  |
| <sup>2</sup> Maximum       | Unit+               | 15 kW     | 100      | 100             | 100              | 100              | 110              | 110     | 40     | 45          | 50     | 30       | 35          | 40    |
| Overcurrent                | Electric Heat       | 30 kW     | 100      | 110             | 100              | 125              | 110              | 125     | 60     | 60          | 60     | 45       | 45          | 50    |
| Protection                 |                     | 45 kW     | 150      | 150             | 150              | 175              | 150              | 175     | 80     | 80          | 90     | 60       | 70          | 70    |
|                            | -                   | 60 kW     | 150      | 175             | 150              | 175              | 175              | 175     | 80     | 90          | 90     | 70       | 70          | 70    |
|                            | -                   | 90 kW     | 225      | 250             | 225              | 250              | 225              | 250     | 125    | 125         | 125    | 100      | 100         | 100   |
| <sup>3</sup> Minimum       | Unit+               | 15 kW     | 82       | 82              | 88               | 88               | 97               | 97      | 36     | 39          | 43     | 29       | 31          | 35    |
| Circuit                    | Electric Heat       | 30 kW     | 92       | 104             | 100              | 112              | 109              | 121     | 52     | 55          | 59     | 41       | 44          | 48    |
| Ampacity                   |                     | 45 kW     | 131      | 149             | 139              | 157              | 148              | 166     | 74     | 78          | 82     | 60       | 62          | 66    |
|                            | -                   | 60 kW     | 139      | 158             | 146              | 166              | 156              | 175     | 79     | 82          | 86     | 63       | 66          | 69    |
|                            | _                   | 90 kW     | 201      | 230             | 209              | 238              | 218              | 247     | 115    | 118         | 123    | 92       | 95          | 98    |
| <sup>2</sup> Maximum       | Unit+               | 15 kW     | 100      | 100             | 110              | 110              | 125              | 125     | 45     | 45          | 50     | 35       | 35          | 45    |
| Overcurrent                | Electric Heat       | 30 kW     | 100      | 110             | 110              | 125              | 125              | 150     | 60     | 60          | 70     | 45       | 50          | 50    |
| Protection                 | and (2) 0.33 HP     | 45 kW     | 150      | 175             | 150              | 175              | 175              | 175     | 80     | 90          | 90     | 70       | 70          | 70    |
|                            | Power Exhaust       | 60 kW     | 150      | 175             | 175              | 175              | 175              | 200     | 90     | 90          | 90     | 70       | 70          | 80    |
|                            | -                   | 90 kW     | 225      | 250             | 225              | 250              | 225              | 300     | 125    | 125         | 150    | 100      | 100         | 110   |
| <sup>3</sup> Minimum       | Unit+               | 15 kW     | 87       | 87              | 93               | 93               | 102              | 102     | 38     | 41          | 45     | 31       | 33          | 37    |
| Circuit                    | Electric Heat       | 30 kW     | 98       | 110             | 106              | 118              | 115              | 127     | 55     | 58          | 63     | 44       | 47          | 50    |
| Ampacity                   | and (2) 0.33 HP     | 45 kW     | 137      | 155             | 145              | 163              | 154              | 172     | 77     | 81          | 85     | 62       | 65          | 68    |
| , ,                        | Power Exhaust =     | 60 kW     | 145      | 164             | 152              | 172              | 162              | 181     | 82     | 85          | 90     | 66       | 68          | 72    |
|                            | _                   | 90 kW     | 207      | 236             | 215              | 244              | 224              | 253     | 118    | 122         | 126    | 94       | 97          | 101   |
| EL ECTRICAL                | ACCESSORIES         | 00 100    | 207      | 200             | 210              | 211              | 221              | 200     | 110    | 122         | 120    | , 0.     | 0,          | 101   |
|                            |                     | Jnit Only | EAMOO    | EANNO           | EALVIOC          | EALVIDO          | EALANDO          | EALANDO | EALVOE | EAMOS       | EAMOS  | EALVOE   | EALVOS      | EAMOE |
| Disconnect                 | υnit + Power        |           |          |                 |                  |                  |                  |         |        |             |        |          |             |       |
|                            |                     |           |          |                 | _                |                  |                  | +       |        |             |        |          |             |       |
|                            | Unit + Electric Hea |           |          | -               | +                |                  | +                | +       |        | <del></del> |        |          | +           | +     |
|                            | Unit + Electric Hea |           |          | -               | +                | 1                | +                | +       |        | -           |        |          | +           | -     |
|                            | Unit + Electric Hea |           |          | -               | +                |                  | +                | +       |        | -           | -      |          | +           |       |
|                            | Unit + Electric Hea |           |          |                 |                  |                  | _                |         |        |             |        |          |             |       |
| Limit I Down               | Unit + Electric Hea |           |          |                 | _                | 4 N/A            | 4 N/A            | +       |        |             |        |          |             | 54W86 |
|                            | Exhaust + Elec. Hea |           |          |                 |                  |                  |                  | +       |        |             |        |          | <del></del> |       |
| Unit + Power               |                     |           | -        |                 |                  | +                | +                |         | -      |             |        |          | <del></del> |       |
|                            | Exhaust + Elec. Hea |           |          |                 |                  |                  |                  |         |        |             | -      |          | _           |       |
|                            | Exhaust + Elec. Hea |           |          |                 |                  |                  |                  |         |        |             |        |          |             |       |
| Unit + Power               | Exhaust + Elec. Hea | at 90 KW  | * N/A    | * N/A           | <sup>+</sup> N/A | <sup>4</sup> N/A | <sup>+</sup> N/A | i ⁴ N/A | 547786 | 547786      | 547786 | 547786   | 547786      | 54W86 |

 $<sup>{\</sup>sf NOTE}\ \hbox{-All units have a minimum Short Circuit Current Rating (SCCR) of 5000 amps}.$ 

<sup>&</sup>lt;sup>1</sup> Extremes of operating range are plus and minus 10% of line voltage.

<sup>&</sup>lt;sup>2</sup> HACR type breaker or fuse.

<sup>&</sup>lt;sup>3</sup> Refer to National or Canadian Electrical Code manual to determine wire, fuse and disconnect size requirements.

<sup>&</sup>lt;sup>4</sup> Disconnect must be field furnished.

| 20 TON STA                      | NDARD EFFICI             | ENCY            |                  |                  |                  |              |            |                  |             |           |          |          | KCB2                                             | 24054    |
|---------------------------------|--------------------------|-----------------|------------------|------------------|------------------|--------------|------------|------------------|-------------|-----------|----------|----------|--------------------------------------------------|----------|
| <sup>1</sup> Voltage - 60h      | Z                        |                 |                  |                  | 208/230          | V - 3 P      | h          |                  | 46          | 60V - 3   | Ph       | 57       | 75V - 3 I                                        | Ph       |
| Compressor 1                    | Rated Lo                 | ad Amps         |                  |                  | 22               | 2.4          |            |                  |             | 10.6      |          |          | 7.7                                              |          |
| •                               | Locked Ro                | tor Amps        |                  |                  | 14               | 49           |            |                  |             | 75        |          |          | 54                                               |          |
| Compressor 2                    | Rated Lo                 |                 |                  |                  | 22               | 2.4          |            |                  |             | 10.6      |          |          | 7.7                                              |          |
|                                 | Locked Ro                | •               |                  |                  |                  | 49           |            |                  |             | 75        |          | 54       |                                                  |          |
| Compressor 3                    | Rated Lo                 |                 |                  |                  |                  | 5            |            |                  |             | 12.2      |          | 9        |                                                  |          |
| p                               | Locked Ro                |                 |                  |                  |                  | 64           |            |                  |             | 100       |          | 78       |                                                  |          |
| Outdoor Fan                     |                          | ad Amps         |                  |                  |                  | .4           |            |                  |             | 1.3       |          |          | 1                                                |          |
| Motors (4)                      | 20                       | (total)         |                  |                  |                  | .6)          |            |                  |             | (5.2)     |          |          | (4)                                              |          |
| Power Exhaust                   | Full Lo                  | ad Amps         |                  |                  |                  | .4           |            |                  |             | 1.3       |          |          | 1                                                |          |
| (2) 0.33 HP                     |                          | (total)         |                  |                  |                  | .8)          |            |                  |             | (2.6)     |          |          | (2)                                              |          |
| · /                             | 115V GFI (amps)          | (10 10)         |                  |                  |                  | 5            |            |                  |             | 15        |          |          | 20                                               |          |
| Indoor Blower                   |                          | sepower         | !                | 5                |                  | .5           | 1          | 0                | 5           | 7.5       | 10       | 5        | 7.5                                              | 10       |
| Motor                           |                          | ad Amps         |                  | 5<br>6.7         |                  | l.2          |            | ).8              | 7.6         | 11        | 14       | 6.1      | 9                                                | 11       |
| <sup>2</sup> Maximum            |                          | Jnit Only       |                  | 25               |                  | 25           |            | 25               | 60          | 60        | 70       | 45       | 45                                               | 50       |
| Overcurrent                     |                          | 0.33 HP         |                  | <u>25</u>        |                  | 25           |            | 50               | 60          | 60        | 70       | 45       | 50                                               | 50       |
| Protection                      |                          | Exhaust         | 12               |                  | '2               |              |            |                  |             |           | '        | '0       |                                                  |          |
| <sup>3</sup> Minimum            |                          | Jnit Only       | 10               | 03               | 1                | 10           | 1          | 18               | 50          | 53        | 57       | 37       | 40                                               | 43       |
| Circuit                         |                          | 0.33 HP         |                  | 08               |                  | 15           |            | 23               | 52          | 56        | 59       | 39       | 42                                               | 45       |
| Ampacity                        | ` ,                      | Exhaust         |                  |                  | '                |              | ''         |                  | 52          |           |          |          | '-                                               | 10       |
| ELECTRIC H                      |                          |                 | '                |                  | 1                |              |            |                  | 1           | '         | 1        | 1        | ·                                                | 1        |
| Electric Heat V                 |                          |                 | 208V             | 240V             | 208V             | 240V         | 208V       | 240V             | 480V        | 480V      | 480V     | 600V     | 600V                                             | 600V     |
| <sup>2</sup> Maximum            | Unit+                    | 15 kW           | 125              | 125              | 125              | 125          | 125        | 125              | 60          | 60        | 70       | 45       | 45                                               | 50       |
| Overcurrent                     | Electric Heat            | 30 kW           | 125              | 125              | 125              | 125          | 125        | 150              | 60          | 60        | 70       | 45       | 50                                               | 50       |
| Protection                      |                          | 45 kW           | 150              | 175              | 150              | 175          | 175        | 175              | 80          | 90        | 90       | 70       | 70                                               | 70       |
|                                 | -                        | 60 kW           | 150              | 175              | 175              | 175          | 175        | 200              | 90          | 90        | 90       | 70       | 70                                               | 80       |
|                                 | -                        | 90 kW           | 225              | 250              | 225              | 250          | 250        | 300              | 125         | 125       | 150      | 100      | 100                                              | 110      |
| <sup>3</sup> Minimum            | Unit+                    | 15 kW           | 103              | 103              | 110              | 110          | 118        | 118              | 50          | 53        | 57       | 37       | 40                                               | 43       |
| Circuit                         | Electric Heat            | 30 kW           | 103              | 112              | 110              | 121          | 118        | 129              | 55          | 59        | 63       | 44       | 48                                               | 50       |
| Ampacity                        | Licotino ricat           | 45 kW           | 139              | 157              | 148              | 166          | 156        | 174              | 78          | 82        | 86       | 62       | 66                                               | 68       |
| , unpaonly                      | -                        | 60 kW           | 146              | 166              | 156              | 175          | 164        | 183              | 82          | 86        | 90       | 66       | 69                                               | 72       |
|                                 | -                        | 90 kW           | 209              | 238              | 218              | 247          | 227        | 256              | 118         | 123       | 126      | 95       | 98                                               | 101      |
| <sup>2</sup> Maximum            | Unit+                    | 15 kW           | 125              | 125              | 125              | 125          | 150        | 150              | 60          | 60        | 70       | 45       | 50                                               | 50       |
| Overcurrent                     | Electric Heat            | 30 kW           | 125              | 125              | 125              | 150          | 150        | 150              | 60          | 70        | 70       | 50       | 50                                               | 60       |
| Protection                      | and (2) 0.33 HP          | 45 kW           | 150              | 175              | 175              | 175          | 175        | 200              | 90          | 90        | 90       | 70       | 70                                               | 80       |
| Tiologion                       | Power Exhaust            |                 | 175              | 175              | 175              | 200          | 175        | 200              | 90          | 90        | 100      | 70       | 80                                               | 80       |
|                                 | - CHO! EXHAUST           | 60 kW           | 225              |                  |                  |              |            |                  |             |           |          |          | <del>                                     </del> |          |
| 3 Minimum                       | Liniti                   | 90 kW           |                  | 250              | 225              | 300          | 250        | 300              | 125         | 150       | 150      | 100      | 110                                              | 110      |
| <sup>3</sup> Minimum<br>Circuit | Unit+ _<br>Electric Heat | 15 kW<br>30 kW  | 108<br>108       | 108<br>118       | 115<br>115       | 115<br>127   | 123<br>123 | 123<br>135       | 52<br>58    | 56<br>63  | 59<br>66 | 39<br>47 | 42<br>50                                         | 45<br>53 |
| Ampacity                        | and (2) 0.33 HP          |                 |                  |                  |                  | 172          | 162        |                  |             |           |          | _        |                                                  | 71       |
| , unpaoity                      | Power Exhaust            | 45 kW           | 145<br>152       | 163              | 154<br>162       | _            | 170        | 180<br>189       | 81          | 85        | 89<br>93 | 65       | 68<br>72                                         | 74       |
|                                 | . OHO. EXHAUST           | 60 kW           | 215              | 172              |                  | 181          | 233        | 262              | 85<br>122   | 90<br>126 |          | 68       | +                                                | 103      |
| E1 E0751371                     | 1005000                  | 90 kW           | 215              | 244              | 224              | 253          | 233        | 202              | 122         | 120       | 130      | 97       | 101                                              | 103      |
|                                 | ACCESSORIES              |                 | ,                |                  |                  |              |            |                  | ,           |           |          |          |                                                  |          |
| Disconnect                      |                          | Jnit Only       |                  |                  |                  |              |            |                  |             |           |          |          | -                                                |          |
|                                 | Unit + Power             |                 |                  |                  |                  |              |            |                  |             |           |          |          |                                                  |          |
|                                 | Unit + Electric He       |                 |                  |                  |                  |              |            |                  | <del></del> |           |          | +        |                                                  |          |
|                                 | Unit + Electric He       |                 |                  |                  |                  |              |            | -                |             |           | -        | +        |                                                  | -        |
|                                 | Unit + Electric He       |                 |                  |                  | -                |              |            | -                | +           |           | -        | +        |                                                  | -        |
|                                 | Unit + Electric Hea      | at <b>60 kW</b> | 54W87            |                  | _                |              |            | _                |             |           |          |          |                                                  |          |
|                                 | Unit + Electric Hea      | at <b>90 kW</b> | <sup>4</sup> N/A | <sup>4</sup> N/A | <sup>4</sup> N/A | 4 N/A        | 4 N/A      | <sup>4</sup> N/A | 54W86       | 54W86     | 54W86    | 54W86    | 54W86                                            | 54W86    |
| Unit + Power I                  | Exhaust + Elec. He       | at <b>15 kW</b> | 54W86            | 54W86            | 54W86            | 54W86        | 54W86      | 54W86            | 54W85       | 54W85     | 54W85    | 54W85    | 54W85                                            | 54W85    |
| Unit + Power I                  | Exhaust + Elec. He       | at <b>30 kW</b> | 54W86            | 54W86            | 54W86            | 54W86        | 54W86      | 54W86            | 54W85       | 54W85     | 54W85    | 54W85    | 54W85                                            | 54W85    |
| Unit + Power I                  | Exhaust + Elec. He       | at <b>45 kW</b> | 54W86            | 54W86            | 54W87            | 54W87        | 54W87      | 54W87            | 54W85       | 54W85     | 54W85    | 54W85    | 54W85                                            | 54W85    |
|                                 | Exhaust + Elec. He       |                 |                  |                  |                  | <del> </del> |            |                  | +           |           |          | +        |                                                  |          |
| Unit + Power i                  | EXHAUST FEICU. FIC       | at oo kw        | 0                |                  |                  |              |            |                  | 0           |           | 000      | 000      | 0                                                |          |

 $<sup>\</sup>ensuremath{\mathsf{NOTE}}$  - All units have a minimum Short Circuit Current Rating (SCCR) of 5000 amps.

<sup>&</sup>lt;sup>1</sup> Extremes of operating range are plus and minus 10% of line voltage.

 $<sup>^{\</sup>rm 2}$  HACR type breaker or fuse.

<sup>&</sup>lt;sup>3</sup> Refer to National or Canadian Electrical Code manual to determine wire, fuse and disconnect size requirements.

<sup>&</sup>lt;sup>4</sup> Disconnect must be field furnished.

| ELECTRICA                       | ELECTRICAL/ELECTRIC HEAT DATA 25 TON 25 TON STANDARD EFFICIENCY KCB300S4 |                |            |                  |                  |                  |                  |            |             |          |          |          |           | 5 TON    |  |
|---------------------------------|--------------------------------------------------------------------------|----------------|------------|------------------|------------------|------------------|------------------|------------|-------------|----------|----------|----------|-----------|----------|--|
| 25 TON STA                      | ANDARD EFFICI                                                            | ENCY           |            |                  |                  |                  |                  |            | KCB300S4    |          |          |          |           |          |  |
| <sup>1</sup> Voltage - 60h      | nZ                                                                       |                |            |                  | 208/230          | V - 3 P          | h                |            | 46          | 60V - 3  | Ph       | 57       | 75V - 3 I | Ph       |  |
| Compressor 1                    |                                                                          | ad Amps        |            |                  |                  | 9.6              |                  |            |             | 8.2      |          |          | 6.6       |          |  |
| ·                               | Locked Ro                                                                |                |            |                  | 1:               | 36               |                  |            |             | 66.1     |          |          | 55.3      |          |  |
| Compressor 2                    | Rated Lo                                                                 | ad Amps        |            |                  | 19               | 9.6              |                  |            |             | 8.2      |          |          | 6.6       |          |  |
|                                 | Locked Ro                                                                | tor Amps       |            |                  | 1:               | 36               |                  |            |             | 66.1     |          |          | 55.3      |          |  |
| Compressor 3                    | Rated Lo                                                                 | ad Amps        |            |                  | 22               | 2.4              |                  |            |             | 10.6     |          |          | 7.7       |          |  |
| ·                               | Locked Ro                                                                | tor Amps       |            |                  | 14               | 49               |                  |            |             | 75       |          |          | 54        |          |  |
| Compressor 4                    | Rated Lo                                                                 | ad Amps        |            |                  | 22               | 2.4              |                  |            |             | 10.6     |          | 7.7      |           |          |  |
|                                 | Locked Ro                                                                | tor Amps       |            |                  | 14               | 49               |                  |            |             | 75       |          |          |           |          |  |
| Outdoor Fan                     | Full Lo                                                                  | ad Amps        |            |                  | 2                | .4               |                  |            |             | 1.3      |          |          | 1         |          |  |
| Motors (6)                      |                                                                          | (total)        |            |                  | (14              | 1.4)             |                  |            |             | (7.8)    |          |          | (6)       |          |  |
| Power Exhaus                    | t Full Lo                                                                | ad Amps        |            |                  | 2                | .4               |                  |            |             | 1.3      |          |          | 1         |          |  |
| (2) 0.33 HP                     |                                                                          | (total)        |            |                  |                  | .8)              |                  |            |             | (2.6)    |          |          | (2)       |          |  |
| Service Outlet                  | 115V GFI (amps)                                                          |                |            |                  |                  | 5                |                  |            |             | 15       |          |          | 20        |          |  |
| Indoor Blower                   |                                                                          | rsepower       |            | 5                | 7                | .5               | 1                | 0          | 5           | 7.5      | 10       | 5        | 7.5       | 10       |  |
| Motor                           | Full Lo                                                                  | ad Amps        | 16.7       |                  | 24               | 1.2              | 30               | 0.8        | 7.6         | 11       | 14       | 6.1      | 9         | 11       |  |
| <sup>2</sup> Maximum            |                                                                          | Unit Only      | 1:         | 25               | 1:               | 50               | 1:               | 50         | 60          | 70       | 70       | 50       | 50        | 50       |  |
| Overcurrent                     | With (2)                                                                 | 0.33 HP        | 1:         | 50               | 1:               | 50               | 1:               | 50         | 60          | 70       | 70       | 50       | 50        | 60       |  |
| Protection                      | Power                                                                    | r Exhaust      |            |                  |                  |                  |                  |            |             |          |          |          |           |          |  |
| <sup>3</sup> Minimum            |                                                                          | Unit Only      | 1:         | 21               | 1:               | 29               | 1;               | 37         | 56          | 60       | 63       | 43       | 46        | 49       |  |
| Circuit                         |                                                                          | 0.33 HP        |            | 26               | 1:               | 34               | 14               | 42         | 59          | 62       | 66       | 45       | 48        | 51       |  |
| Ampacity                        |                                                                          | Exhaust        |            |                  |                  |                  |                  |            |             |          |          |          |           |          |  |
| ELECTRIC I                      | HEAT DATA                                                                |                |            |                  |                  |                  |                  |            |             |          |          |          |           |          |  |
| Electric Heat V                 |                                                                          |                | 208V       | 240V             | 208V             | 240V             | 208V             | 240V       | 480V        | 480V     | 480V     | 600V     | 600V      | 600V     |  |
| <sup>2</sup> Maximum            | Unit+                                                                    | 15 kW          | 125        | 125              | 150              | 150              | 150              | 150        | 60          | 70       | 70       | 50       | 50        | 50       |  |
| Overcurrent                     | Electric Heat                                                            | 30 kW          | 125        | 125              | 150              | 150              | 150              | 150        | 60          | 70       | 70       | 50       | 50        | 50       |  |
| Protection                      | -                                                                        | 45 kW          | 150        | 175              | 150              | 175              | 175              | 175        | 80          | 90       | 90       | 70       | 70        | 70       |  |
|                                 | -                                                                        | 60 kW          | 150        | 175              | 175              | 175              | 175              | 200        | 90          | 90       | 90       | 70       | 70        | 80       |  |
|                                 |                                                                          | 90 kW          | 225        | 250              | 225              | 250              | 250              | 300        | 125         | 125      | 150      | 100      | 100       | 110      |  |
| <sup>3</sup> Minimum            | Unit+                                                                    | 15 kW          | 121        | 121              | 129              | 129              | 137              | 137        | 56          | 60       | 63       | 43       | 46        | 49       |  |
| Circuit                         | Electric Heat <sub>-</sub>                                               | 30 kW          | 121        | 121              | 129              | 129              | 137              | 137        | 56          | 60       | 63       | 44       | 48        | 50       |  |
| Ampacity                        | -                                                                        | 45 kW          | 139        | 157              | 148              | 166              | 156              | 174        | 78          | 82       | 86       | 62       | 66        | 68       |  |
|                                 | -                                                                        | 60 kW          | 146        | 166              | 156              | 175              | 164              | 183        | 82          | 86       | 90       | 66       | 69        | 72       |  |
|                                 |                                                                          | 90 kW          | 209        | 238              | 218              | 247              | 227              | 256        | 118         | 123      | 126      | 95       | 98        | 101      |  |
| <sup>2</sup> Maximum            | Unit+                                                                    | 15 kW          | 150        | 150              | 150              | 150              | 150              | 150        | 60          | 70       | 70       | 50       | 50        | 60       |  |
| Overcurrent<br>Protection       | Electric Heat and (2) 0.33 HP                                            | 30 kW          | 150        | 150              | 150              | 150              | 150              | 150        | 60          | 70       | 70       | 50       | 50        | 60       |  |
| Protection                      | Power Exhaust                                                            | 45 kW          | 150        | 175              | 175              | 175              | 175              | 200        | 90          | 90       | 90       | 70       | 70        | 80       |  |
|                                 | 1 OWEI EXHAUST                                                           | 60 kW          | 175        | 175              | 175              | 200              | 175              | 200        | 90          | 90       | 100      | 70       | 80        | 80       |  |
| 3 Minimura                      | 1.1                                                                      | 90 kW          | 225        | 250              | 225              | 300              | 250              | 300        | 125         | 150      | 150      | 100      | 110       | 110      |  |
| <sup>3</sup> Minimum<br>Circuit | Unit+ _<br>Electric Heat                                                 | 15 kW<br>30 kW | 126<br>126 | 126<br>126       | 134<br>134       | 134<br>134       | 142<br>142       | 142<br>142 | 59<br>59    | 62<br>63 | 66<br>66 | 45<br>47 | 48<br>50  | 51<br>53 |  |
| Ampacity                        | -                                                                        | 45 kW          | 145        | 163              | 154              | 172              | 162              | 180        | 81          | 85       | 89       | 65       | 68        | 71       |  |
| , an paoity                     | and (2) 0.33 HP Power Exhaust                                            | 60 kW          | 152        | 172              | 162              | 181              | 170              | 189        | 85          | 90       | 93       | 68       | 72        | 74       |  |
|                                 | Power Exhaust                                                            | 90 kW          | 215        | 244              | 224              | 253              | 233              | 262        | 122         | 126      | 130      | 97       | 101       | 103      |  |
| EL ECTRICAL                     | ACCECCODIEC                                                              | 90 KVV         | 213        | 244              | 224              | 233              | 233              | 202        | 122         | 120      | 130      | 91       | 101       | 103      |  |
|                                 | ACCESSORIES                                                              |                | E 414/00   | E 414/00         | l= 414/00        | l= 414/00        | E 414/00         | l= 414/00  | l= 4) 4/0 = | - 4140 F |          | E 414/0E |           | E 414/0E |  |
| Disconnect                      |                                                                          | Unit Only      |            |                  |                  |                  |                  |            |             |          |          |          |           |          |  |
|                                 | Unit + Power                                                             |                |            |                  |                  |                  |                  |            |             |          |          |          |           |          |  |
|                                 | Unit + Electric He                                                       |                |            |                  |                  |                  |                  |            |             |          |          |          |           |          |  |
|                                 | Unit + Electric He                                                       |                |            |                  |                  |                  |                  |            |             |          |          |          |           |          |  |
|                                 | Unit + Electric He                                                       |                |            |                  |                  |                  |                  |            |             |          |          |          |           |          |  |
|                                 | Unit + Electric He                                                       |                |            |                  |                  |                  |                  |            |             |          |          |          |           |          |  |
| Unit I Davis                    | Unit + Electric He                                                       |                |            |                  |                  |                  |                  |            |             |          |          |          |           | 54W86    |  |
|                                 | Exhaust + Elec. He                                                       |                |            | 1                |                  | +                | 1                |            | +           |          |          |          |           |          |  |
|                                 | Exhaust + Elec. He                                                       |                |            |                  |                  |                  |                  |            |             |          |          |          |           |          |  |
|                                 | Exhaust + Elec. He                                                       |                |            |                  |                  |                  |                  |            |             |          |          |          |           |          |  |
|                                 | Exhaust + Elec. He                                                       |                |            |                  |                  |                  |                  |            |             |          |          |          |           |          |  |
| Unit + Power                    | Exhaust + Elec. He                                                       | al yu KW       | - N/A      | <sup>4</sup> N/A | <sup>4</sup> N/A | <sup>4</sup> N/A | <sup>4</sup> N/A | - N/A      | J34VV86     | 1347786  | 347786   | 347786   | 347786    | 54W86    |  |

 $<sup>\</sup>ensuremath{\mathsf{NOTE}}$  - All units have a minimum Short Circuit Current Rating (SCCR) of 5000 amps.

 $<sup>^{\</sup>rm 1}\,\textsc{Extremes}$  of operating range are plus and minus 10% of line voltage.

<sup>&</sup>lt;sup>2</sup> HACR type breaker or fuse.

<sup>&</sup>lt;sup>3</sup> Refer to National or Canadian Electrical Code manual to determine wire, fire and disconnect size requirements.

<sup>&</sup>lt;sup>4</sup> Disconnect must be field furnished.

| ELEC  | ELECTRIC HEAT CAPACITIES |                |                  |             |                |                  |             |                |                  |             |                |                  |             |                |                  |
|-------|--------------------------|----------------|------------------|-------------|----------------|------------------|-------------|----------------|------------------|-------------|----------------|------------------|-------------|----------------|------------------|
| Volts |                          | 15 kW          |                  |             | 30 kW          |                  |             | 45 kW          |                  |             | 60 kW          |                  | 90 kW       |                |                  |
| Input | kW<br>Input              | Btuh<br>Output | No. of<br>Stages | kW<br>Input | Btuh<br>Output | No. of<br>Stages | kW<br>Input | Btuh<br>Output | No. of<br>Stages | kW<br>Input | Btuh<br>Output | No. of<br>Stages | kW<br>Input | Btuh<br>Output | No. of<br>Stages |
| 208   | 11.3                     | 38,600         | 1                | 22.5        | 76,800         | 1                | 33.8        | 115,300        | 2                | 45.0        | 153,600        | 2                | 67.6        | 230,700        | 2                |
| 220   | 12.6                     | 43,000         | 1                | 25.2        | 86,000         | 1                | 37.8        | 129,000        | 2                | 50.4        | 172,000        | 2                | 75.6        | 258,000        | 2                |
| 230   | 13.8                     | 47,100         | 1                | 27.5        | 93,900         | 1                | 41.3        | 141,000        | 2                | 55.1        | 188,000        | 2                | 82.7        | 282,200        | 2                |
| 240   | 15.0                     | 51,200         | 1                | 30.0        | 102,400        | 1                | 45.0        | 153,600        | 2                | 60.0        | 204,800        | 2                | 90.0        | 307,100        | 2                |
| 440   | 12.6                     | 43,000         | 1                | 25.2        | 86,000         | 1                | 37.8        | 129,000        | 2                | 50.4        | 172,000        | 2                | 75.6        | 258,000        | 2                |
| 460   | 13.8                     | 47,100         | 1                | 27.5        | 93,900         | 1                | 41.3        | 141,000        | 2                | 55.1        | 188,000        | 2                | 82.7        | 282,200        | 2                |
| 480   | 15.0                     | 51,200         | 1                | 30.0        | 102,400        | 1                | 45.0        | 153,600        | 2                | 60.0        | 204,800        | 2                | 90.0        | 307,100        | 2                |
| 550   | 12.6                     | 43,000         | 1                | 25.2        | 86,000         | 1                | 37.8        | 129,000        | 2                | 50.4        | 172,000        | 2                | 75.6        | 258,000        | 2                |
| 575   | 13.8                     | 47,100         | 1                | 27.5        | 93,900         | 1                | 41.3        | 141,000        | 2                | 55.1        | 188,000        | 2                | 82.7        | 282,200        | 2                |
| 600   | 15.0                     | 51,200         | 1                | 30.0        | 102,400        | 1                | 45.0        | 153,600        | 2                | 60.0        | 204,800        | 2                | 90.0        | 307,100        | 2                |

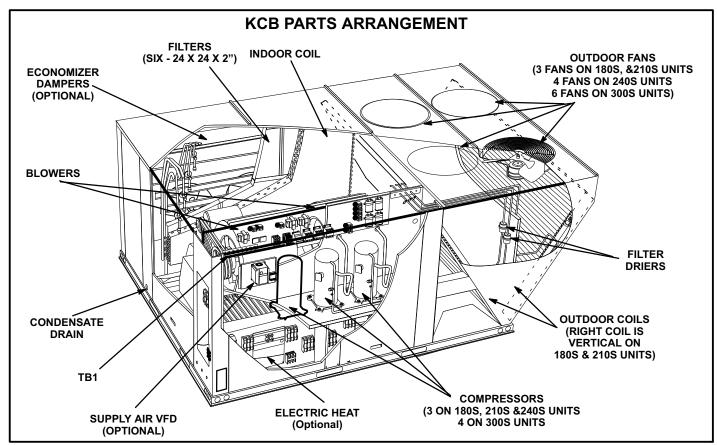



FIGURE 1

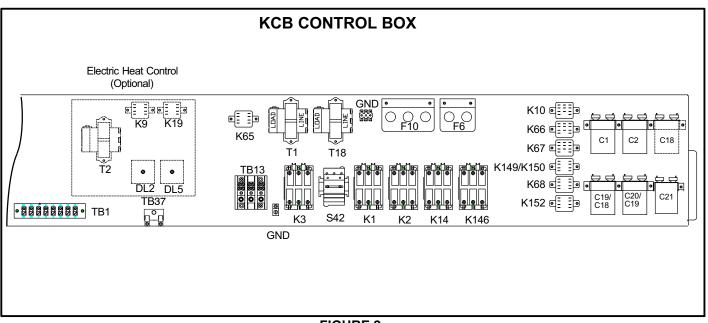



FIGURE 2

### I-UNIT COMPONENTS

KCB unit components are shown in figure 1. All units come standard with removeable unit panels. All L1, L2 and L3 wiring is color coded; L1 is red, L2 is yellow and L3 is blue.

### ELECTROSTATIC DISCHARGE (ESD) Precautions and Procedures

### **A** CAUTION



Electrostatic discharge can affect electronic components. Take precautions to neutralize electrostatic charge by touching your hand and tools to metal prior to handling the control.

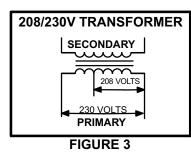
### **A-Control Box Components**

KCB control box components are shown in figure 2. The control box is located in the compressor compartment.

### 1-Disconnect Switch S48 (field- or factory-installed)

All units may be equipped with an optional disconnect switch S48. S48 can be a toggle switch or a twist style switch. Both types can be used by the service technician to disconnect power to the unit.

### 2-Terminal Strip TB2


Unit without S48 will have supply power connected to TB2.

### 3-Terminal Strip TB13

All units are equipped with TB13. TB13 is located on the control panel in the compressor compartment.

### 4-Control Transformer T1

All use a single line voltage to 24VAC transformer mounted in the control box. Transformer supplies power to control circuits in the unit. The transformer is rated at 70VA and is protected by a 3.5 amp circuit breaker (CB8) which is located on the transformer itself. The 208/230



(Y) voltage transformers have two primary voltage taps, but only one may be used depending on supply voltage. See figure 3. 460 (G) and 575 (J) voltage transformers use a single primary voltage tap.

### 5-Fuse F4

Fuse F4 is used only with single point power supply. F4 gives over amperage protection to the compressor and other cooling components. F4, S48 and TB2 are located inside a sheet metal enclosure in the unit left front corner mullion.

### 6-C. A. I. Transformers T3 & T13 575V Only

All KCB 575 (J) voltage units use transformers T3 and T13 mounted in the control box. The transformers have an output rating of 0.75A. T3 transformer supplies 230 VAC power to combustion air inducer motor B6 and T13 supplies 230 VAC to combustion air inducer motor B15.

### 7-Control Transformer T18

T18 is a single line voltage to 24VAC transformer used in 180, 210, 240 and 300 units. Transformer T18 is protected by a 3.5 amp circuit breaker (CB18) located on the transformer itself. T18 is identical to transformer T1. The transformer supplies 24VAC power to the contactors.

### 8-Terminal Strip TB1

All indoor thermostat connections will be to TB1 located on the control panel. For thermostats with "occupied " and "unoccupied" modes, a factory installed jumper across terminals R and OC should be removed. Unit wiring is designed for a two-stage thermostat. See table 1.

TABLE 1

| T  | B1 TERMINAL DESIGNATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| Y1 | Cool Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |  |
| Y2 | Cool Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |  |
| W1 | The state of the s |  |  |  |  |  |  |  |  |  |  |  |
| W2 | Heat Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |  |
| OC | Occupied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |  |  |
| G  | Indoor Blower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |
| R  | 24V To Thermostat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |  |
| С  | Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |  |

### 9-Outdoor Fan Capacitors C1, C2, C18 (all units) & C19 (240S), C20, C21 (300S only)

Fan capacitors C1, C2, C18, C19, C20, C21 are 10 MFD / 370V capacitors used to assist in the start up of condenser fans B4, B5, B21 (all units), B22 (240 only), B23, B24 (300S only) respectively.

### 10-Fuses F10 and F6 (240 & 300 Y volt only)

Three F10 line voltage fuses provide overcurrent protection to condenser fans and are rated at 30A. Two F6 line voltage fuses provide overcurrent protection for optional field installed power exhaust fans (Y volt 240 300 units) and are rated at 30A.

### 11-Outdoor Fan Relay K10, K68, K149, K150, K152

Outdoor fan relays are DPDT relays with a 24VAC coil. See table 2 to determine which fan each relay energizes.

TABLE 2

| KCB Unit   | Relay | Fan Energized |
|------------|-------|---------------|
| 180S, 210S | K10   | B4            |
| 1005, 2105 | K68*  | B5, B21       |
| 240S       | K10   | B4, B5        |
| 2405       | K149* | B21, B22      |
|            | K10   | B4            |
| 300S       | K68   | B5, B21       |
| 3003       | K150  | B22           |
|            | K152* | B23, B24      |

<sup>\*</sup>Not all units will be equipped with K68, K149 or K152

### 12-Compressor Contactor K1 & K2, K14 (all units) and K146 (300S only)

All compressor contactors are three-pole-double-break contactors with 24VAC coils. K1, K2, K14 and K146 energize compressor B1, B2, B13 and B20 respectively, in response to thermostat demand.

### 13-Blower Contactor K3

Blower contactor K3, used in all units, is a three-pole-double-break contactor with a 24VAC coil used to energize the indoor blower motor B3 in response to blower demand. K3 is energized from terminal G on TB1.

### 14-Blower Motor Overload Relay S42

S42 is a manual reset overload relay, used in all M voltage units and in units with a 10 HP blower motor. The relay is connected in line with the blower motor to monitor the current flow to the motor. When the relay senses an overload condition, a set of normally closed contacts opens de-energizing the 24 volt output of T1. See figure 4.

### 15-Power Exhaust Relay K65 (PED units)

Power exhaust relay K65 is a DPDT relay with a 24VAC coil. K65 is used in units equipped with the field installed optional power exhaust dampers. K65 is energized by the economizer enthalpy control A6, after the economizer dampers reach 50% open (adjustable) When K65 closes, exhaust fans B10 and B11 are energized.

### 16-Cooling Stage Pilot Relays K66 and K67

Cooling stage pilot relays are DPDT relays with a 24VAC coil. These relays prevent voltage drop caused by long thermostat wiring when the thermostat is used to energize compressor contactors directly. K66 is energized by a Y1 thermostat call. N.O. contact K66-1 will close allowing 24VAC from T1 transformer to energize stage 1 compressor contactors. *Some not all units will be equipped with relay K67*. K67 is energized by a Y2 thermostat call. N.O. contacts K67-1 will close allowing 24VAC from T18 transformer to energize stage 2 compressor contactor(s). Units without K67; Y2 demand will energize compressor contactor K14 allowing second stage cool.

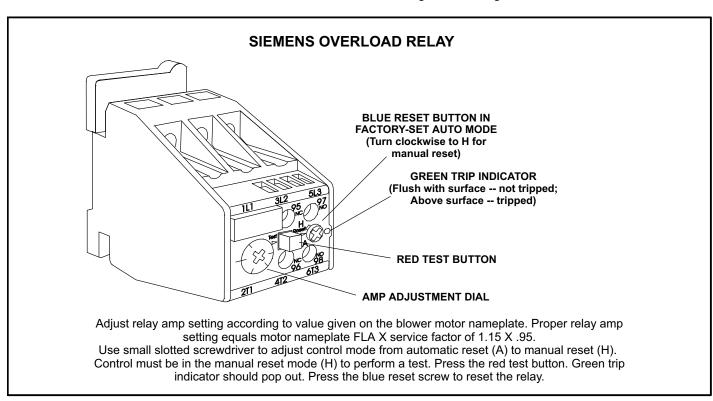



FIGURE 4

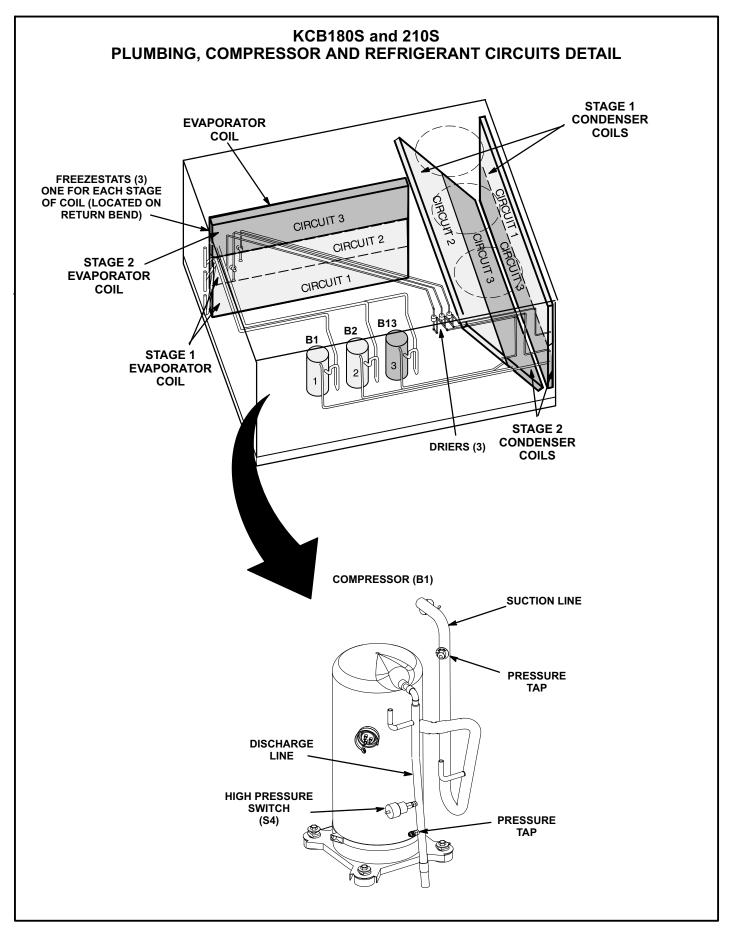



FIGURE 5

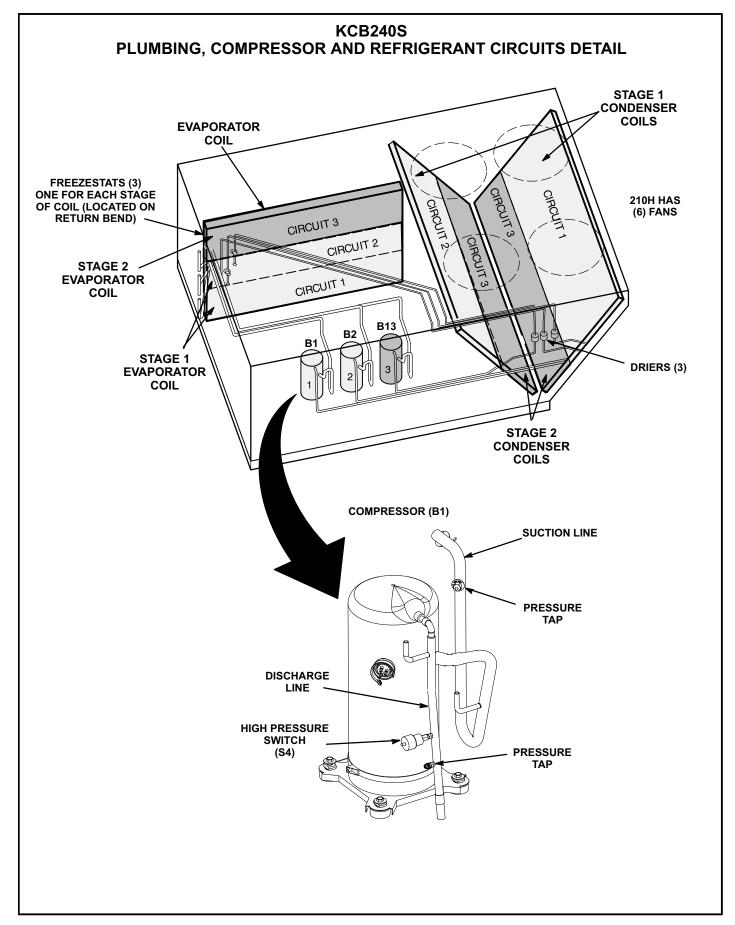



FIGURE 6

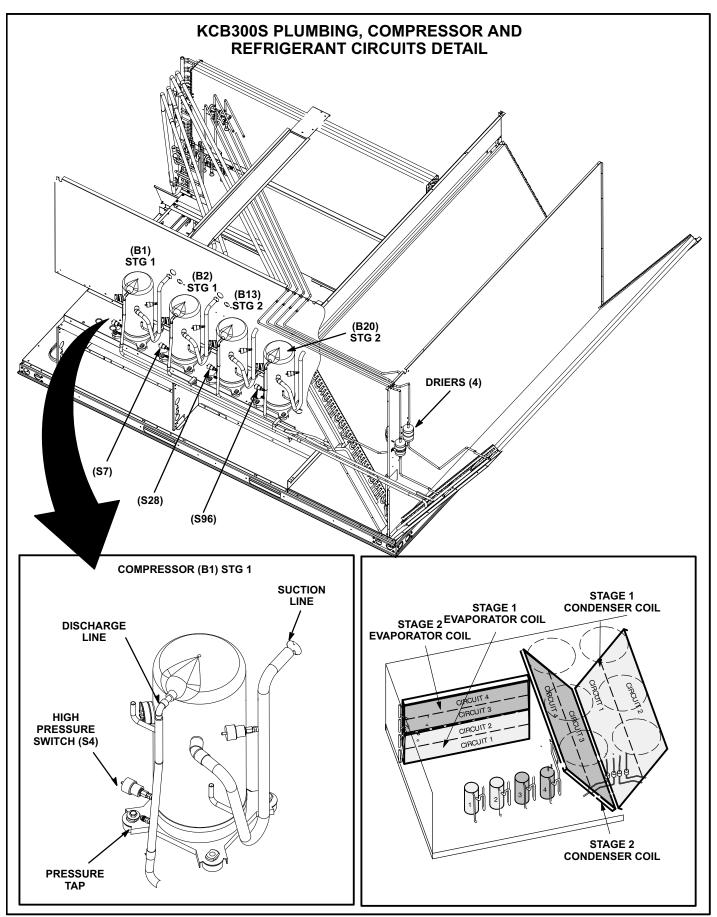



FIGURE 7

### 16-Variable Frequency Drive A96 (optional)

Units equipped with a VFD alter the supply power frequency and voltage to the blower motor. Blower speed is staged depending on the compressor stages, heating demand, or ventilation demand. The amount of airflow for each stage is preset from the factory. Full speed airflow can be adjusted by changing the variable sheave on the blower motor. Part load cooling speed is ¾ of full speed. The VFD is located below the upper control panel.

### 17-Inverter Default Relay K232 (optional)

Units equipped with a VFD use a two-pole, double-throw relay with a 24VAC coil. K232 is energized through the A96 VFD B-C normally closed contact. If the VFD fails, the B-C contact will open and de-energize the K232 coil and cut the 24VAC power to the thermostat and the whole unit. K232 is located beside A96.

### 18-Phase Monitor A42 (Optional)

Phase monitor detects the phasing of incoming power. If the incoming power is out of phase or if any of the three phases are lost, an indicator LED on the phase monitor will turn red and the unit will not start. In normal operation with correct incoming power phasing, the LED will be green. A42 is located beside A96.

### 19-VFD Control Board A183 (Optional)

VFD control board A183 is a solid-state control board powered with 24VDC from the variable frequency drive A96. This option is used on units equipped with a VFD. A183 gets signals from the thermostat, ignition control and economizer modules to determine blower speeds and damper minimum positions. For more information on the A183, refer to the Supply Air Inverter Start Up section. A183 is located on the left side of the control area.

### **B-Cooling Components**

All units use independent cooling circuits consisting of separate compressors, condenser coils and evaporator coils. See figures 5, 6 and 7. Draw-through type condenser fans are used in all units. All units are equipped with belt-drive blowers which draw air across the evaporator during unit operation.

Cooling may be supplemented by an optional factory- or field-installed economizer. The evaporators are slab type and are stacked. Each evaporator is equipped with enhanced fins and rifled tubing. In all units each compressor is protected by a freezestat (on each evaporator) and a high pressure switch (on each discharge line). Optional field installed low ambient switches are available for additional compressor protection.

### 1-Compressors B1, B2, B13 (all units) and

### B20 (300S)

All units use scroll compressors. KCB180S, 210S and 240S units use three compressors and KCB300S use four compressors. All compressors are equipped with independent cooling circuits. Compressor capacity may vary from stage to stage. In all cases, the capacity of each compressor is added to reach the total capacity of the unit. See "SPECIFICATIONS" and "ELECTRICAL DATA" (table of contents) or compressor nameplate for compressor specifications.

### **AWARNING**

Electrical shock hazard. Compressor must be grounded. Do not operate without protective cover over terminals. Disconnect power before removing protective cover. Discharge capacitors before servicing unit. Failure to follow these precautions could cause electrical shock resulting in injury or death.

Each compressor is energized by a corresponding compressor contactor.

NOTE - Refer to the wiring diagram section for specific unit operation.

### 2-High Pressure Switches S4, S7, S28 (all units) S96 (300S units)

The high pressure switch is an automatic reset N.C switch which opens on a pressure rise.

S4 (first circuit), S7 (second circuit), S28 (third circuit) and S96 (fourth circuit) are wired in series with the respective compressor contactor coils.

When discharge pressure rises to  $640 \pm 20$  psig ( $4413 \pm 138$  kPa) (indicating a problem in the system) the switch opens and the respective compressor is de-energized (the economizer can continue to operate). The switch will reset when discharge pressure drops below  $475 \pm 20$  psig ( $3275 \pm 138$  kPa) and the respective compressor will restart.

### 3-Low Ambient Switches (optional) S11, S84, S85 & S94 (300S)

S84 and S85 will not be equipped with on all 180S, 210S, 240S and 300S units. Later production units will not be equipped with these switches.

The low ambient switch is an optional field installed auto-reset N.O. pressure switch which allows for mechanical cooling operation at low outdoor temperatures. The switch is located in each liquid line prior to the indoor coil.

180S & 210S Units -

S11, S84 and S85 are wired in series with outdoor fan relay K10 and K68 coils. All three low ambient switches; S11, S84 and S85 have to be open to de-energize condenser fans (all three fans will be de-energized at the same time). Any one low ambient switch, S11, S84, or S85 closing will return all three condenser fans to operation.

### 240S Units -

S11 is wired in series with outdoor fan relay K10 coil. When S11 opens, condenser fans 1 and 2 are de-energized. When S11 closes, both condenser fans 1 and 2 will return to operation. S84 and S85 are wired in series with outdoor fan relay coil K149. Both S84 and S85 have to be open to deenergize condenser fans 3 and 4. Either S84 or S85 closing will return condenser fans 3 and 4 to operation.

### 300S Units -

S11 and S84 are wired in series with outdoor fan relay K10 and K68 coils. Both S11 and S84 have to be open to de-energize condenser fans 1, 2 and 3. Either S11 or S84 closing will return condenser fans 1, 2 and 3 to operation. S85 and S94 are wired in series with outdoor fan relay K150 and K152 coils. Both S85 and S94 have to be open to de-energize condenser fans 4, 5 and 6. Either S85 or S94 closing will return condenser fans 4, 5 and 6 to operation.

### All Units -

When liquid pressure rises to  $450 \pm 10$  psig  $(3103 \pm 69 \text{ kPa})$ , pressure switch(es) close, energizing the appropriate condenser fan(s). When liquid pressure drops to  $240 \pm 10$  psig  $(1655 \pm 69 \text{ kPa})$ , pressure switch(es) open, de-energizing the appropriate condenser fan(s). Intermittent fan operation results in higher evaporating temperature allowing the system to operate without icing the evaporator coil and losing capacity.

### 4-Filter Drier (all units)

KCB units have a filter drier located in the liquid line of each refrigerant circuit at the exit of each condenser coil. The drier removes contaminants and moisture from the system.

### 5-Freezestats S49, S50, S53 (all units) S95 (300S)

Each unit is equipped with a low temperature switch located on a return bend of each evaporator coil. S49 (first circuit), S50 (second circuit), S53 (third circuit) and S95 (fourth circuit) are located on the corresponding evaporator coils. Each freezestat is wired in series with the corresponding compressor contactor. Each freezestat is an auto-reset switch which opens at  $29^{\circ}F \pm 3^{\circ}F$  (-1.7°C  $\pm$  1.7°C) on a temperature drop and closes at  $58^{\circ}F \pm 4^{\circ}F$  (14.4°C  $\pm$  2.2°C) on a temperature rise. To prevent coil icing, Freezestats open during compressor operation to temporarily disable the respective compressor until the coil temperature rises.

### 6-Condenser Fans B4, B5, B21 (all units), B22 (240S, 300S) & B23, B24 (300S)

See SPECIFICATIONS tables at the front of this manual for specifications of condenser fans used in all units. All condenser fans used have single-phase motors. The fan assembly may be removed for servicing and cleaning.

### **C-Blower Compartment**

The blower compartment in KCB180-300S units is located between the evaporator coil and the compressor / control section on the opposite side of the condenser coil. The blower assembly is accessed by removing the screws on either side of the sliding base. The base pulls out as shown in figure 8.

### 1-Blower Wheels

All KCB180-300S units have two 15 in.  $\times$  15 in. (381 mm  $\times$  381 mm) blower wheels. Both wheels are driven by one motor mounted on a single shaft. Shaft bearings are equipped with grease ports for service.

### 2-Indoor Blower Motor B3

All units use three-phase single-speed blower motors. CFM adjustments are made by adjusting the motor pulley (sheave). Motors are equipped with sealed ball bearings. All motor specifications are listed in the SPECIFICA-TIONS (table of contents) in the front of this manual. Units may be equipped with motors manufactured by various manufacturers, therefore electrical FLA and LRA specifications will vary. See unit rating plate for information specific to your unit.

### **OPERATION / ADJUSTMENT**

### Three Phase Scroll Compressor Voltage Phasing

Three phase scroll compressors must be phased sequen-

tially to ensure correct compressor and blower rotation and operation. Compressor and blower are wired in phase at the factory. Power wires are color-coded as follows: line 1-red, line 2-yellow, line 3-blue.

- Observe suction and discharge pressures and blower rotation on unit start-up.
- 2- Suction pressure must drop, discharge pressure must rise, and blower rotation must match rotation marking.

If pressure differential is not observed or blower rotation is not correct:

- 3- Disconnect all remote electrical power supplies.
- 4- Reverse any two field-installed wires connected to the line side of TB2. <u>Do not reverse wires at blower contactor</u>.
- 5- Make sure the connections are tight.

Discharge and suction pressures should operate at their normal start-up ranges.

Supply Air Inverter Units - These units are equipped with a phase monitor located in the control compartment. The phase monitor will detect the phasing of incoming power. If the incoming power is out of phase or if any of the three phases are lost, the indicating LED on the phase monitor will turn red and the unit will not start. In normal operation with correct incoming power phasing, the LED will be green.

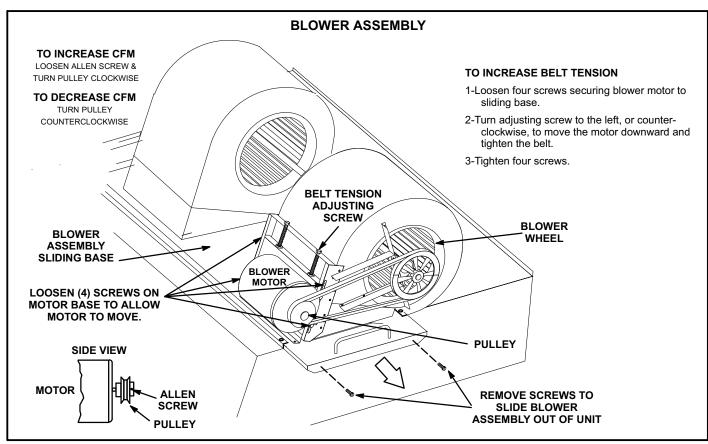



FIGURE 8

### **Blower Operation**

Initiate blower demand at thermostat according to instructions provided with thermostat. Unit will cycle on thermostat demand. The following steps apply to applications using a typical electro-mechanical thermostat.

- Blower operation is manually set at the thermostat subbase fan switch. With fan switch in **ON** position, blowers will operate continuously.
- 2- With fan switch in AUTO position, the blowers will cycle with demand. Blowers and entire unit will be off when system switch is in OFF position.

### **Blower Access**

The blower assembly is secured to a sliding base which allows the entire assembly to be pulled out of the unit. See figure 8.

- 1- Remove the clamp which secures the blower wiring to the blower motor base.
- 2- Remove and retain screws on either side of sliding base. Pull base toward outside of unit. When pulling the base out further than 12" (305mm), disconnect wiring to K3 blower contactor T1, T2 and T3. Pull wiring toward blower to allow enough slack to slide the base out further.
- 3- Slide base back into original position when finished servicing. Replace the clamp and blower wiring in the previous location on the blower motor base. Reconnect wiring to K3 if it was disconnected.
- 4- Replace retained screws on either side of the sliding base.

### Determining Unit Air Volume

IMPORTANT - Supply air inverter units are factory-set to run the blower at full speed when there is a blower (G) demand without a heating or cooling demand. Use the following procedure to adjust motor pulley to deliver the full load cooling or heating CFM. See Supply Air Inverter Start-Up section to set blower CFM for all modes once the motor pulley is set.

- 1- The following measurements must be made with a dry indoor coil. Run blower without cooling demand. Air filters must be in place when measurements are taken.
- 2- With all access panels in place, measure static pressure external to unit (from supply to return). Blower performance data is based on static pressure readings taken in locations shown in figure 9.

NOTE - Static pressure readings can vary if not taken where shown.

- 3- Measure the indoor blower wheel RPM.
- 4- Refer to blower tables in BLOWER DATA (table of contents) in the front of this manual. Use static pressure and RPM readings to determine unit air volume.
- 5- The RPM can be adjusted at the motor pulley. Loosen Allen screw and turn adjustable pulley clockwise to increase RPM. Turn counterclockwise to decrease RPM. See figure 8.

### Blower Belt Adjustment

Maximum life and wear can be obtained from belts only if proper pulley alignment and belt tension are maintained. Tension new belts after a 24-48 hour period of operation. This will allow belt to stretch and seat grooves. Make sure blower and motor pulley are aligned as shown in figure 10.

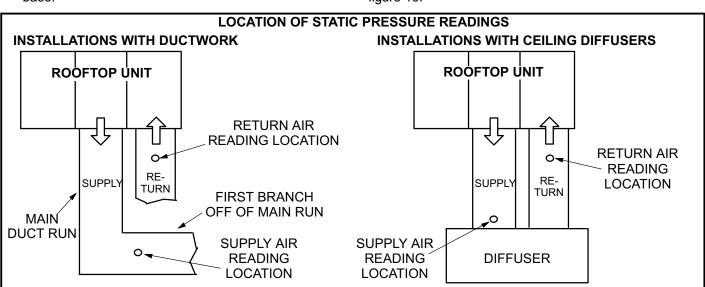



FIGURE 9

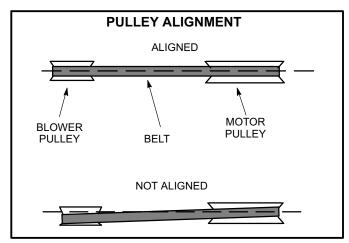



FIGURE 10

- 1- Loosen four bolts securing motor base to mounting frame. See figure 8.
- 2- To relieve belt tension -

Turn adjusting bolt to the right, or clockwise, to move the motor upward and loosen the belt. This decreases the distance between the blower motor pulley and the blower housing pulley.

To increase belt tension -

Turn the adjusting bolt to the left, or counterclockwise to increase belt tension. This increases the distance between motor pulley and blower housing pulley (motor moves downward and tightens belt).

3- Tighten four bolts securing motor base to mounting frame.

IMPORTANT - Align top edges of blower motor base and mounting frame base parallel before tightening bolts on the both sides of base. Motor shaft and blower shaft must be parallel.

### Field-Furnished Blower Drives

For field-furnished blower drives, use blower tables in the front of this manual to determine BHP and RPM required and to determine the drive number. Table 3 shows the drive component manufacturer's model number.

### **Check Belt Tension**

Overtensioning belts shortens belt and bearing life. Check belt tension as follows:

- 1- Measure span length X. See figure 11.
- 2- Apply perpendicular force to center of span (X) with enough pressure to deflect belt 1/64" for every inch of span length or 1.5mm per 100mm of span length.

Example: Deflection distance of a 40" span would be 40/64" or 5/8".

Example: Deflection distance of a 400mm span would be 6mm.

3- Measure belt deflection force. For a used belt, the deflection force should be 5 lbs. (35kPa). A new belt deflection force should be 7 lbs. (48kPa).

A force below these values indicates an undertensioned belt. A force above these values indicates an overtensioned belt.

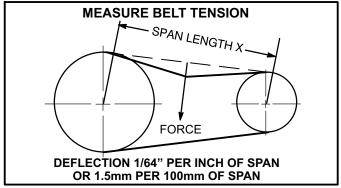



FIGURE 11

### TABLE 3 MANUFACTURER'S NUMBERS

|              |         |      |      |              |                 | DRIVE C      | OMPONENTS       | MPONENTS        |                 |                 |                 |  |  |  |  |
|--------------|---------|------|------|--------------|-----------------|--------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|--|--|--|
|              |         | RP   | М    | ADJUSTABL    | E SHEAVE        | FIXED SH     | HEAVE           | BEI             | _TS             | SPLIT B         | USHING          |  |  |  |  |
| Drive<br>No. | H.P.    | Min  | Max  | Supplier No. | OEM Part<br>No. | Supplier No. | OEM Part<br>No. | Supplier<br>No. | OEM Part<br>No. | Supplier<br>No. | OEM Part<br>No. |  |  |  |  |
| 1            | 2, 3    | 535  | 725  | 1VP40x7/8    | 79J0301         | BK95X1-7/16  | 80K1601         | BX59            | 59A5001         | N/A             | N/A             |  |  |  |  |
| 2            | 2, 3    | 710  | 965  | 1VP40x7/8    | 79J0301         | BK72x1-7/16  | 100244-13       | BX55            | 63K0501         | N/A             | N/A             |  |  |  |  |
| 3            | 5       | 685  | 865  | 1VP50x1-1/8  | P-8-1977        | BK100x1-7/16 | 39L1301         | BX61            | 93J9801         | N/A             | N/A             |  |  |  |  |
| 4            | 5       | 850  | 1045 | 1VP65x1-1/8  | 100239-03       | BK110H       | 100788-06       | BX65            | 100245-08       | H-1-7/16        | 49M6201         |  |  |  |  |
| 5            | 5       | 945  | 1185 | 1VP60x1-1/8  | 41C1301         | вк90Н        | 100788-04       | BX61            | 93J9801         | H-1-7/16        | 49M6201         |  |  |  |  |
| 6            | 7.5     | 850  | 1045 | 1VP65x1-3/8  | 78M7101         | BK110H       | 100788-06       | BX66            | 97J5901         | H-1-7/16        | 49M6201         |  |  |  |  |
| 7            | 7.5, 10 | 945  | 1185 | 1VP60x1-3/8  | 78L5501         | ВК90Н        | 100788-04       | BX63            | 97J5501         | H-1-7/16        | 49M6201         |  |  |  |  |
| 8            | 7.5     | 1045 | 1285 | 1VP65x1-3/8  | 78M7101         | ВК90Н        | 100788-04       | BX64            | 97J5801         | H-1-7/16        | 49M6201         |  |  |  |  |
| 10           | 10      | 1045 | 1285 | 1VP65x1-3/8  | 78M7101         | 1B5V86       | 78M8301         | 5VX670          | 100245-21       | B-1-7/16        | 100246-01       |  |  |  |  |
| 11           | 10      | 1135 | 1365 | 1VP65x1-3/8  | 78M7101         | 1B5V80       | 100240-05       | 5VX660          | 100245-20       | B-1-7/16        | 100246-01       |  |  |  |  |

### **D-Optional Electric Heat Components**

See ELECTRICAL / ELECTRIC HEAT (table of contents) for possible KCB to EHA match-ups and electrical ratings. All electric heat sections consist of electric heating elements exposed directly to the air stream. See figure 1. Two electric heat sections (first section and second section) are used in all 15kW through 90kW heaters used in KCB180/300 units. Multiple-stage elements are sequenced on and off in response to thermostat demand. EHA parts arrangement is shown in figures 13 and 14.

### **Control Box Components**

The main control box (see figure 2) houses some electric heat components and the electric heat control "hat" section (figure 12).

### **Electric Heat Hat Section (Figure 12)**

### 1-Electric Heat Relay K9

All KCB series units with electric heat use an electric heat relay K9. K9 is a N.O. DPDT pilot relay intended to electrically isolate the unit's 24V circuit from the electric heat assembly 24V circuit. K9 is energized by W1 TB1. K9-1 closes, enabling T2 to energize the electric heat.

### 2-Electric Heat Relay K19

All KCB series units with electric heat use an electric heat relay K19. K19 is a N.O. SPDT pilot relay intended to electrically isolate the unit's 24V circuit from the electric heat assembly 24V circuit. K19 is energized by TB1 (once K9 is energized). K19-1 closes, enabling T2 to energize the remaining electric heat.

### 3-Time Delay DL2

DL2 is a solid state timer used in all electric heat units. DL2 staggers the energizing of the first (W1) and second (W2) stage heating elements by providing a timed interval. When the timer is de-energizing, the contacts are delayed 1 second before opening.

### 4-Time Delay DL5

Time delay DL5 is identical to DL2. DL5 further staggers the (W2) second stage heating elements by providing a timed interval between the energizing of the elements activated by DL2 and elements activated by DL5.

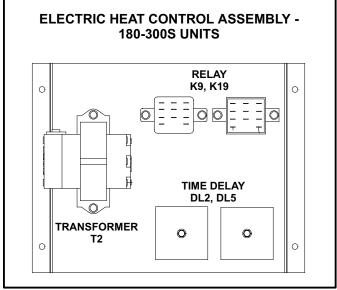



FIGURE 12

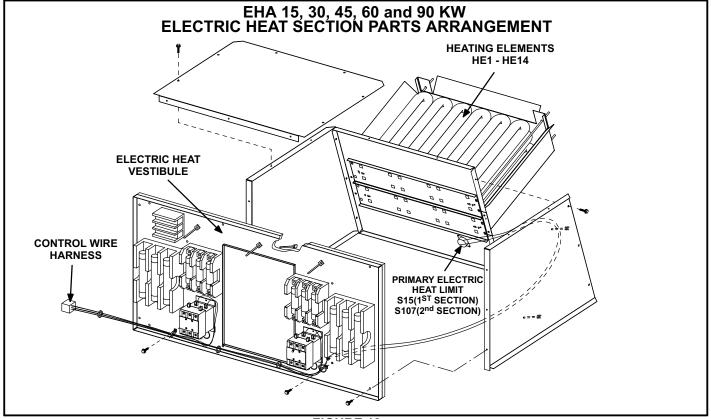



FIGURE 13

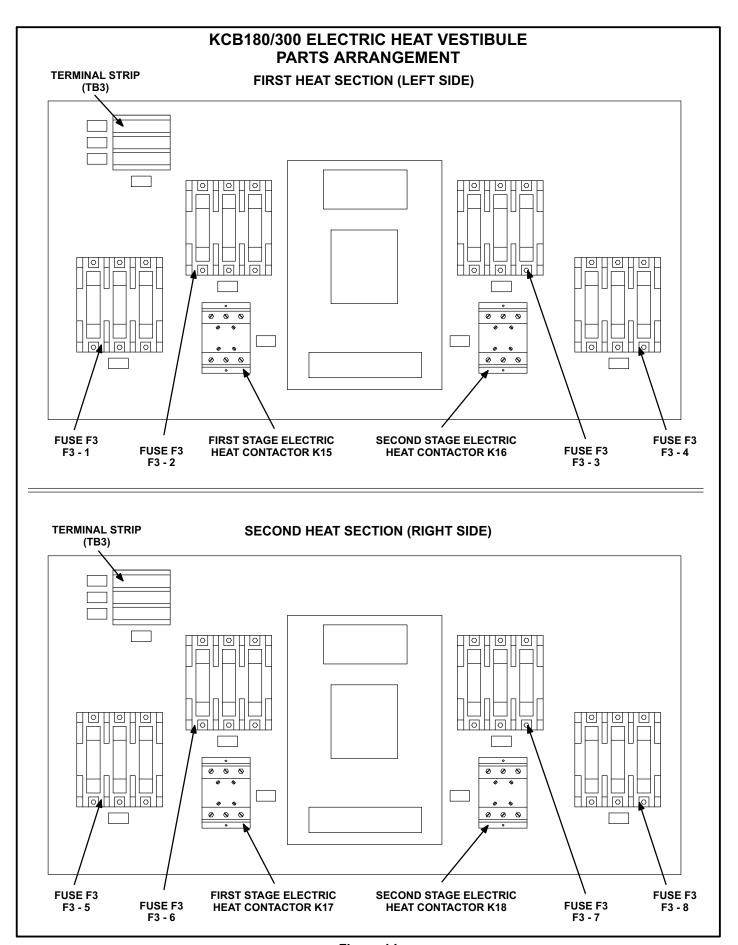



Figure 14

### 5-Electric Heat Transformer T2

All KCB series units with electric heat use a single line voltage to 24VAC transformer mounted in the electric heat control hat section in the control box. The transformer supplies power to all electric heat controls (contactors and coils). The transformer is rated at 70VA and is protected by a 3.5 amp circuit breaker CB13 located on the body of T2. The 208/230 (Y) voltage transformers use two primary voltage taps as shown in figure 3. Transformer T2 is identical to T1.

### Electric Heat Sections 6-Contactors K15, K16, K17 and K18

Contactors K15, K16, K17 and K18 are all three-pole double-break contactors located on the electric heat vestibule. K15 and K16 are located on the first electric heat section, while K17 and K18 are located on the second electric heat section. However, in the 15 and 30kW heaters, the first section houses all contactors and fuses. All contactors are equipped with a 24VAC coil. The coils in the K15, K16, K17 and K18 contactors are energized by the main panel A45. Contactors K15 and K17 energize the first stage heating elements, while K16 and K18 energize the second stage heating elements.

### 7-Fuse F3

Fuse F3 are housed in a fuse block which holds three fuses. Each F3 fuse is connected in series with each leg of electric heat. Figure 14 and table 4 show the fuses used with each electric heat section. For simplicity, the service manual labels the fuses F3 - 1 through F3 - 8.

### 8-Terminal Strip TB3

Electric heat line voltage connections are made to terminal strip TB3 (or a fuse block on some models) located in the upper left corner of the electric heat vestibule.

### 9-High Temperature Limits S15 and S107 (Primary)

S15 and S107 are SPST N.C. auto-reset thermostats located on the back panel of the electric heat section below the heating elements. S15 is the high temperature limit for the first electric heat section, while S107 is the high temperature limit for the second electric heat section. Both thermostats are identical and are wired in series with the first stage contactor coil. When either S15 or S107 opens, indicating a problem in the system, contactor K15 is de-energized. When K15 is de-energized, first stage and all subsequent stages of heat are de-energized. The thermostats used on EHA360-45-1 Y/G/J are factory set to open at 200°F + 5°F (93.3°C + 2.8°C) on a temperature rise and automatically reset at 160°F + 6°F (71.1°C + 3.3°C) on a temperature fall. All other electric heat section thermostats are factory set to open at 170°F ± 5°F (76.7°C ± 2.8°C) on a temperature rise and automatically reset at 130°F + 6°F (54.4°C + 3.3°C) on a temperature fall. The thermostats are not adjustable.

### 10-Heating Elements HE1 through HE14

Heating elements are composed of helix wound bare nichrome wire exposed directly to the air stream. Three elements are connected in a three-phase arrangement. The elements in 208/230V units are connected in a "Delta" arrangement. Elements in 460 and 575V units are connected in "Wye" arrangement. Each stage is energized independently by the corresponding contactors located on the electric heat vestibule panel. Once energized, heat transfer is instantaneous. High temperature protection is provided by primary and redundant high temperature limits and overcurrent protection is provided by fuses.

**TABLE 4** 

| -                                 |          |             |             | IADLE 4      |             |             |        |                |             |
|-----------------------------------|----------|-------------|-------------|--------------|-------------|-------------|--------|----------------|-------------|
|                                   |          | KCB18       | 0/300 ELECT | TRIC HEAT SE | CTION FUSI  | E RATING    |        |                |             |
| EHA QUAN-                         | VOLT-    |             |             |              | FUSE (3 eac | ch)         |        |                |             |
| TITY<br>& SIZE                    | AGES     | F3 - 1      | F3 - 2      | F3 - 3       | F3 - 4      | F3 - 5      | F3 - 6 | F3 - 7         | F3 - 8      |
| (1) EHA240-7.5 &                  | 208/230V | 50 Amp 250V |             |              |             |             |        |                |             |
| (1) EHA240S-7.5                   | 460V     | 25 Amp 600V |             |              |             |             |        |                |             |
| ` (15 kW Total)                   | 575V     | 20 Amp 600V |             |              |             |             |        |                |             |
| (1) EHA360-15 &<br>(1) EHA360S-15 | 208/230V | 60 Amp 250V | 60 Amp 250V |              |             |             |        |                |             |
| ` (30 kW Total)<br>or             | 460V     | 50 Amp 600V |             |              |             |             |        |                |             |
| (1) EHA156-15 &<br>(1) EHA156S-15 | 575V     | 40 Amp 600V |             |              |             |             |        |                |             |
| (2) EHA360-22.5                   | 208/230V | 50 Amp 250V |             |              | 25 Amp 250V | 50 Amp 250V |        |                | 25 Amp 250V |
| ` (45 kW Total)<br>or             | 460V     | 25 Amp 600V |             |              | 15 Amp 600V | 25 Amp 600V |        |                | 15 Amp 600V |
| (2) EHA156-22.5                   | 575V     | 20 Amp 600V |             |              | 10 Amp 600V | 20 Amp 600V |        |                | 10 Amp 600V |
| (2) EHA150-30                     | 208/230V | 50 Amp 250V |             |              | 50 Amp 250V | 50 Amp 250V |        |                | 50 Amp 250V |
| `(60 kW Total)<br>or              | 460V     | 25 Amp 600V |             |              | 25 Amp 600V | 25 Amp 600V |        |                | 25 Amp 600V |
| (2) EHA156-30                     | 575V     | 20 Amp 600V |             |              | 20 Amp 600V | 20 Amp 600V |        |                | 20 Amp 600V |
| (2) [114260 45                    | 208/230V | 50 Amp 250V |             | 60 Amp 250V  | 60 Amp 250V | 50 Amp 250V |        | 60 Amp<br>250V | 60 Amp 250V |
| (2) EHA360-45<br>(90 kW Total)    | 460V     | 25 Amp 600V |             |              | 50 Amp 600V | 25 Amp 600V |        |                | 50 Amp 600V |
|                                   | 575V     | 20 Amp 600V |             |              | 40 Amp 600V | 20 Amp 600V |        |                | 40 Amp 600V |

### **II-PLACEMENT AND INSTALLATION**

Make sure the unit is installed in accordance with the installation instructions and all applicable codes. See accessories section for conditions requiring use of the optional roof mounting frame.

### **III-STARTUP - OPERATION**

Refer to startup directions and to the unit wiring diagram when servicing. See unit nameplate for minimum circuit ampacity and maximum fuse size.

### A-Preliminary and Seasonal Checks

- 1- Make sure the unit is installed in accordance with the installation instructions and applicable codes.
- 2- Inspect all electrical wiring, both field and factory installed for loose connections. Tighten as required. Refer to unit diagram located on inside of unit control box cover.
- 3- Check to ensure that refrigerant lines are in good condition and do not rub against the cabinet or other refrigerant lines.
- 4- Check voltage at the disconnect switch (if applicable) or TB2. Voltage must be within the range listed on the nameplate. If not, consult the power company and have the voltage corrected before starting the unit.
- 5- Recheck voltage and amp draw with unit running. If voltage is not within range listed on unit nameplate, stop unit and consult power company. Refer to unit nameplate for maximum rated load amps.
- 6- Inspect and adjust blower belt (see section on Blower Compartment Blower Belt Adjustment).

### **B-Cooling Start Up**

Supply Air Invert Units - Refer to the Supply Air Inverter Start-Up section.

### **A-Operation**

- 1- Remove coil covers before starting unit.
- 2- Initiate first and second stage cooling demands according to instructions provided with thermostat.

### **Compressor Stages**

3- 180S, 210S, 240S units -

First-stage thermostat demand will energize compressors 1 and 2; a second-stage thermostat demand will energize compressor 3.

300S units -

First-stage thermostat demand will energize compressors 1 & 2; a second-stage thermostat demand will energize compressors 3 and 4.

On units with an economizer, when outdoor air is acceptable, a first-stage demand will energize the econo-

mizer; a second-stage demand will energize compressors 1 and 2 on 180S, 210S, 240S & 300S units.

### **Refrigerant Circuits**

### 4- 180S, 210S, 240S -

Units contain three refrigerant circuits or systems. Evaporator and condenser coil refrigerant circuits 1 and 2 make up stage 1 cooling. Evaporator and condenser refrigerant circuit 3 makes up stage 2 cooling.

300S -

Units contain four refrigerant circuits or systems. Evaporator and condenser coil refrigerant circuits 1 and 2 make up stage 1 cooling. Evaporator and condenser refrigerant circuit 3 and 4 make up stage 2 cooling.

### **Outdoor Fan Operation**

### 5- 180S, 210S -

First-stage thermostat demand will energize condenser fans 1, 2 and 3. Fans will continue to operate with additional thermostat demands. See figure 15.

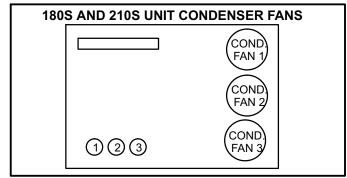



FIGURE 15

### 240S -

First-stage thermostat demand will energize condenser fans 1, 2, 3 and 4. See figure 16. Fans will continue to operate with additional thermostat demands.

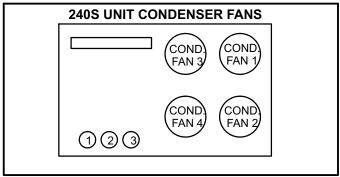
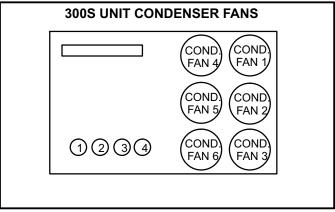




FIGURE 16

### 300S -

First-stage thermostat demand will energize condenser fans 1, 2 and 3. Second-stage thermostat demand will energize condenser fans 4, 5 and 6. See figure 17.



### FIGURE 17

- 6- Each refrigerant circuit is separately charged with R-410A refrigerant. See unit rating plate for correct amount of charge.
- 7- Refer to Cooling Operation and Adjustment section for proper method to check refrigerant charge.

### **IV-CHARGING**

### **A-All-Aluminum Outdoor Coil**

WARNING-Do not exceed nameplate charge under any condition.

### **WARNING**

Refrigerant can be harmful if it is inhaled. Refrigerant must be used and recovered responsibly.

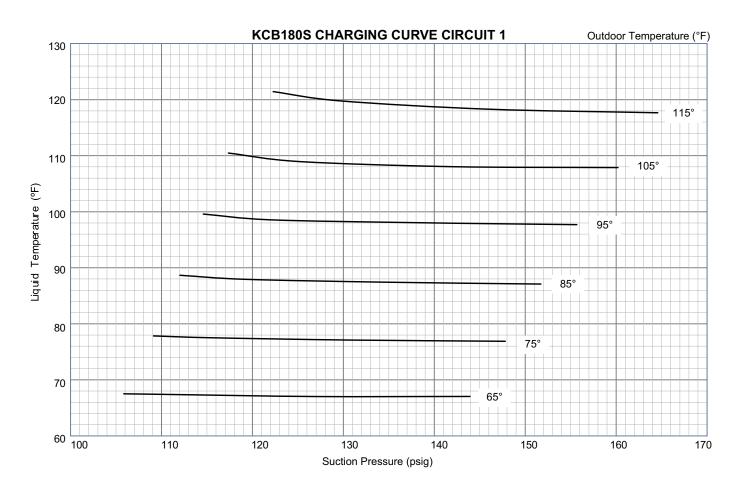
Failure to follow this warning may result in personal injury or death.

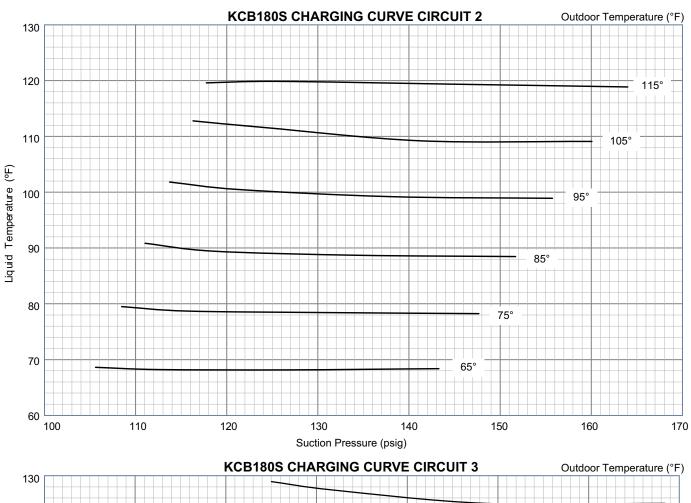
This unit is factory charged and should require no further adjustment. If the system requires additional refrigerant, <u>reclaim the charge</u>, <u>evacuate the system</u>, and <u>add required nameplate charge</u>.

NOTE - System charging is not recommended below 60°F (15°C). In temperatures below 60°F (15°C), the charge **must** be weighed into the system.

If weighing facilities are not available, or to check the charge, use the following procedure:

### IMPORTANT - Charge unit in standard cooling mode.


- 1- Make sure outdoor coil is clean. Attach gauge manifolds and operate unit at full CFM in cooling mode with economizer disabled until system stabilizes (approximately five minutes). Make sure all outdoor air dampers are closed.
- 2- Check each system separately with all stages operating. Compare the normal operating pressures (see tables 5 -8) to the pressures obtained from the gauges. Check unit components if there are significant differences.
- 3- Measure the outdoor ambient temperature and the suction pressure. Refer to the appropriate circuit charging curve to determine a target liquid temperature.


NOTE - Pressures are listed for sea level applications.

- 4- Use the same thermometer to accurately measure the liquid temperature (in compressor compartment where the liquid lines enter from the condenser section).
  - If measured liquid temperature is higher than the target liquid temperature, add refrigerant to the system.
  - If measured liquid temperature is lower than the target liquid temperature, recover some refrigerant from the system.
- 5- Add or remove charge in increments. Allow the system to stabilize each time refrigerant is added or removed.
- 6- Continue the process until measured liquid temperature agrees with the target liquid temperature. Do not go below the target liquid temperature when adjusting charge. Note that suction pressure can change as charge is adjusted.
- 7- Example KCB180S Circuit 1: At 95°F outdoor ambient and a measured suction pressure of 130psig, the target liquid temperature is 98°F. For a measured liquid temperature of 106°F, add charge in increments until measured liquid temperature agrees with the target liquid temperature.

TABLE 5
KCB180S NORMAL OPERATING PRESSURES

|           | Normal Operating Pressures            |                |                |                |                |                |                |                |                |                |                |                |  |  |  |
|-----------|---------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|--|--|
|           | Outdoor Coil Entering Air Temperature |                |                |                |                |                |                |                |                |                |                |                |  |  |  |
|           | 65                                    | °F             | 75             | °F             | 85             | °F             | 95             | °F             | 105            | 5 °F           | 115            | 5 °F           |  |  |  |
|           | Suct<br>(psig)                        | Disc<br>(psig) | Suct<br>(psig) | Disc<br>(psig) | Suct<br>(psig) | Disc<br>(psig) | Suct<br>(psig) | Disc<br>(psig) | Suct<br>(psig) | Disc<br>(psig) | Suct<br>(psig) | Disc<br>(psig) |  |  |  |
|           | 106                                   | 249            | 109            | 286            | 112            | 328            | 115            | 373            | 117            | 422            | 122            | 477            |  |  |  |
| Circuit 1 | 112                                   | 256            | 116            | 292            | 119            | 333            | 122            | 378            | 125            | 429            | 130            | 484            |  |  |  |
| Circuit   | 127                                   | 275            | 131            | 311            | 134            | 352            | 138            | 398            | 142            | 447            | 146            | 505            |  |  |  |
|           | 144                                   | 299            | 148            | 336            | 152            | 376            | 156            | 424            | 160            | 478            | 165            | 535            |  |  |  |
|           | 106                                   | 251            | 108            | 288            | 111            | 330            | 114            | 372            | 116            | 421            | 118            | 477            |  |  |  |
| Circuit 2 | 113                                   | 258            | 116            | 294            | 119            | 334            | 121            | 379            | 124            | 429            | 125            | 484            |  |  |  |
| Circuit 2 | 127                                   | 273            | 131            | 311            | 134            | 350            | 138            | 397            | 141            | 445            | 145            | 501            |  |  |  |
|           | 143                                   | 296            | 148            | 333            | 152            | 375            | 156            | 421            | 160            | 473            | 164            | 528            |  |  |  |
|           | 110                                   | 266            | 113            | 306            | 115            | 348            | 118            | 394            | 120            | 442            | 125            | 497            |  |  |  |
| Circuit 3 | 117                                   | 274            | 120            | 311            | 123            | 356            | 126            | 403            | 129            | 454            | 132            | 508            |  |  |  |
| Circuit 3 | 132                                   | 292            | 136            | 333            | 139            | 376            | 143            | 424            | 146            | 475            | 149            | 540            |  |  |  |
|           | 148                                   | 314            | 153            | 355            | 157            | 401            | 161            | 450            | 165            | 505            | 168            | 568            |  |  |  |





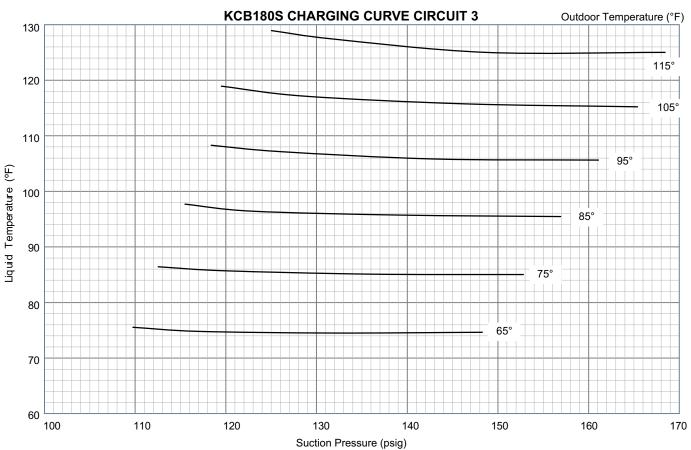
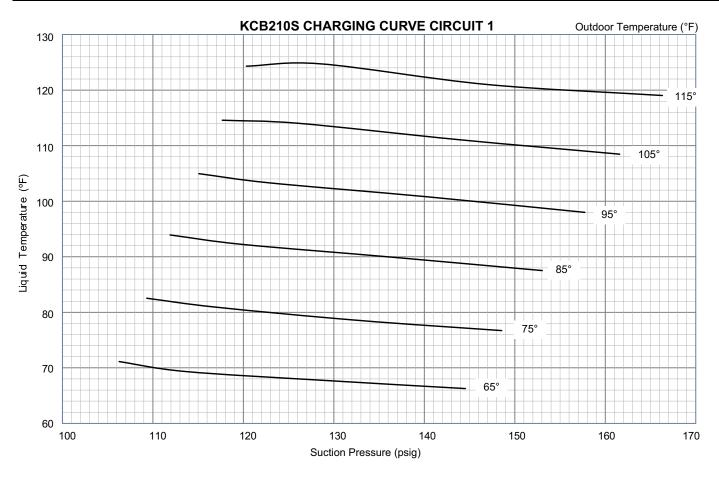




TABLE 6
KCB210S NORMAL OPERATING PRESSURES

| Normal Operating Pressures |                                       |                |                |                |                |                |                |                |                |                |                |                |
|----------------------------|---------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
|                            | Outdoor Coil Entering Air Temperature |                |                |                |                |                |                |                |                |                |                |                |
|                            | 65 °F                                 |                | 75 °F          |                | 85 °F          |                | 95 °F          |                | 105 °F         |                | 115 °F         |                |
|                            | Suct<br>(psig)                        | Disc<br>(psig) | Suct<br>(psig) | Disc<br>(psig) | Suct<br>(psig) | Disc<br>(psig) | Suct<br>(psig) | Disc<br>(psig) | Suct<br>(psig) | Disc<br>(psig) | Suct<br>(psig) | Disc<br>(psig) |
| Circuit 1                  | 106                                   | 253            | 109            | 291            | 112            | 333            | 115            | 380            | 118            | 427            | 120            | 481            |
|                            | 114                                   | 258            | 117            | 295            | 120            | 338            | 123            | 385            | 126            | 435            | 129            | 487            |
|                            | 129                                   | 272            | 133            | 309            | 136            | 351            | 140            | 398            | 144            | 449            | 147            | 506            |
|                            | 145                                   | 289            | 149            | 324            | 153            | 366            | 158            | 412            | 162            | 462            | 166            | 522            |
| Circuit 2                  | 106                                   | 262            | 110            | 300            | 113            | 339            | 115            | 384            | 118            | 430            | 120            | 485            |
|                            | 114                                   | 269            | 117            | 305            | 120            | 346            | 123            | 392            | 126            | 439            | 128            | 495            |
|                            | 130                                   | 286            | 133            | 322            | 137            | 363            | 141            | 409            | 144            | 457            | 147            | 514            |
|                            | 145                                   | 303            | 150            | 339            | 154            | 380            | 158            | 425            | 162            | 471            | 166            | 528            |
| Circuit 3                  | 108                                   | 276            | 111            | 314            | 114            | 356            | 117            | 402            | 119            | 451            | 123            | 503            |
|                            | 115                                   | 284            | 119            | 322            | 122            | 364            | 125            | 410            | 128            | 462            | 131            | 516            |
|                            | 132                                   | 304            | 135            | 343            | 139            | 385            | 143            | 433            | 146            | 484            | 149            | 541            |
|                            | 148                                   | 321            | 152            | 361            | 156            | 403            | 161            | 450            | 164            | 498            | 167            | 557            |



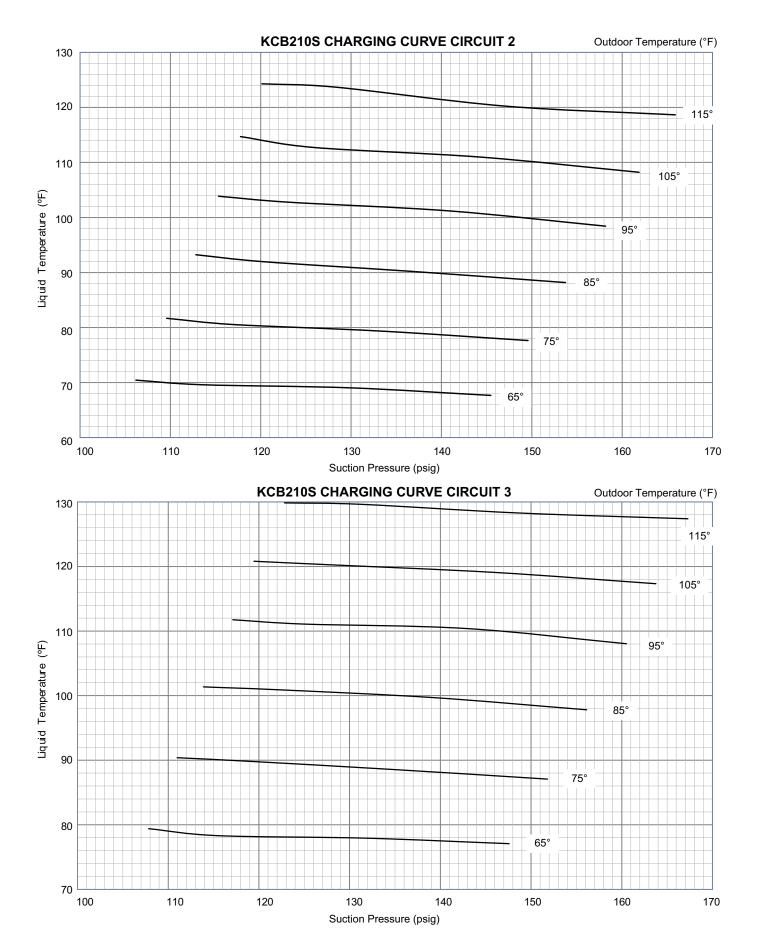
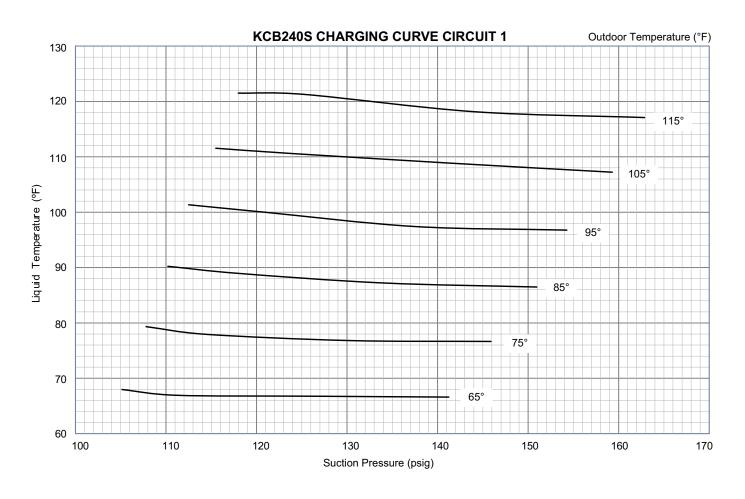





TABLE 7
KCB240S NORMAL OPERATING PRESSURES

|           | Normal Operating Pressures |                |                |                |                |                |                |                |                |                |                |                |
|-----------|----------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
|           |                            |                |                | (              | Outdoor C      | oil Enteri     | ng Air Te      | mperature      | Э              |                |                |                |
|           | 65                         | °F             | 75             | °F             | 85             | °F             | 95             | °F             | 105 °F         |                | 115 °F         |                |
|           | Suct<br>(psig)             | Disc<br>(psig) | Suct<br>(psig) | Disc<br>(psig) | Suct<br>(psig) | Disc<br>(psig) | Suct<br>(psig) | Disc<br>(psig) | Suct<br>(psig) | Disc<br>(psig) | Suct<br>(psig) | Disc<br>(psig) |
|           | 105                        | 242            | 108            | 279            | 110            | 320            | 113            | 365            | 115            | 414            | 118            | 468            |
| Circuit 1 | 111                        | 247            | 114            | 284            | 118            | 326            | 121            | 372            | 124            | 421            | 125            | 474            |
| Circuit 1 | 125                        | 263            | 130            | 299            | 134            | 339            | 138            | 383            | 141            | 432            | 144            | 489            |
|           | 141                        | 281            | 146            | 317            | 151            | 359            | 154            | 403            | 159            | 454            | 163            | 508            |
|           | 106                        | 253            | 109            | 290            | 112            | 330            | 114            | 374            | 116            | 424            | 118            | 474            |
| Circuit 2 | 112                        | 259            | 115            | 295            | 119            | 336            | 122            | 382            | 124            | 430            | 127            | 482            |
| Circuit 2 | 128                        | 274            | 133            | 310            | 136            | 350            | 140            | 394            | 144            | 446            | 146            | 501            |
|           | 145                        | 292            | 149            | 328            | 154            | 370            | 157            | 414            | 162            | 465            | 166            | 516            |
|           | 99                         | 262            | 102            | 300            | 104            | 343            | 107            | 390            | 107            | 436            | 110            | 489            |
| Circuit 3 | 105                        | 268            | 108            | 307            | 111            | 350            | 114            | 396            | 117            | 448            | 117            | 499            |
| Circuit 3 | 121                        | 285            | 124            | 325            | 127            | 368            | 130            | 414            | 134            | 466            | 135            | 525            |
|           | 136                        | 303            | 140            | 344            | 145            | 390            | 149            | 436            | 153            | 490            | 155            | 548            |





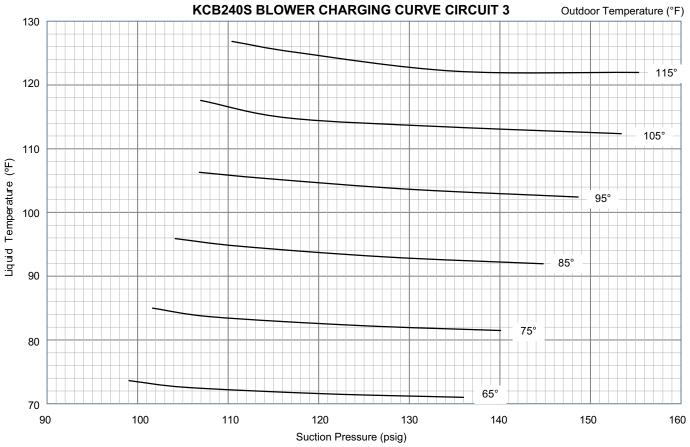
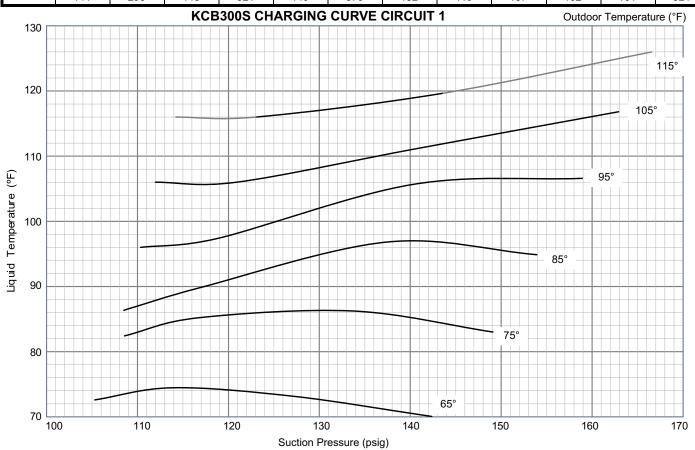
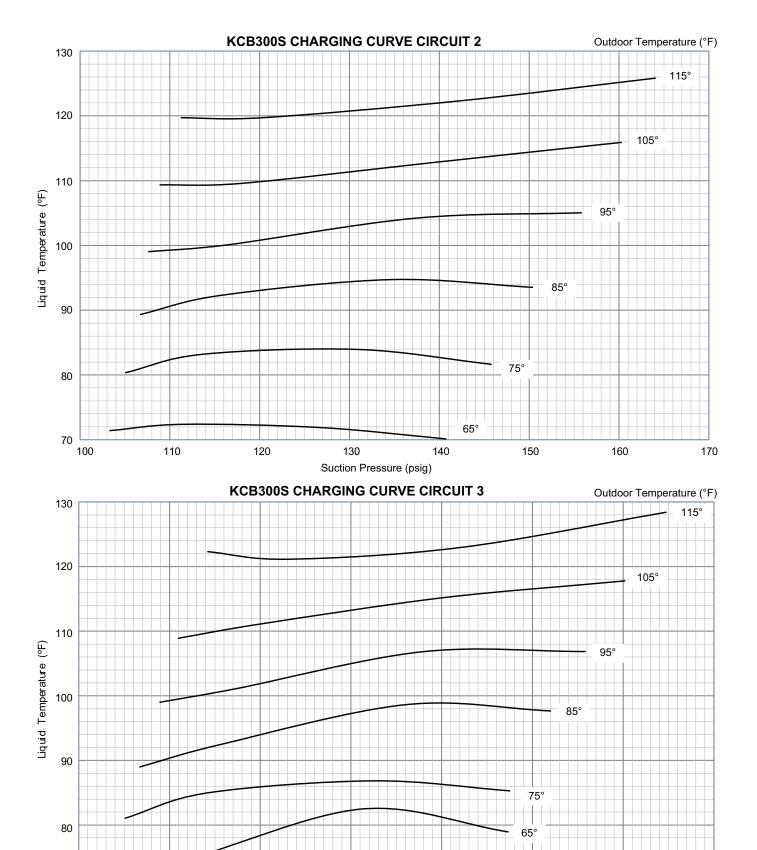
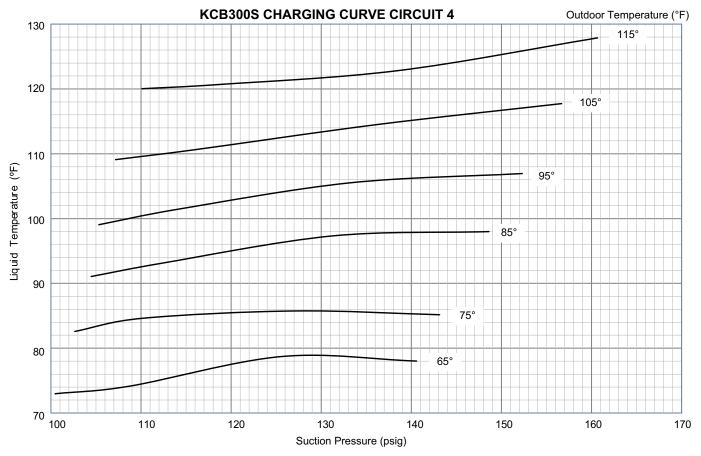





TABLE 8
KCB300S NORMAL OPERATING PRESSURES


|            | Normal Operating Pressures |                |                |                |                |                |                |                |                |                |                |                |
|------------|----------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
|            |                            |                |                | (              | Outdoor C      | oil Enteri     | ng Air Te      | mperature      | Э              |                |                |                |
|            | 65                         | °F             | 75             | °F             | 85             | °F             | 95             | °F             | 105 °F         |                | 115 °F         |                |
|            | Suct<br>(psig)             | Disc<br>(psig) | Suct<br>(psig) | Disc<br>(psig) | Suct<br>(psig) | Disc<br>(psig) | Suct<br>(psig) | Disc<br>(psig) | Suct<br>(psig) | Disc<br>(psig) | Suct<br>(psig) | Disc<br>(psig) |
|            | 105                        | 248            | 109            | 283            | 109            | 330            | 110            | 381            | 112            | 432            | 114            | 486            |
| Cinn. it 1 | 114                        | 250            | 117            | 291            | 117            | 338            | 119            | 384            | 121            | 432            | 123            | 487            |
| Circuit 1  | 127                        | 253            | 134            | 300            | 137            | 343            | 140            | 388            | 141            | 444            | 144            | 501            |
|            | 142                        | 265            | 149            | 308            | 154            | 349            | 159            | 399            | 163            | 449            | 167            | 503            |
|            | 103                        | 236            | 105            | 272            | 107            | 318            | 108            | 373            | 109            | 428            | 111            | 484            |
| Cima vit 0 | 112                        | 238            | 114            | 278            | 116            | 325            | 116            | 374            | 118            | 425            | 120            | 482            |
| Circuit 2  | 127                        | 246            | 131            | 285            | 135            | 327            | 137            | 377            | 140            | 433            | 142            | 491            |
|            | 141                        | 254            | 146            | 294            | 150            | 332            | 156            | 385            | 160            | 437            | 164            | 495            |
|            | 104                        | 258            | 105            | 302            | 107            | 345            | 109            | 399            | 111            | 456            | 114            | 519            |
| 0:::       | 112                        | 263            | 114            | 308            | 115            | 354            | 117            | 403            | 120            | 463            | 123            | 524            |
| Circuit 3  | 131                        | 297            | 133            | 320            | 136            | 367            | 138            | 410            | 140            | 465            | 142            | 526            |
|            | 147                        | 313            | 147            | 334            | 152            | 381            | 156            | 423            | 160            | 476            | 165            | 537            |
|            | 100                        | 246            | 103            | 289            | 104            | 329            | 105            | 381            | 107            | 437            | 110            | 500            |
| Cimarrit 4 | 109                        | 253            | 110            | 293            | 112            | 337            | 114            | 383            | 116            | 443            | 119            | 505            |
| Circuit 4  | 126                        | 281            | 127            | 303            | 131            | 349            | 133            | 391            | 136            | 443            | 139            | 499            |
|            | 141                        | 296            | 143            | 321            | 149            | 370            | 152            | 410            | 157            | 462            | 161            | 521            |





Suction Pressure (psig)

70 100



#### **B** - Fin/Tube Coil

# **▲** IMPORTANT

Units equipped with a Hot Gas Reheat system MUST be charged in standard cooling mode.

WARNING-Do not exceed nameplate charge under any condition.

This unit is factory charged and should require no further adjustment. If the system requires additional refrigerant, <u>reclaim the charge</u>, <u>evacuate the system and add required nameplate charge</u>.

NOTE - System charging is not recommended below 60°F (15°C). In temperatures below 60°F (15°C), the charge **must** be weighed into the system.

If weighing facilities are not available, or to check the charge, use the following procedure:

#### IMPORTANT - Charge unit in normal cooling mode.

- 1- Attach gauge manifolds and operate unit in cooling mode with economizer disabled until system stabilizes (approximately five minutes). Make sure all outdoor air dampers are closed.
- 2- Check each system separately with all stages operating.
- 3- Use a thermometer to accurately measure the outdoor ambient temperature.
- 4- Apply the outdoor temperature to tables 9 through 12 to determine normal operating pressures. Pressures are

listed for sea level applications at 80 °F dry bulb and 67 °F wet bulb return air.

- 5- Compare the normal operating pressures to the pressures obtained from the gauges. Minor variations in these pressures may be expected due to differences in installations. Significant differences could mean that the system is not properly charged or that a problem exists with some component in the system. Correct any system problems before proceeding.
- 6- If discharge pressure is high, remove refrigerant from the system. If discharge pressure is low, add refrigerant to the system.
  - · Add or remove charge in increments.
  - Allow the system to stabilize each time refrigerant is added or removed.
- 7- Use the following approach method along with the normal operating pressures to confirm readings.

TABLE 9
KGB/KCB180S Fin/Tube With and Without Reheat

|                                |                             |                            |                             |                            | iout itelleat               |                            |  |
|--------------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|--|
| Outdoor                        | Circ                        | uit 1                      | Circ                        | uit 2                      | Circ                        | uit 3                      |  |
| Coil En-<br>tering<br>Air Temp | Dis.<br><u>+</u> 10<br>psig | Suc.<br><u>+</u> 5<br>psig | Dis.<br><u>+</u> 10<br>psig | Suc.<br><u>+</u> 5<br>psig | Dis.<br><u>+</u> 10<br>psig | Suc.<br><u>+</u> 5<br>psig |  |
| 65°F                           | 270                         | 124                        | 263                         | 122                        | 286                         | 129                        |  |
| 75°F                           | 317                         | 133                        | 311                         | 131                        | 333                         | 137                        |  |
| 85°F                           | 360                         | 137                        | 353                         | 136                        | 375                         | 142                        |  |
| 95°F                           | 411                         | 142                        | 403                         | 140                        | 426                         | 146                        |  |
| 105°F                          | 465                         | 146                        | 455                         | 144                        | 480                         | 149                        |  |
| 115°F                          | 525                         | 148                        | 512                         | 147                        | 538                         | 149                        |  |

TABLE 10
KGB/KCB210S Fin/Tube With and Without Reheat

| Outdoor                        | Circ                        | uit 1                      | Circ                        | uit 2                      | Circuit 3                   |                            |
|--------------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|
| Coil En-<br>tering<br>Air Temp | Dis.<br><u>+</u> 10<br>psig | Suc.<br><u>+</u> 5<br>psig | Dis.<br><u>+</u> 10<br>psig | Suc.<br><u>+</u> 5<br>psig | Dis.<br><u>+</u> 10<br>psig | Suc.<br><u>+</u> 5<br>psig |
| 65°F                           | 280                         | 126                        | 279                         | 124                        | 298                         | 126                        |
| 75°F                           | 323                         | 133                        | 322                         | 131                        | 341                         | 132                        |
| 85°F                           | 368                         | 138                        | 367                         | 136                        | 387                         | 136                        |
| 95°F                           | 418                         | 142                        | 415                         | 140                        | 437                         | 140                        |
| 105°F                          | 471                         | 145                        | 468                         | 144                        | 491                         | 143                        |
| 115°F                          | 530                         | 148                        | 525                         | 147                        | 550                         | 147                        |

TABLE 11
KGB/KCB240S Fin/Tube With and Without Reheat

| Outdoor                        | Circ                        | Circuit 1                  |                             | uit 2                      | Circuit 3                   |                            |
|--------------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|
| Coil En-<br>tering<br>Air Temp | Dis.<br><u>+</u> 10<br>psig | Suc.<br><u>+</u> 5<br>psig | Dis.<br><u>+</u> 10<br>psig | Suc.<br><u>+</u> 5<br>psig | Dis.<br><u>+</u> 10<br>psig | Suc.<br><u>+</u> 5<br>psig |
| 65°F                           | 257                         | 119                        | 271                         | 125                        | 289                         | 119                        |
| 75°F                           | 297                         | 125                        | 311                         | 131                        | 332                         | 125                        |
| 85°F                           | 342                         | 131                        | 354                         | 136                        | 378                         | 129                        |
| 95°F                           | 390                         | 136                        | 401                         | 139                        | 426                         | 133                        |
| 105°F                          | 441                         | 140                        | 452                         | 143                        | 478                         | 136                        |
| 115°F                          | 496                         | 142                        | 507                         | 146                        | 533                         | 140                        |

TABLE 12
KGB/KCB 300S Fin/Tube With and Without Reheat

| Outdoor                        | Circuit 1                   |                            | Circuit 2                   |                            | Circuit 3                   |                            | Circuit 4                   |                            |
|--------------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|
| Coil En-<br>tering<br>Air Temp | Dis.<br><u>+</u> 10<br>psig | Suc.<br><u>+</u> 5<br>psig |
| 65°F                           | 272                         | 129                        | 273                         | 128                        | 280                         | 129                        | 277                         | 127                        |
| 75°F                           | 311                         | 132                        | 303                         | 131                        | 321                         | 131                        | 317                         | 129                        |
| 85°F                           | 357                         | 134                        | 349                         | 133                        | 367                         | 133                        | 363                         | 130                        |
| 95°F                           | 403                         | 137                        | 397                         | 137                        | 418                         | 135                        | 406                         | 134                        |
| 105°F                          | 451                         | 139                        | 453                         | 140                        | 475                         | 138                        | 471                         | 136                        |
| 115°F                          | 502                         | 142                        | 506                         | 142                        | 532                         | 144                        | 529                         | 140                        |

# E-Charge Verification - Approach Method - AHRI Testing (Fin/Tube Coil)

- 1- Using the same thermometer, compare liquid temperature to outdoor ambient temperature.
  - Approach Temperature = Liquid temperature (at condenser outlet) minus ambient temperature.
- 2- Approach temperature should match values in table NO TAG. An approach temperature greater than value shown indicates an undercharge. An approach temperature less than value shown indicates an overcharge.

3- The approach method is not valid for grossly over or undercharged systems. Use tables 9 through 12 as a guide for typical operating pressures.

TABLE 13
Approach Temperatures Fin/Tube Coil

| KG/KB | Liqui                                  | id Temp. Minı                          | us Ambient T                           | emp.                                   |
|-------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| Unit  | 1st Stage                              | 2nd Stage                              | 3rd Stage                              | 4th Stage                              |
| 180S  | 2°F <u>+</u> 1<br>(1.1°C <u>+</u> 0.5) | 2°F <u>+</u> 1<br>(1.1°C <u>+</u> 0.5) | 5°F <u>+</u> 1<br>(2.8°C <u>+</u> 0.5) | NA                                     |
| 210S  | 5°F <u>+</u> 1<br>(2.8°C <u>+</u> 0.5) | 4°F <u>+</u> 1<br>(2.2°C <u>+</u> 0.5) | 8°F <u>+</u> 1<br>(4.4°C <u>+</u> 0.5) | NA                                     |
| 240S  | 5°F <u>+</u> 1<br>(2.8°C <u>+</u> 0.5) | 5°F <u>+</u> 1<br>(2.8°C <u>+</u> 0.5) | 9°F <u>+</u> 1<br>(5.0°C <u>+</u> 0.5) | NA                                     |
| 300S  | 6°F <u>+</u> 1<br>(3.3°C <u>+</u> 0.5) | 6°F <u>+</u> 1<br>(3.3°C <u>+</u> 0.5) | 7°F <u>+</u> 1<br>(3.9°C <u>+</u> 0.5) | 7°F <u>+</u> 1<br>(3.9°C <u>+</u> 0.5) |

# **F-Compressor Controls**

See unit wiring diagram to determine which controls are used on each unit. Optional controls are identified on wiring diagrams by arrows at junction points.

- 1- Freezestats (S49, S50, S53, S95) Switches de-energize compressors when evaporator coil temperature falls below 29°F (-2°C) to prevent evaporator freeze-up. Switches reset when evaporator coil temperature reaches 58°F (15°C).
- 2- High Pressure Switches (S4, S7, S28, S96) Switches open to de-energize appropriate compressor at 640 psig ± 20 psig (4413kPa ± 138kPa). Switch must be manually reset.
- 3- Thermal Protector (S5, S8, S31, S180)
  The compressors used on 180H and 240H units are each protected by an external temperature switch.
  The N.C. switch opens at 248°F ± 9 (120°C + 13) and automatically resets at 169°F ± 18 (76°C+8). The compressors used on 156H, 180S, 210S/H, 240S and 300S/H units are each protected by an internal thermal protector switch.
- 4- Crankcase Heater (HR1, HR2, HR5, HR11)
  Units have compressors which contain a belly band compressor oil heater which must be on 24 hours before running compressors. Energize by setting thermostat so that there is no cooling demand, to prevent compressor from cycling, and apply power to unit.

#### V- SYSTEMS SERVICE CHECKS

# **A-Cooling System Service Checks**

KCB units are factory charged and require no further adjustment; however, charge should be checked periodically using the approach method. The approach method compares actual liquid temperature with the outdoor ambient temperature. See section IV- CHARGING.

NOTE - When unit is properly charged discharge line pressures should approximate those in tables 5 through 8.

#### **VI-MAINTENANCE**





Electric shock hazard. Can cause injury or death. Before attempting to perform any service or maintenance, turn the electrical power to unit OFF at disconnect switch(es). Unit may have multiple power supplies.

# **A** CAUTION

Electrical shock hazard. Turn off power to unit before performing any maintenance, cleaning or service operation on the unit.

# **ACAUTION**

Danger of sharp metallic edges. Can cause injury. Take care when servicing unit to avoid accidental contact with sharp edges.

#### A-Filters

Units are equipped with six 24 X 24 X 2" filters. Filters should be checked and replaced when necessary with filters of like kind and size. Take note of air flow direction marking on filter frame when reinstalling filters. See figure 18.

NOTE - Filters must be U.L.C. certified or equivalent for use in Canada.

#### **B-Lubrication**

All motors used in KCB units are factory lubricated, no further lubrication is required.

Blower shaft bearings are prelubricated. For extended bearing life, relubricate at least once every two years with a lithium base grease such as Alvania 3 (Shell Oil), Chevron BRB2 (Standard Oll) or Regal AFB2 (Texas Oil). Use a hand grease gun for lubrication. Add only enough grease to purge through the bearings so that a bead of grease appears at the seal lip contacts.

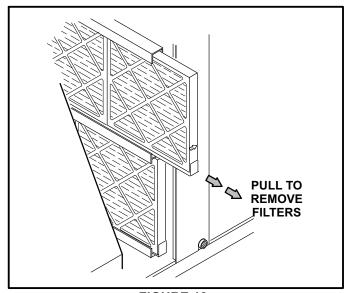



FIGURE 18

# **C-Evaporator Coil**

Inspect and clean coil at beginning of each cooling season. Clean using mild detergent or commercial coil cleaner. Flush coil and condensate drain with water taking care not to get insulation, filters and return air ducts wet.

#### **D-Condenser Coil**

Clean condenser coil annually with detergent or commercial coil cleaner and inspect monthly during the cooling season. Access panels are provided on the front and back of the condenser section.

# **E-Supply Air Blower Wheel**

Annually inspect supply air blower wheel for accumulated dirt or dust. Turn off power before attempting to remove access panel or to clean blower wheel.

#### F-Electrical

- 1- Check all wiring for loose connections.
- 2- Check for correct voltage at unit (unit operating).
- 3- Check amp-draw on both condenser fan motor and blower motor.

| Fan Motor Rating Plate  | Actual _  |        |  |
|-------------------------|-----------|--------|--|
| Indoor Blower Motor Rat | ing Plate | Actual |  |

#### VII-OPTIONAL ACCESSORIES

The accessories section describes the application of most of the optional accessories which can be installed to the KCB units.

#### A-Roof Curb

When installing units on a combustible surface for downflow discharge applications, the C1CURB roof mounting frame is used. The roof mounting frames are recommended in all other applications but not required. If the KCB units are not mounted on a flat (roof) surface, they MUST be supported under all edges and under the middle of the unit to prevent sagging. The units MUST be mounted level within 1/16" per linear foot or 5mm per meter in any direction.

The assembled C1CURB mounting frame is shown in figure 19. Refer to the roof mounting frame installation instructions for details of proper assembly and mounting. The roof mounting frame MUST be squared to the roof and level before mounting. Plenum system MUST be installed before the unit is set on the mounting frame. Typical roof curbing and flashing is shown in figure 20. Refer to the roof mounting frame installation instructions for proper plenum construction and attachment.

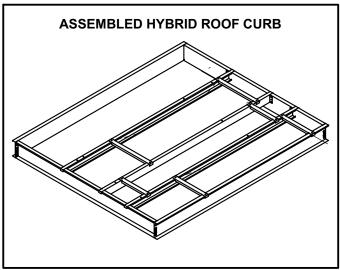



FIGURE 19

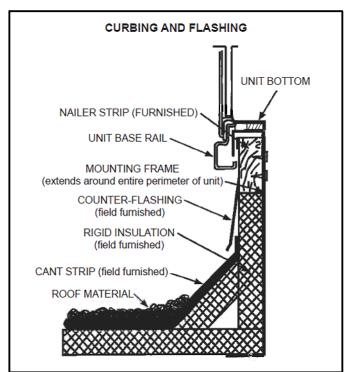



FIGURE 20

#### **B-Transitions**

Optional supply/return transitions C1DIFF33C-1 is available for use with the -180 units utilizing optional C1CURB roof mounting frame. C1DIFF34C-1 is available for use with -210S, -240S and -300S units. Transition must be installed in the mounting frame before setting the unit on the frame. Refer to the manufacturer's instructions included with the transition for detailed installation procedures.

## C-Supply and Return Diffusers (all units)

Optional flush mount diffuser/return FD11 and extended mount diffuser/return RTD11 are available for use with all KCB units. Refer to manufacturer's instructions included with diffuser for detailed installation procedures.

# D-K1ECON20 Standard Economizer & K1ECON22C High Performance Economizer K1ECON20C Standard Economizer

The standard economizer is equipped with a W7212 economizer control module A6. The default OA temperature sensor is the OA thermostat, S175, provided in this kit. See table 14 for outdoor and return air (OA and RA) sensor options. Refer to instructions provided with sensors for installation

The A6 enthalpy control is located in the economizer access area. See figure 21. The S175 temperature sensor or A7 enthalpy sensor is located on the division panel between horizontal supply and return air sections.

A mixed air sensor (R1) is used in modulating the dampers to 55°F (13°C) blower compartment air temperature.

TABLE 14
STANDARD ECONOMIZER SENSORS

| Sensors                                     | Dampers will modulate to 55°F discharge air (RT6) when:                           |
|---------------------------------------------|-----------------------------------------------------------------------------------|
| Single OA Sensible                          | OA temperature (S175) is lower than free cooling setpoint.                        |
| Single OA Enthalpy                          | OA temperature and humidity (A7) is lower than free cooling setpoint.             |
| Differential Enthalpy - 1 in OA and 1 in RA | OA temperature and humidity (A7) is lower than RA temperature and humidity (A62). |
| IAQ Sensor                                  | CO <sub>2</sub> sensed (A63 ) is higher than CO <sub>2</sub> setpoint.            |

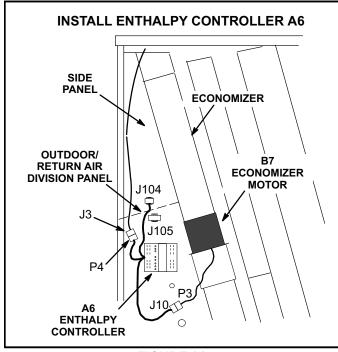



FIGURE 21

An optional IAQ sensor (A63) may be used to lower operating costs by controlling outdoor air based on  $\mathrm{CO}_2$  level or room occupancy (also called demand control ventilation or DCV). Damper minimum position can be set lower than traditional minimum air requirements; dampers open to traditional ventilation requirements when  $\mathrm{CO}_2$  level reaches DCV (IAQ) setpoint.

Refer to instructions provided with sensors for installation.

#### A6 Enthalpy Control LEDs

A steady green Free Cool LED indicates that outdoor air is suitable for free cooling.

When an optional IAQ sensor is installed, a steady green DCV LED indicates that the IAQ reading is higher than setpoint requiring more fresh air. See figure 22.

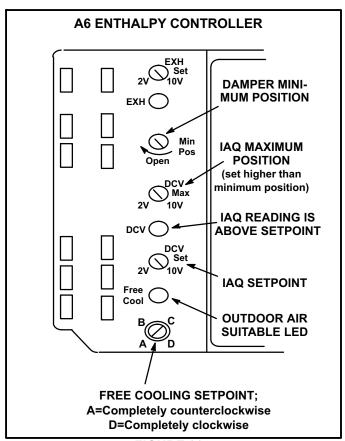



FIGURE 22

# Free Cooling Setpoint

#### Single Temperature or Enthalpy Sensing:

The enthalpy control (A6) setpoint may be adjusted when an enthalpy (A7) sensor is used to determine outdoor air suitability, See figure 22.

Free cooling will be enabled when outdoor air temperature or enthalpy are lower than the free cooling setpoint. The free cooling setpoints for sensible temperature sensors is 55°F. Table 15 shows the free cooling setpoints for enthalpy sensors. Use the recommended setpoint and adjust as necessary.

For example: At setting A (table 15), free cooling will be enabled when outdoor air enthalpy is lower than 73°F and 50% RH. If indoor air is too warm or humid, lower the setpoint to B. At setting B, free cooling will be enabled at 70°F and 50% RH.

TABLE 15
ENTHALPY FREE COOLING SETPOINTS

| Control Setting | Enthalpy Setpoint At 50% RH |
|-----------------|-----------------------------|
| A*              | 73° F (23° C)               |
| В               | 70° F (21° C)               |
| С               | 67° F (19° C)               |
| D               | 63° F (17° C)               |

<sup>\*</sup>Setting A is recommended.

#### **Differential Sensing:**

Two sensors can be used to compare outdoor air to return air. When outdoor air is cooler than return air, outdoor air is suitable for free cooling. Adjust the free cooling setpoint to "D" in this application.

When return air is cooler than outdoor air, the damper will modulate to the minimum position.

#### **Damper Minimum Position**

NOTE - A jumper is factory-installed between TB1 R and OC terminals to maintain occupied status (allowing minimum fresh air). See figure 23. When using an electronic thermostat or energy management system with an occupied/unoccupied feature, remove jumper. Make wire connections to R and OC as shown in literature provided with thermostat or energy management system literature. Either the jumper wire or optional device must be connected to R and OC for the economizer to function.

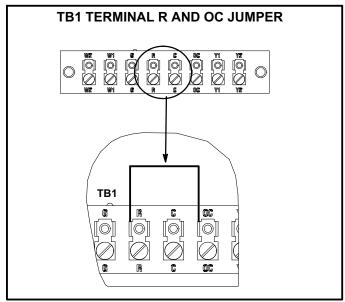



FIGURE 23

- 1- Set thermostat to occupied mode if the feature is available. Make sure jumper is in place between TB1 terminals R and OC if using a thermostat which does not have the feature.
- 2- Rotate MIN POS SET potentiometer to approximate desired fresh air percentage.

NOTE - Damper minimum position can be set lower than traditional minimum air requirements when an IAQ sensor is specified.

- 3- Measure outdoor air temperature. Mark the point on the bottom line of chart 1 and label the point "A" (40°F, 4°C shown).
- 4- Measure return air temperature. Mark that point on the top line of chart 1 figure 24 and label the point "B" (74°F, 23°C shown).
- 5- Measure mixed air (outdoor and return air) temperature. Mark that point on the top line of chart 1 and label point "C" (70°F, 21°C shown).
- 6- Draw a straight line between points A and B.
- 7- Draw a vertical line through point C.
- 8- Draw a horizontal line where the two lines meet. Read the percent of fresh air intake on the side.
- 9- If fresh air percentage is less than desired, adjust MIN POS SET potentiometer clockwise (further open). If fresh air percentage is more than desired, adjust MIN POS SET potentiometer counterclockwise (less open). Repeat steps 3 through 8 until calculation reads desired fresh air percentage.

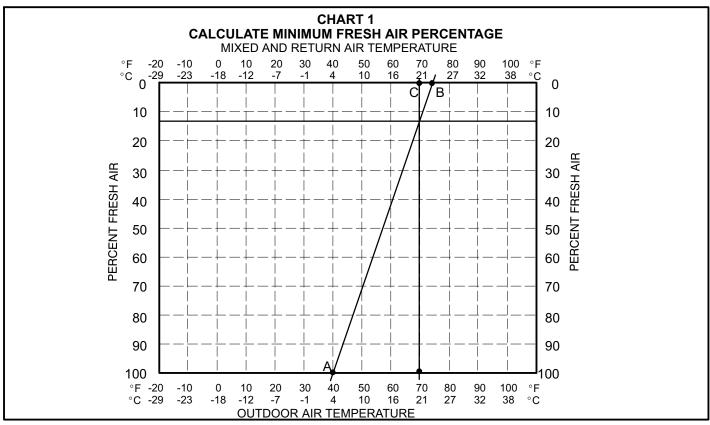



FIGURE 24

#### **DCV Set and Max Settings**

The DCV SET potentiometer is factory-set at approximately 50% of the potentiometer range. Using a standard 1-2000ppm CO<sub>2</sub> sensor, dampers will start to open when the IAQ sensor reads approximately 1000ppm. Adjust the DCV SET potentiometer to the approximate setting specified by the controls contractor. Refer to figure 22.

The DCV MAX potentiometer is factory-set at approximately 50% of the potentiometer range or 6VDC. Dampers will open approximately half way when CO<sub>2</sub> rises above setpoint. Adjust the DCV MAX potentiometer to the approximate setting specified by the controls contractor. Refer to figure 22.

NOTE - DCV Max must be set higher than economizer minimum position setting for proper demand control ventilation.

#### **Economizer Operation**

When the outdoor air is suitable, dampers will modulate between minimum position and full open to maintain 55°F (12.8°C) supply air.

See table 16 for economizer operation when outdoor air is suitable. See table 17 for economizer operation when outdoor air is NOT suitable.

#### **IAQ Sensor**

During the occupied period, dampers will open to DCV MAX when IAQ reading is above setpoint (regardless of thermostat demand or outdoor air suitability). DCV MAX will NOT override damper full-open position. The DCV MAX setting may override damper free cooling position when occupancy is high and outdoor air temperatures are low.

NOTE - R1 senses mixed air temperature below 45 °F (7 °C), dampers will move to minimum position until mixed air temperature rises to 48 °F (9 °C).

TABLE 16

ECONOMIZER OPERATION-OUTDOOR AIR IS SUITABLE FOR FREE COOLING -- FREE COOL LED "ON"

| THE DATE OF MAND  | DAMPER     | MECHANICAL COOLING |                    |
|-------------------|------------|--------------------|--------------------|
| THERMOSTAT DEMAND | UNOCCUPIED | OCCUPIED           | MECHANICAL COOLING |
| Off               | Closed     | Closed             | No                 |
| G                 | Closed     | Minimum            | No                 |
| Y1                | Modulating | Modulating         | No                 |
| Y2                | Modulating | Modulating         | Stage 1            |

TABLE 17

ECONOMIZER OPERATION-OUTDOOR AIR IS NOT SUITABLE FOR FREE COOLING -- FREE COOL LED "OFF"

| THERMOSTAT DEMAND   | DAMPER     | MECHANICAL COOLING |                    |  |
|---------------------|------------|--------------------|--------------------|--|
| THERIMOSTAT DEIMAND | UNOCCUPIED | OCCUPIED           | WECHANICAL COOLING |  |
| Off                 | Closed     | Closed             | No                 |  |
| G                   | Closed     | Minimum*           | No                 |  |
| Y1                  | Closed     | Minimum*           | Stage 1            |  |
| Y2                  | Closed     | Minimum*           | Stage 2            |  |

<sup>\*</sup>IAQ sensor can open damper to DCV max.

# **AIMPORTANT**

Remove jumper between R and OC when unit is controlled with a thermostat equipped with a night setback mode.

# **K1ECON22C High Performance Economizer**

The high performance economizer is equipped with a W7220 control module A6. This application provides low leak, fault detection and diagnostic capabilities. The default OA temperature sensor or high limit sensor (RT26) is a CEC approved, California Title 24 fixed dry bulb device (provided in this kit). See table 18 for outdoor and return air (OA and RA) sensor options. Refer to manufacturer's instructions provided for more details.

The A6 enthalpy control is located in the economizer access area. See figure 21.

TABLE 18 HIGH PERFORMANCE ECONOMIZERS

| THOTT EN ORMANCE ECONOMIZERS                                                    |                                                                                   |  |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| Sensors                                                                         | Dampers modulate to maintain<br>55°F mixed air (R1) when:                         |  |
| Single OA Sensible<br>DEFAULT - approved for<br>CA Title24                      | OA temperature (RT26) is lower than free cooling setpoint.                        |  |
| Single OA Enthalpy<br>Not approved for CA Title<br>24                           | OA temperature and humidity (A7) is lower than free cooling setpoint.             |  |
| Differential Enthalpy -<br>1 in OA & 1 in RA<br>Not approved for CA Title<br>24 | OA temperature and humidity (A7) is lower than RA temperature and humidity (A62). |  |
| IAQ Sensor                                                                      | CO <sub>2</sub> sensed (A63) is higher than CO <sub>2</sub> setpoint.             |  |

#### FREE COOLING SETPOINT

Single OA Sensible Sensing (Default) -

The default free cooling setpoint or high limit setpoint is 63°F. This means that the outdoor air is suitable for free cooling at 62°F and below and not suitable at 64°F and above. This setpoint is adjustable.

For *California Title 24* compliance, adjust the free cooling setpoint based on:

- -The climate zone where the unit is installed. See table 19.
- -The setpoint requirement published by the California Energy Commission. See Section 140.4 - Prescriptive Requirements for Space Conditioning Systems of the 2013 Building Energy Efficiency Standards.

**NOTE** - Values in the referenced standard will supersede values listed in table 19.

TABLE 19
FREE COOLING SETPOINT - SINGLE SENSIBLE

| Climate Zone   | Setpoint |
|----------------|----------|
| 1, 3, 5, 11-16 | 75°F     |
| 2, 4, 10       | 73°F     |
| 6, 8, 9        | 71°F     |
| 7              | 69°F     |

To adjust the setpoint, navigate to the "SETPOINTS" menu and change the "DRYBLB SET" parameter accordingly.

## Single OA Enthalpy Sensing (Optional) -

The controller uses enthalpy boundary "curves" for economizing when used with an enthalpy sensor. Refer to the Honeywell installation instruction for details.

## **Differential Sensing (Optional) -**

Two sensors can be used to compare outdoor air to return air. When outdoor air is cooler than return air, outdoor air is suitable for free cooling. When return air is cooler than outdoor air, the damper will modulate to the minimum position.

#### **DAMPER MINIMUM POSITION**

NOTE - 24 volts must be provided at unit TB1 terminals **R** and **OC** to enable economizer operation (allowing minimum fresh air). Typically a separately ordered thermostat or energy management system with an occupied/unoccupied output is connected between TB1 **R** and **OC** terminals. The thermostat will provide 24 volts to the A6 economizer control during the occupied time period to enable economizer minimum position. If a device is not used to enable the economizer, install a jumper wire between TB1 terminals **R** and **OC** to maintain minimum position continuously. See figure 23.

#### **UNITS WITH 1-SPEED SUPPLY AIR BLOWER**

- Set thermostat to occupied mode if the feature is available. Make sure jumper is in place between TB1 terminals R and OC if using a thermostat which does not have the feature.
- 2. Turn on the blower using the thermostat or a jumper between TB1 terminals R and G.
- 3. Navigate to the "SETPOINTS" menu and select "MIN POS". Adjust value (2-10VDC) to the approximate desired fresh air percentage.

3.0 VDC - 12% Open Damper

3.5 VDC - 18% Open Damper

4.0 VDC - 25% Open Damper

4.5 VDC - 31% Open Damper

5.0 VDC - 37% Open Damper

5.5 VDC - 43% Open Damper

6.0 VDC - 50% Open Damper

**NOTE** - Damper minimum position can be set lower than traditional minimum air requirements when an IAQ sensor is specified.

- Measure outdoor air temperature. Mark the point on the bottom line of chart 1 figure 24 and label the point "A" (40°F, 4°C shown).
- Measure return air temperature. Mark that point on the top line of chart 1 and label the point "B" (74°F, 23°C shown).
- Measure mixed air (outdoor and return air) temperature. Mark that point on the top line of chart 1 and label point "C" (70°F, 21°C shown).
- 7. Draw a straight line between points A and B.
- 8. Draw a vertical line through point C.
- 9. Draw a horizontal line where the two lines meet. Read the percent of fresh air intake on the side.
- 10. Repeat steps 3 through 8 until calculation reads desired fresh air percentage.

If fresh air percentage is less than desired, use the A6 keypad to adjust "MIN POS" values higher (further open). If fresh air percentage is more than desired, adjust "MIN POS" values lower (less open). Repeat steps

3 through 8 until calculation reads desired fresh air percentage.

#### **UNITS WITH 2-SPEED SUPPLY AIR BLOWER**

**NOTE** - AFTER setting minimum positions, set the "VENT SPEED" switch on the VFD control board to "LO". See figure 25. Minimum position potentiometers do not function when the unit is equipped with a W7220 economizer control.

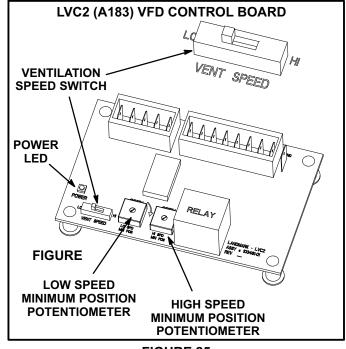



FIGURE 25

- Set thermostat to occupied mode if the feature is available. Make sure a jumper is in place between TB1 terminals R and OC when using a thermostat which does not have this feature.
- Minimum damper position setting Low Speed Switch the blower speed setting on the VFD control board to "LO".
- Turn on the indoor blower using the thermostat or by placing a jumper between TB1 terminals R and G. The inverter or variable frequency drive (VFD) should display "40.00Hz".
- 4. Navigate to the "SETPOINTS" menu and select "MIN POS L". Adjust value (2-10VDC) to the approximate desired fresh air percentage and save the input.

3.0 VDC - 12% Open Damper

3.5 VDC - 18% Open Damper

4.0 VDC - 25% Open Damper

4.5 VDC - 31% Open Damper

5.0 VDC - 37% Open Damper

5.5 VDC - 43% Open Damper

6.0 VDC - 50% Open Damper

**NOTE** - Damper minimum position can be set lower than traditional minimum air requirements when an IAQ sensor is specified.

- 5. Navigate to the "CHECKOUT" menu and select "VMAX-LS". Press ← ✓.
- 6. Display will read "DAMPER VMAX-LS RUN?".

  Press ← ✓.
- 7. Damper will drive to the setpoint value stored in step 4..
- 8. Measure outdoor air temperature. Mark the point on the bottom line of chart 1 figure 24 and label the point "A" (40°F, 4°C shown).
- 9. Measure return air temperature. Mark that point on the top line of chart 1 and label the point "B" (74°F, 23°C shown).
- 10. Measure mixed air (outdoor and return air) temperature. Mark that point on the top line of chart 1 and label point "C" (70°F, 21°C shown).
- 11. Draw a straight line between points A and B.
- 12. Draw a vertical line through point C.
- 13. Draw a horizontal line where the two lines meet. Read the percent of fresh air intake on the side.
- 14. Repeat steps 4 through 13 until calculation reads desired fresh air percentage.

If fresh air percentage is less than desired, use the A6 keypad to adjust "MIN POS L" values higher (further open). If fresh air percentage is more than desired, adjust "MIN POS L" values lower (less open).

- 15. Minimum damper position setting High Speed Switch the blower speed setting on the VFD control board to "HI". The VFD should display "60.00HZ".
- 16. Navigate to the "SETPOINTS" menu and select "MIN POS H". Adjust value (2-10VDC) to the approximate desired fresh air percentage.

3.0 VDC - 12% Open Damper

3.5 VDC - 18% Open Damper

4.0 VDC - 25% Open Damper

4.5 VDC - 31% Open Damper

5.0 VDC - 37% Open Damper

5.5 VDC - 43% Open Damper

6.0 VDC - 50% Open Damper

**NOTE** - Damper minimum position can be set lower than traditional minimum air requirements when an IAQ sensor is specified.

- 17. Navigate to the "CHECKOUT" menu and select "VMAX-HS". Press ← ✓.
- 18. Display will read "DAMPER VMAX-HS RUN?". Press ← ✓.
- 19. Damper will drive to the setpoint value stored in step 16..
- 20. Measure outdoor air temperature. Mark the point on the bottom line of chart 1 and label the point "A" (40°F, 4°C shown).
- 21. Measure return air temperature. Mark that point on the top line of chart 1 and label the point "B" (74°F, 23°C shown).
- 22. Measure mixed air (outdoor and return air) temperature. Mark that point on the top line of chart 1 and label point "C" (70°F, 21°C shown).
- 23. Draw a straight line between points A and B.
- 24. Draw a vertical line through point C.
- 25. Draw a horizontal line where the two lines meet. Read the percent of fresh air intake on the side.
- 26. Repeat steps 16 through 25 until calculation reads desired fresh air percentage.

If fresh air percentage is less than desired, use the A6 keypad to adjust "MIN POS H" values higher (further open). If fresh air percentage is more than desired, adjust "MIN POS H" values lower (less open).

27. Set the "VENT SPEED" switch on the VFD control board to "LO".

## **DEMAND CONTROL VENTILATION (DCV) 5-**

When a 2-10VDC CO<sub>2</sub> sensor is wired to the controller (leads provided), the *DCV SET, VENTMIN*, and *VENTMAX* parameters will appear under "*SETPOINTS*" menu. Navigate to the "*SETPOINTS*" menu to adjust setpoints as desired. Refer to the Honeywell manual provided for more details.

#### **E-Outdoor Air Dampers**

(C1DAMP10C-2) Both manual and motorized (C1DAMP20C-1) outdoor air dampers are available for use with KCB units to allow outside air into the system (see figure 26). The motorized damper assembly opens to minimum position during the occupied time period and remains closed during the unoccupied period. Manual damper assembly position is set at installation and remains in that position. Washable filter supplied with the outdoor air dampers can be cleaned with water and a mild detergent. It should be sprayed with Filter Handicoater when dry prior to reinstallation. Filter Handicoater is R.P. Products coating no. 418 and is available as Part No. P-8-5069.

Follow the steps to determine fresh air percentage

- 1- Measure outdoor air temperature. Mark the point on the bottom line of chart 1 and label the point "A" (40°F, 4°C shown).
- 2- Measure return air temperature. Mark that point on the top line of chart 1 and label the point "B" (74°F, 23°C shown).
- 3- Measure mixed air (outdoor and return air) temperature. Mark that point on the top line of chart 1 and label point "C" (70°F, 21°C shown).
- 4- Draw a straight line between points A and B.
- 5- Draw a vertical line through point C.
- 6- Draw a horizontal line where the two lines meet. Read the percent of fresh air intake on the side.
- 7- If fresh air percentage is less than desired, adjust thumb wheel higher. If fresh air percentage is more than desired, adjust thumb wheel lower. Repeat steps until calculation reads desired fresh air percentage. See figure 27.

Set damper minimum position in the same manner as economizer minimum position. Adjust motorized damper position using the thumb wheel on the damper motor. See figure 27. Manual damper fresh air intake percentage can be determined in the same manner.

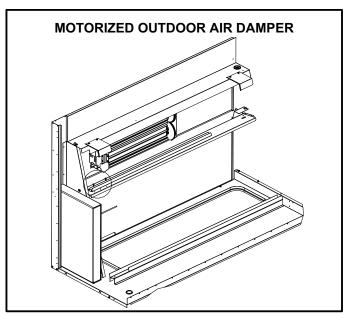



FIGURE 26

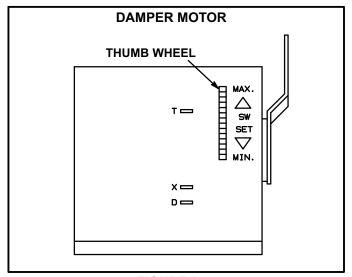



FIGURE 27

# F-Barometric Relief/Gravity Exhaust Dampers

C1DAMP50C dampers (figure 28) are used in downflow and LAGED(H)18/24 are used in horizontal air discharge applications. LAGED(H) barometric relief / gravity exhaust dampers are installed in the return air plenum. The dampers must be used any time an economizer or power exhaust fan is applied to KCB series units.

Barometric relief / gravity exhaust dampers allow exhaust air to be discharged from the system when an economizer and/or power exhaust is operating. The dampers also prevent outdoor air infiltration during unit off cycle. See installation instructions for more detail.

#### **G-C1PWRE11C Power Exhaust Fans**

C1PWRE11C power exhaust fans are used in downflow applications only. The fans require optional downflow barometric relief / gravity exhaust dampers and K1ECON economizers. Power exhaust fans provide exhaust air pressure relief and also run when return air dampers are closed and supply air blowers are operating. Figure 28 shows the location of the C1PWRE11C. See installation instructions for more detail.

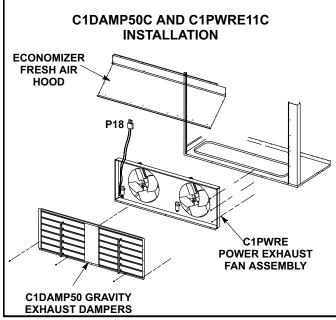



FIGURE 28

# **H-Control Systems**

Different types of control systems may be used with the KCB series units. All thermostat wiring is connected to terminal block TB1 located in the control box of the unit. Each thermostat has additional control options available. See thermostat installation instructions for more detail.

#### I-Smoke Detectors A171 and A172

Photoelectric smoke detectors are a field-installed option. The smoke detectors can be installed in the supply air section (A172), return air section (A171), or in both the supply and return air section.

## J-Indoor Air Quality (CO<sub>2</sub>) Sensor A63

The indoor air quality sensor monitors  $CO_2$  levels and reports the levels to the economizer control module A6. The board adjusts the economizer dampers according to the  $CO_2$  levels. The sensor is mounted next to the indoor thermostat or in the return air duct. Refer to the indoor air quality sensor installation instructions for proper adjustment.

#### K-UVC Kit

UVC germicidal lamps are a field-installed option. The lamp emits ultraviolet light that greatly reduces the growth and proliferation of mold and other bio-aerosols on illuminated surfaces. The lamp is mounted in the blower compartment with the light directed towards the indoor coil. For more details refer to the installation instructions provided with the UVC lamp.

## L-Drain Pan Overflow Switch S149 (optional)

The overflow switch is used to interrupt cooling operation when excessive condensate collects in the drain pan. The N.O. overflow switch is controlled by K220 and DL46 relays, located in the unit control panel. When the overflow switch closes, 24VAC power is interrupted and after a five-second delay unit compressors are de-energized. Once the condensate level drops below the set level, the switch will open. After a five-minute delay the compressor will be energized.

# M-Supply Air Inverter Start-Up

#### **A-General**

Optional VFD units are available which provide two blower speeds. The blower will operate at lower speeds when cooling demand is low and higher speeds when cooling demand is high. This results in lower energy consumption.

VFD units will operate at high speed during ventilation (blower "G" only signal) but can be adjusted to operate at low speed.

Low speed is approximately 2/3 of the full speed RPM.

#### **B-Set Maximum Blower CFM**

- 1- Initiate a blower (G) only signal from the room thermostat or control system.
- 2- Adjust the blower pulley to deliver the full (high speed) CFM in the typical manner. See *Determining Unit CFM* in the Blower Operation and Adjustment section.

#### **C-Set Blower Speed During Ventilation**

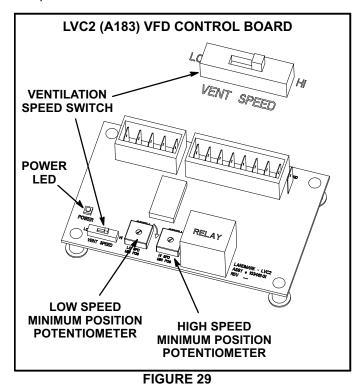
To save energy during ventilation, the blower speed can be set to low. This is accomplished by changing the ventilation speed switch on the VFD control board to "LO". See figure 29.

NOTE - On units equipped with an economizer, set damper minimum position as shown in the next section. After adjusting the low speed minimum position, the ventilation speed switch will be in the "LO" position.

#### D-Set Damper Minimum Position (Units W/ Economizer)

To maintain required minimum ventilation air volumes when the unit is in the occupied mode, two minimum damper positions must be set. A high and a low speed potentiometer are provided on the VFD control board to adjust minimum damper position. See figure 29.

#### **Set High Speed Minimum Position**


- 1. Initiate a blower (G) only AND occupied demand from the room thermostat or control system.
- 2. Set the ventilation speed switch on the VFD control board to "HI".
- Rotate the high speed potentiometer on the VFD control board to set the high speed minimum damper position
- 4. Measure the intake air CFM. If the CFM is lower than the design specified CFM for ventilation air, use the potentiometer to increase the damper percent open. If the CFM is higher than specified, decrease the damper percent open.

NOTE - Intake air CFM can also be determined using the outdoor air temperature, return air temperature and mixed air temperature. Refer to the economizer or outdoor air damper installation instructions.

#### **Set Low Speed Minimum Position**

- 1. Initiate a blower (G) only AND occupied demand from the room thermostat or control system.
- 2. Set the ventilation speed switch on the VFD control board to "LO".
- 3. Rotate the low speed potentiometer on the VFD control board to set the low speed minimum damper position.
- 4. Measure the intake air CFM. If the CFM is lower than the design specified CFM for ventilation air, use the potentiometer to increase the damper percent open. If the CFM is higher than specified, decrease the damper percent open.

NOTE - Intake air CFM can also be determined using the outdoor air temperature, return air temperature and mixed air temperature. Refer to the economizer or outdoor air damper installation instructions.



#### **Troubleshoot LVC2 Board (A183)**

Refer to wiring diagram sections B (unit), C (control) and D (economizer) located on inside of unit panels.

- 1- Inspect the LVC2 for damaged components. Replace the LVC2 if damaged components are found.
- 2- Check all wire connections to LVC2; secure if loose.
- 3- Check for 24VAC signal at the thermostat blower input (G to GND terminal). See figure 30.

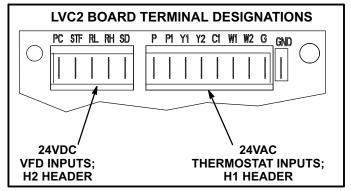



FIGURE 30

- 4- If there is no thermostat signal, troubleshoot back toward the thermostat.
- 5- Check the power LED on the board. See figure 29.
- 6- If the power LED is not on, check voltage between LVC2 terminals PC (H2-1) and SD (H2-5). Voltage should read 24VDC.
- 7- If voltage does not read 24VDC, disconnect the H2 header from the LVC2 VFD inputs terminal block (to make sure the LVC2 is not shorting 24VDC supply from the inverter). Measure the voltage between the end terminals on the H2 header. If 24VDC is present, replace the LVC2 board. If no voltage is read, troubleshoot the VFD.
- 8- When LVC2 24VAC thermostat blower (G) input and 24VDC power are present, check the LVC2 low and high speed outputs. The LVC2 uses inverse logic to enable the blower; 1VDC will be read at the enabled blower speed terminal. See table 20.
- 9- If all inputs are correct and the unit still does not operate as intended, replace LVC2 board.

TABLE 20 LVC2 BOARD BLOWER OUTPUTS

| Output<br>Terminals | Voltage | Blower Operation |  |
|---------------------|---------|------------------|--|
| RL-SD               | 1VDC    | Low Spood        |  |
| RH-SD               | 24VDC   | Low Speed        |  |
| RL-SD               | 24VDC   | High Speed       |  |
| RH-SD               | 1VDC    | riigii Speed     |  |
| RL-SD               | 1VDC    | Illegal State    |  |
| RH-SD               | 1VDC    | (replace board)  |  |
| RL-SD               | 24VDC   | Blower Off       |  |
| RH-SD               | 24VDC   | (replace board)  |  |

# **N-Hot Gas Re-Heat Operation**

#### General

Hot gas reheat units provide a dehumidifying mode of operation. These units contain a reheat coil adjacent to and downstream of the evaporator coil. Reheat coil solenoid valves, L14 and L30, route hot discharge gas from the compressor to the reheat coil. Return air pulled across the evaporator coil is cooled and dehumidified; the reheat coil adds heat to supply air.

See figure 31 for 180S, 210S, and 240S reheat refrigerant routing and figure 32 for 180S, 210S, and 240S normal cooling refrigerant routing. See figure 33 for 300S reheat refrigerant routing and figure 34 for 300S normal cooling refrigerant routing.

#### L14 and L30 Reheat Coil Solenoid Valves

When room conditions close the dehumidistat switch, L14 and L30 reheat valves are energized and refrigerant is routed to the reheat coil.

#### **Check-Out**

Test hot gas reheat operation using the following procedure.

- 1- Make sure reheat is wired as shown in wiring section.
- 2- Initiate a dehumidification demand by adjusting dehumidistat setpoint knob BELOW indoor relative humidity. The blower, compressor 1 and compressor 2 should be operating.
- 3- End a dehumidification demand by adjusting setpoint knob ABOVE indoor relative humidity. The blower, compressor 1, and compressor 2 should deenergize.

Note - When a reheat demand is present, the blower will operate on high speed.

#### **Default Reheat Operation**

Reheat will operate as shown in table 21 once three conditions are met:

- 1- Blower must be operating.
- 2- System must be in occupied mode.
- 3- System must NOT be operating in heating mode.

IMPORTANT - Free cooling does not operate during reheat.

# TABLE 21 REHEAT OPERATION

| Two-Stage Thermostat        |                                                               |                                                                   |
|-----------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|
| Tigtet and Humidity Demands | Operation                                                     |                                                                   |
| T'stat and Humidity Demands | 180S, 210S, 240S (3-Compressors)                              | 300S (4-Compressors)                                              |
| Reheat Only                 | Compressor 1 & 2 Reheat                                       | Compressor 1 & 2 Reheat                                           |
| Reheat & Y1                 | Compressor 1 & 2 Reheat and Compressor 3 Cooling <sup>1</sup> | Compressor 1 & 2 Reheat and Compressor 3 & 4 Cooling <sup>1</sup> |
| Reheat & Y1 & Y2            | Compressor 1, 2, & 3 Cooling <sup>2</sup>                     | Compressor 1, 2, 3 & 4 Cooling <sup>2</sup>                       |

<sup>\*</sup>Cooling stage is initiated when zone temperature is higher than the cooling setpoint plus the appropriate stage differential.

<sup>\*\*</sup>Reheat demand is initiated when relative humidity is higher than relative humidity setpoint.

<sup>&</sup>lt;sup>1</sup>If there is no reheat demand and outdoor air is suitable, free cooling will operate.

<sup>&</sup>lt;sup>2</sup>If there is no reheat demand and outdoor air is suitable, free cooling and compressor 1 and 2 will operate.

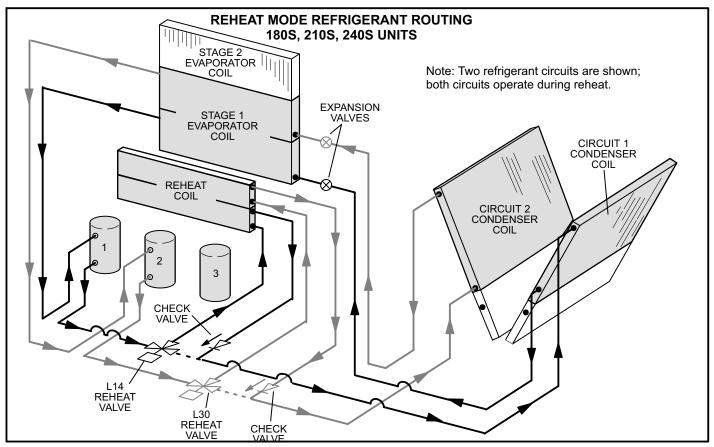



FIGURE 31

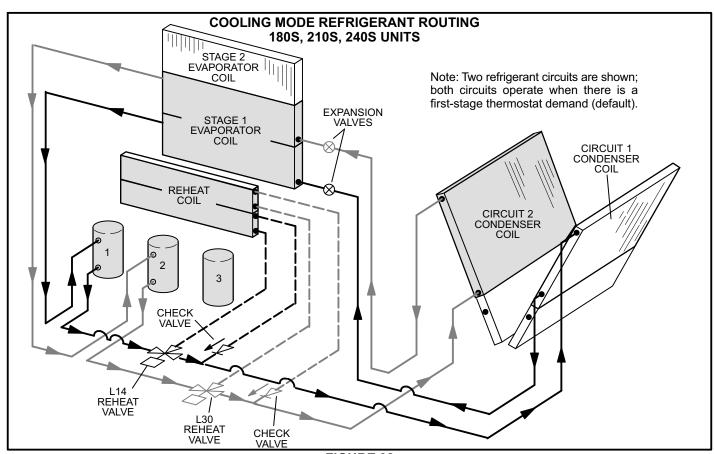



FIGURE 32

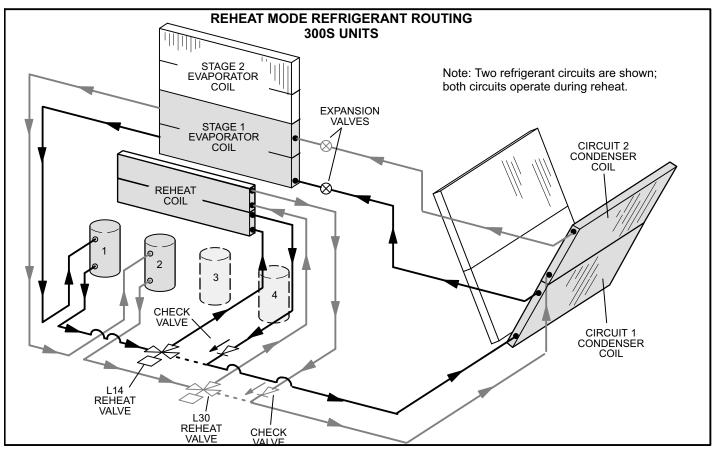



FIGURE 33

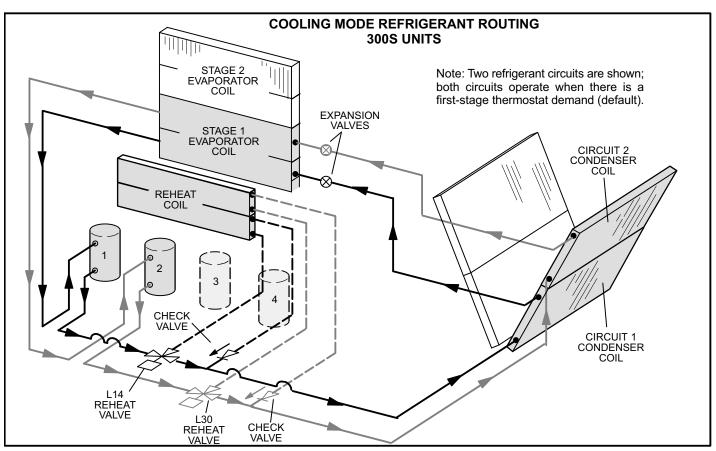



FIGURE 34



# KCB180S, 210S UNIT DIAGRAM KEY

| KEY  | COMPONENT DESCRIPTION           |
|------|---------------------------------|
| A42  | MONITOR, PHASE DETECTION        |
| A171 | SENSOR ONE, SMOKE, RETURN AIR   |
| A172 | SENSOR TWO, SMOKE, SUPPLY AIR   |
| A173 | MODULE, CONTROL SMOKE DETECTION |
| B1   | COMPRESSOR 1                    |
| B2   | COMPRESSOR 2                    |
| В3   | MOTOR, BLOWER                   |
| B4   | MOTOR, OUTDOOR FAN 1            |
| B5   | MOTOR, OUTDOOR FAN 2            |
| B10  | MOTOR, EXHAUST FAN 1            |
| B11  | MOTOR, EXHAUST FAN 2            |

| S31  | SWITCH, HIGH TEMP LIMIT COMP 3     |
|------|------------------------------------|
| S42  | SWITCH, OVERLOAD BLOWER MOTOR      |
| S48  | SWITCH, DISCONNECT                 |
| S49  | SWITCH, FREEZESTAT COMP 1          |
| S50  | SWITCH, FREEZESTAT COMP 2          |
| S53  | SWITCH, FREEZESTAT COMP 3          |
| S149 | SWITCH, OVERFLOW                   |
| T1   | TRANSFORMER, CONTROL               |
| T18  | TRANSFORMER, REHEAT                |
| TB13 | TERMINAL STRIP, POWER DISTRIBUTION |

| B13        | COMPRESSOR 3                     |
|------------|----------------------------------|
| B21        | MOTOR, OUTDOOR FAN 3             |
| C1         | CAPACITOR, OUTDOOR FAN 1         |
| C2         | CAPACITOR, OUTDOOR FAN 2         |
| C6         | CAPACITOR, EXHAUST FAN 1         |
| C8         | CAPACITOR, EXHAUST FAN 2         |
| C18        | CAPACITOR, OUTDOOR FAN 3         |
| CB8        | CIRCUIT, BREAKER T1              |
| CB10       | CIRCUIT, BREAKER MAIN DISCONNECT |
| DL46       | DELAY, OVERFLOW SWITCH           |
| HR1        | HEATER, COMPRESSOR 1             |
| HR2        | HEATER, COMPRESSOR 2             |
| HR5        | HEATER, COMPRESSOR 3             |
| J11        | GFI RECEPTICLE                   |
| K1,-1,2    | CONTACTOR, COMPRESSOR 1          |
| K2,-1,2    | CONTACTOR, COMPRESSOR 2          |
| K3, -1     | CONTACTOR, BLOWER                |
| K10,-1,2,3 | RELAY, OUTDOOR FAN S             |
| K14, -1,2  | CONTACTOR, COMPRESSOR 3          |
| K65-1,2    | RELAY, EXHAUST FAN 1             |
| K66,-1     | RELAY, STAGE COOL 1              |
| K220, -1   | RELAY, OVERFLOW SWITCH           |
| S4         | SWITCH, LIMIT HI PRESS COMP 1    |
| S5         | SWITCH, HIGH TEMP LIMIT COMP 1   |
| S7         | SWITCH, LIMIT HI PRESS COMP 2    |
| S8         | SWITCH, HIGH TEMP LIMIT COMP 2   |
| S11        | LOW AMBIENT KIT CONNECTION       |
| S28        | SWITCH, LIMIT HI PRESS COMP 3    |

| J/P | JACK/PLUG DESCRIPTION             |
|-----|-----------------------------------|
| 2   | HEAT                              |
| 18  | EXHAUST FAN COMPT                 |
| 24  | EXHAUST FAN                       |
| 35  | RUN TEST                          |
| 36  | RUN TEST OUTDOOR FANS             |
| 86  | OUTDOOR FANS 1,2,3                |
| 132 | BLOWER, EXHAUST FAN MOTOR 1       |
| 133 | BLOWER, EXHAUST FAN MOTOR 2       |
| 250 | SMOKE DETECTOR ONE                |
| 251 | SMOKE DETECTOR ONE                |
| 252 | SMOKE DETECTOR TWO                |
| 253 | SMOKE DETECTOR TWO                |
| 255 | MODULE, CONTROL SMOKE DETECTION   |
| 261 | SMOKE DETECTOR JUMPER             |
| 324 | VFD OPTION CONNECTION             |
| 325 | K3 BLOWER CONTROL                 |
| 326 | PHASE MONITOR/ VFD CONTROL ADD ON |
| 327 | PHASE MONITOR/ VFD CONTROL ADD ON |

#### KCB180S, 210S SEQUENCE OF OPERATION

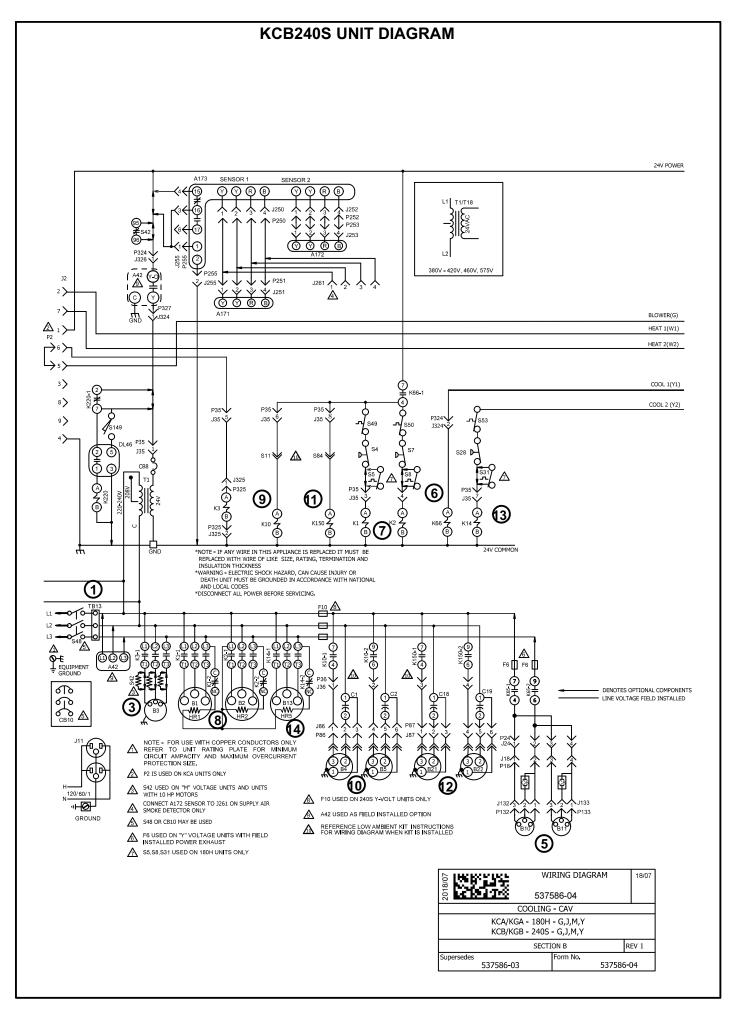
#### Power:

1- Line voltage from unit disconnect S48 or TB13 energizes transformer T1 and T18. T1 and T18 provide 24VAC to the unit cooling, heating and blower controls and TB1.

#### **Blower Operation:**

- 2- Demand from thermostat terminal G energizes blower contactor K3 with 24VAC.
- 3- N.O. K3 closes, energizing blower B3.

#### **Optional Power Exhaust Operation:**


- 4- The economizer control module receives a demand and energizes exhaust fan relay K65 with 24VAC at 50% outside air damper open (adjustable).
- 5- N.O. K65-1 and N.O. K65-2 both close, energizing exhaust fan motors B10 and B11.

#### 1st Stage Cooling (compressor B1 and B2)

- 6- Y1 energizes the pilot relay K66 and N.O. K66-1 closes.
- 7- 24VAC is routed from T1 to N.C. freezestats S49 and S50 and N.C. high pressure switch S4 and S7. Compressor contactors K1 and K2 are energized.
- 8- N.O. contacts K1 and K2 close energizing compressors B1 and B2.
- 9- Optional N.O. low ambient switch S11 closes to energize condenser fan relay K10.
- 10-N.O. contacts K10-1, K10-2, and K10-3 close energizing condenser fan B4, B5 and B21.

#### 2nd Stage Cooling (compressor B13 is energized)

- 11-Y2 energizes the compressor contactor K14.
- 12-N.O. K14 closes energizing compressor B13.



# **KCB240S UNIT DIAGRAM KEY**

| KEY  | COMPONENT                       |
|------|---------------------------------|
| A42  | MONITOR, PHASE PROTECTION       |
| A171 | SENSOR ONE, SMOKE, RETURN AIR   |
| A172 | SENSOR TWO, SMOKE, SUPPLY AIR   |
| A173 | MODULE, CONTROL SMOKE DETECTION |
| B1   | COMPRESSOR 1                    |
| B2   | COMPRESSOR 2                    |
| B3   | MOTOR, BLOWER                   |
| B4   | MOTOR, OUTDOOR FAN 1            |
| B5   | MOTOR, OUTDOOR FAN 2            |
| B10  | MOTOR, EXHAUST FAN 1            |
| B11  | MOTOR, EXHAUST FAN 2            |
| B13  | COMPRESSOR 3                    |

| 104 | CWITCH LIMIT III DDECC COMP 4       |
|-----|-------------------------------------|
| S4  | SWITCH, LIMIT HI PRESS COMP 1       |
| S5  | SWITCH, LIMIT HI TEMP LIMIT COMP 1  |
| S7  | SWITCH, LIMIT HI PRESS COMP 2       |
| S8  | SWITCH, LIMIT HI TEMP LIMIT COMP 2  |
| S11 | LOW AMBIENT KIT CONNECTION          |
| S28 | SWITCH, LIMIT HI PRESS COMP 3       |
| S31 | SWITCH, HI TEMP LIMIT COMP 3        |
| S42 | SWITCH, OVERLOAD RELAY BLOWER MOTOR |
| S48 | SWITCH, DISCONNECT                  |
| S49 | SWITCH, FREEZESTAT COMP 1           |
| S50 | SWITCH, FREEZESTAT COMP 2           |
| S53 | SWITCH, FREEZESTAT COMP 3           |
| S84 | LOW AMBIENT KIT CONNECTION          |

| B21       | MOTOR, OUTDOOR FAN 3             |
|-----------|----------------------------------|
| B22       | MOTOR, OUTDOOR FAN 4             |
| C1        | CAPACITOR, OUTDOOR FAN 1         |
| C2        | CAPACITOR, OUTDOOR FAN 2         |
| C6        | CAPACITOR, EXHAUST FAN 1         |
| C8        | CAPACITOR, EXHAUST FAN 2         |
| C18       | CAPACITOR, OUTDOOR FAN 3         |
| C19       | CAPACITOR, OUTDOOR FAN 4         |
| CB8       | CIRCUIT, BREAKER T1              |
| CB10      | CIRCUIT, BREAKER MAIN DISCONNECT |
| DL46      | DELAY, OVERFLOW SWITCH           |
| HR1       | CRANKCASE HEATER, COMPRESSOR 1   |
| HR2       | CRANKCASE HEATER, COMPRESSOR 2   |
| HR5       | CRANKCASE HEATER, COMPRESSOR 3   |
| F6        | FUSE, EXHAUST FANS               |
| F10       | FUSE, OUTDOOR FANS               |
| J11       | JACK, GFI, RECEPTICLE            |
| K1,-1,2   | CONTACTOR, COMPRESSOR 1          |
| K2,-1,2   | CONTACTOR, COMPRESSOR 2          |
| K3, -1    | CONTACTOR, BLOWER                |
| K10,-1,2  | RELAY, OUTDOOR FAN               |
| K14, -1,2 | CONTACTOR, COMPRESSOR 3          |
| K65-1,2   | RELAY, EXHAUST FAN 1             |
| K66,-1    | RELAY, STAGE COOL 1              |
| K150,-1,2 | RELAY, OUTDOOR FAN 3, 4          |
| K220, -1  | RELAY, OVERFLOW SWITCH           |

| S149 | SWITCH, OVERFLOW                   |
|------|------------------------------------|
| T1   | TRANSFORMER, CONTROL               |
| T18  | TRANSFORMER, REHEAT CONTROL        |
| TB13 | TERMINAL BLOCK, POWER DISTRIBUTION |

| J/P | JACK/PLUG DESCRIPTION             |  |  |  |
|-----|-----------------------------------|--|--|--|
| 2   | HEAT                              |  |  |  |
| 18  | EXHAUST FAN COMPT                 |  |  |  |
| 24  | EXHAUST FAN                       |  |  |  |
| 35  | RUN TEST                          |  |  |  |
| 36  | RUN TEST OUTDOOR FANS             |  |  |  |
| 86  | OUTDOOR FANS 1, 2                 |  |  |  |
| 87  | OUTDOOR FANS 3, 4                 |  |  |  |
| 132 | BLOWER , EXHAUST FAN MOTOR 1      |  |  |  |
| 133 | BLOWER , EXHAUST FAN MOTOR 2      |  |  |  |
| 250 | SMOKE DETECTOR ONE                |  |  |  |
| 251 | SMOKE DETECTOR ONE                |  |  |  |
| 252 | SMOKE DETECTOR TWO                |  |  |  |
| 253 | SMOKE DETECTOR TWO                |  |  |  |
| 255 | MODULE, CONTROL SMOKE DETECTION   |  |  |  |
| 261 | SMOKE DETECTOR JUMPER             |  |  |  |
| 324 | VFD OPTION CONNECTION             |  |  |  |
| 325 | K3 BLOWER CONTROL                 |  |  |  |
| 326 | PHASE MONITOR/ VFD CONTROL ADD ON |  |  |  |
| 327 | PHASE MONITOR/ VFD CONTROL ADD ON |  |  |  |

#### KCB240S SEQUENCE OF OPERATION

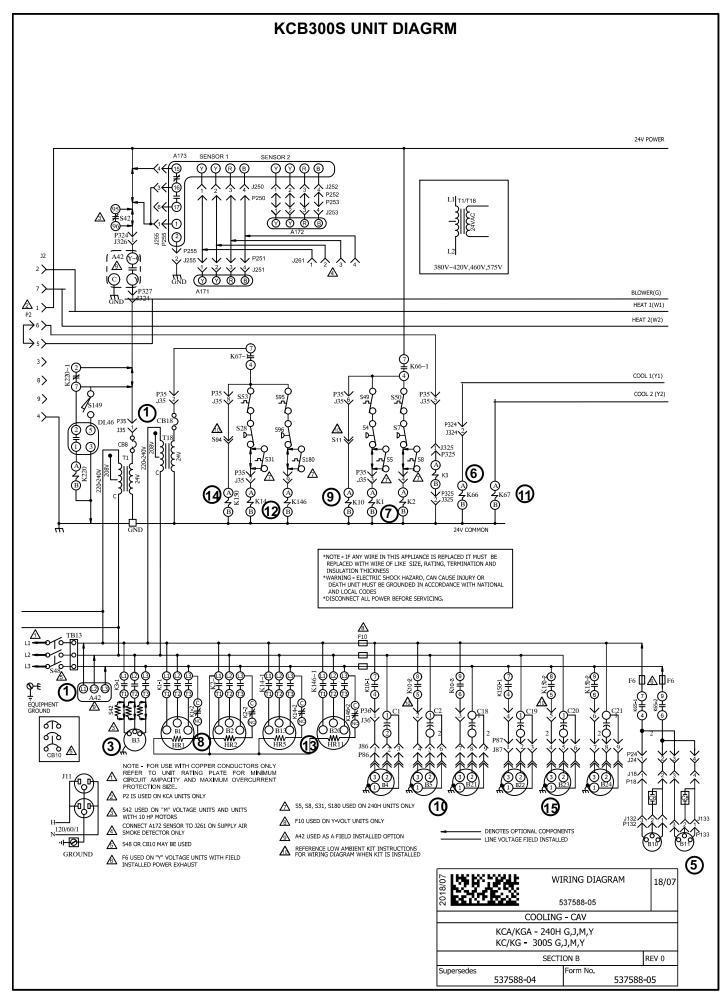
#### Power:

1- Line voltage from unit disconnect S48 or TB13, energizes transformer T1 and T18. T1 and T18 provide 24VAC to the unit cooling, heating and blower controls and TB1.

#### **Blower Operation:**

- 2- Demand from thermostat terminal G energizes blower contactor K3 with 24VAC.
- 3- N.O. K3 closes, energizing blower B3.

#### **Optional Power Exhaust Operation:**


- 4- The economizer control module receives a demand and energizes exhaust fan relay K65 with 24VAC at 50% outside air damper open (adjustable).
- 5- N.O. K65-1 and N.O. K65-2 both close, energizing exhaust fan motors B10 and B11.

#### 1st Stage Cooling (compressor B1 and B2)

- 6- Y1 energizes the pilot relay K66 and N.O. K66-1 closes.
- 7- 24VAC is routed from T1 to N.C. freezestats S49 and S50 and N.C. high pressure switches S4 and S7. Compressor contactor K1 and K2 is energized.
- 8- N.O. contacts K1 and K2 closes energizing compressor B1 and B2.
- 9- Optional N.O. low ambient switch S11 closes to energize condenser fan relay K10.
- 10-N.O. contacts K10-1 and K10-2 close energizing condenser fan B4 and B5.
- 11- Optional N.O. low ambient switch S84 closes to energize condenser fan relay K150.
- 12-N.O. contacts K150-1 and K150-2 close energizing condenser fan B21 and B22.

#### 2nd Stage Cooling (compressor B13 is energized)

- 13-24VAC is routed from T18 to N.C. freezestat S53 and N.C. high pressure switch S28. Compressor contactor K14 is energized.
- 14-N.O. K14 closes energizing compressor B13.



# **KCB300S UNIT DIAGRM KEY**

| KEY  | COMPONENT                       |  |  |  |
|------|---------------------------------|--|--|--|
| A42  | MONITOR, PHASE PROTECTION       |  |  |  |
| A171 | SENSOR ONE, SMOKE, RETURN AIR   |  |  |  |
| A172 | SENSOR TWO, SMOKE, SUPPLY AIR   |  |  |  |
| A173 | MODULE, CONTROL SMOKE DETECTION |  |  |  |
| B1   | COMPRESSOR 1                    |  |  |  |
| B2   | COMPRESSOR 2                    |  |  |  |
| В3   | MOTOR, BLOWER                   |  |  |  |
| B4   | MOTOR, OUTDOOR FAN 1            |  |  |  |
| B5   | MOTOR, OUTDOOR FAN 2            |  |  |  |
| B10  | MOTOR, EXHAUST FAN 1            |  |  |  |
| B11  | MOTOR, EXHAUST FAN 2            |  |  |  |
| B13  | COMPRESSOR 3                    |  |  |  |

| K10,-1,2,3                    | RELAY, OUTDOOR FAN                 |  |
|-------------------------------|------------------------------------|--|
| K14,-1,2                      | CONTACTOR, COMPRESSOR 3            |  |
| K65-1,2                       | RELAY, EXHAUST FAN 1               |  |
| K66,-1                        | RELAY, STAGE COOL 1                |  |
| K67,-1                        | RELAY, STAGE COOL 2                |  |
| K146,-1,2                     | CONTACTOR, COMPRESSOR 4            |  |
| K150,-1,2,3                   | RELAY, OUTDOOR FAN \$ 4, 5, 6      |  |
| K220, -1                      | RELAY, OVERFLOW SWITCH             |  |
| S4                            | SWITCH, LIMIT HI PRESS COMP 1      |  |
| S5                            | SWITCH, LIMIT HI TEMP LIMIT COMP 1 |  |
| S7                            | SWITCH, LIMIT HI PRESS COMP 2      |  |
| S8                            | SWITCH, LIMIT HI TEMP LIMIT COMP 2 |  |
| S11 LOW AMBIENT KITCONNECTION |                                    |  |

| B20 | COMPRESSOR 4         |
|-----|----------------------|
| B21 | MOTOR, OUTDOOR FAN 3 |
| B22 | MOTOR, OUTDOOR FAN 4 |

| S28 | SWITCH, LIMIT HI PRESS COMP 3       |
|-----|-------------------------------------|
| S31 | SWITCH, HI TEMP LIMIT COMP 3        |
| S42 | SWITCH, OVERLOAD RELAY BLOWER MOTOR |

| B23                                   | MOTOR, OUTDOOR FAN 5           |  |  |  |
|---------------------------------------|--------------------------------|--|--|--|
| B24                                   | MOTOR, OUTDOOR FAN 6           |  |  |  |
| C1                                    | CAPACITOR, OUTDOOR FAN 1       |  |  |  |
| C2                                    | CAPACITOR, OUTDOOR FAN 2       |  |  |  |
| C6                                    | CAPACITOR, EXHAUST FAN 1       |  |  |  |
| C8                                    | CAPACITOR, EXHAUST FAN 2       |  |  |  |
| C18                                   | CAPACITOR, OUTDOOR FAN 3       |  |  |  |
| C19                                   | CAPACITOR, OUTDOOR FAN 4       |  |  |  |
| C20                                   | CAPACITOR, OUTDOOR FAN 5       |  |  |  |
| C21                                   | CAPACITOR, OUTDOOR FAN 6       |  |  |  |
| CB8                                   | CIRCUIT, BREAKER T1            |  |  |  |
| CB10 CIRCUIT, BREAKER MAIN DISCONNECT |                                |  |  |  |
| CB18                                  | CIRCUIT, BREAKER T18           |  |  |  |
| DL46                                  | DELAY, OVERFLOW SWITCH         |  |  |  |
| HR1                                   | CRANKCASE HEATER, COMPRESSOR 1 |  |  |  |
| HR2                                   | CRANKCASE HEATER, COMPRESSOR 2 |  |  |  |
| HR5                                   | CRANKCASE HEATER, COMPRESSOR 3 |  |  |  |
| HR11                                  | CRANKCASE HEATER, COMPRESSOR 4 |  |  |  |
| F6                                    | FUSE, EXHAUST FAN              |  |  |  |
| F10                                   | FUSE, OUTDOOR FANS             |  |  |  |
| J11                                   | JACK, GFI, RECEPTICLE          |  |  |  |
| K1,-1,2                               | CONTACTOR, COMPRESSOR 1        |  |  |  |
| K2,-1,2                               | CONTACTOR, COMPRESSOR 2        |  |  |  |
| K3, -1                                | CONTACTOR, BLOWER              |  |  |  |

| SWITCH, DISCONNECT                 |  |  |  |
|------------------------------------|--|--|--|
| SWITCH, FREEZESTAT COMP 1          |  |  |  |
| SWITCH, FREEZESTAT COMP 2          |  |  |  |
| SWITCH, FREEZESTAT COMP 3          |  |  |  |
| LOW AMBIENTKIT CONNECTION          |  |  |  |
| SWITCH, FREEZESTAT COMP 4          |  |  |  |
| SWITCH, LIMIT HIGH PRESS COMP 4    |  |  |  |
| SWITCH, OVERFLOW                   |  |  |  |
| SWITCH, HIGH TEMP COMP 4           |  |  |  |
| TRANSFORMER, CONTROL               |  |  |  |
| TRANSFORMER, CONTACTOR CONTROL     |  |  |  |
| TERMINAL BLOCK, POWER DISTRIBUTION |  |  |  |
|                                    |  |  |  |

| J/P | JACK/PLUG DESCRIPTION                                               |  |  |  |
|-----|---------------------------------------------------------------------|--|--|--|
| 2   | HEAT                                                                |  |  |  |
| 18  | EXHAUST FANS                                                        |  |  |  |
| 24  | EXHAUST FANS                                                        |  |  |  |
| 35  | RUN TEST                                                            |  |  |  |
| 36  | RUN TEST OUTDOOR FANS                                               |  |  |  |
| 86  | OUTDOOR FANS 1,2,3                                                  |  |  |  |
| 87  | OUTDOOR FANS 4,5,6                                                  |  |  |  |
| 132 | EXHAUST BLOWER FAN MOTOR 1                                          |  |  |  |
| 133 | EXHAUST BLOWER FAN MOTOR 2                                          |  |  |  |
| 250 | SMOKE DETECTOR ONE                                                  |  |  |  |
| 251 | SMOKE DETECTOR ONE                                                  |  |  |  |
| 252 | SMOKE DETECTOR TWO                                                  |  |  |  |
| 253 | SMOKE DETECTOR TWO                                                  |  |  |  |
| 255 | CONTROL MODULE SMOKE DETECTION                                      |  |  |  |
| 261 | SMOKE DETECTOR JUMPER                                               |  |  |  |
| 324 | VFD OPTION CONNECTION                                               |  |  |  |
| 325 | K3 BLOWER CONTROL                                                   |  |  |  |
| 326 | PHASE MONITOR/ VFD CONTROL ADD ON PHASE MONITOR/ VFD CONTROL ADD ON |  |  |  |
| 327 |                                                                     |  |  |  |

#### KCB300S SEQUENCE OF OPERATION

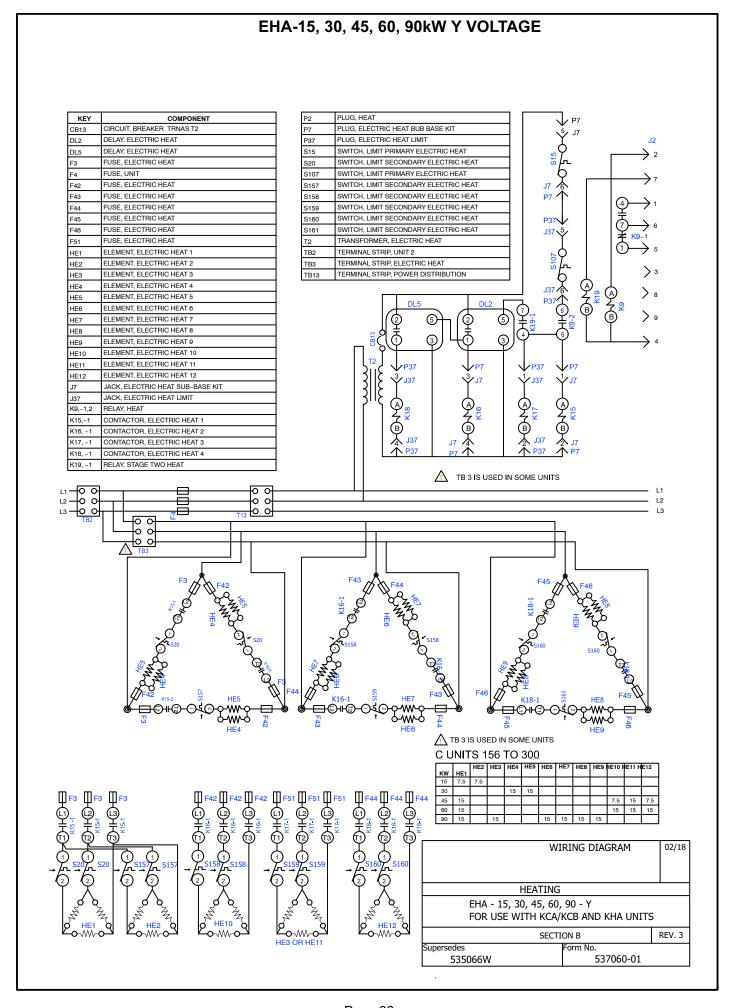
#### Power:

1- Line voltage from unit disconnect S48 or TB13, energizes transformer T1 and T18. T1 and T18 provide 24VAC to the unit cooling, heating and blower controls and TB1.

#### **Blower Operation:**

- 2- Demand from thermostat terminal G energizes blower contactor K3 with 24VAC.
- 3- N.O. K3 closes, energizing blower B3.

#### **Optional Power Exhaust Operation:**


- 4- The economizer control module receives a demand and energizes exhaust fan relay K65 with 24VAC at 50% outside air damper open (adjustable). See thermostat diagram.
- 5- N.O. K65-1 and N.O. K65-2 both close, energizing exhaust fan motors B10 and B11.

#### 1st Stage Cooling (compressor B1 and B2)

- 6- Y1 energizes the pilot relay K66 and N.O. K66-1 closes.
- 7- 24VAC is routed from T1 to N.C. freezestats S49 and S50 and N.C. high pressure switches S4 and S7. Compressor contactor K1 and K2 is energized.
- 8- N.O. contacts K1 and K2 close energizing compressor B1 and B2.
- 9- Optional N.O. low ambient switch S11 closes to energize condenser fan relay K10.
- 10- N.O. contacts K10-1, K10-2 and K10-3 close energizing condenser fans B4, B5 and B21.

#### 2nd Stage Cooling (compressor B13 is energized)

- 11- Y2 energizes the pilot relay K67 and N.O. K67-1 closes.
- 12- 24VAC is routed from T18 to N.C. freezestat S53, S95 and N.C. high pressure switch S28 and S96. Compressor contactors K14 and K146 are energized.
- 13- N.O. Contacts K14-1 close energizing compressor B13. N.O. Contacts K146-1 close energizing compressor B20.
- 14- S94 closes to energize condenser fan relay K150.
- 15- N.O. contacts K150-1, K150-2 and K150-3 close energizing condenser fan B22, B23 and B24.



#### EHA-15, 30, 45, 60, 90kW - G, J, M VOLTAGE COMPONENT **CB13** DELAY, ELECTRIC HEAT TERMINAL STRIP, UNIT 2 TB3 IS USED IN SOME UNITS DI 2 TB 2 TERMINAL STRIP, ELECTRIC HEAT DL5 DELAY, ELECTRIC HEAT ТВ 3 FUSE, ELECTRIC HEAT 1, 1A, 2A TERMINAL STRIP, UNIT 2 FUSE, ELECTRIC HEAT 3, 4 F43 F44 FUSE, ELECTRIC HEAT 5 P2 FUSE, ELECTRIC HEAT 6, 7 F45 **→** 2 ELEMENT, ELECTRIC HEAT 1 HE1 ELEMENT, ELECTRIC HEAT 1A HE1A FLEMENT, FLECTRIC HEAT 2 HE2A HE3 ELEMENT, ELECTRIC HEAT 3 ELEMENT, ELECTRIC HEAT 4 HE4 ELEMENT, ELECTRIC HEAT 5 HE5 HE6 ELEMENT, ELECTRIC HEAT 6 HE7 ELEMENT, ELECTRIC HEAT 7 JACK, ELECTRIC HEAT SUB-BASE KIT JACK, ELECTRIC HEAT LIMIT J37 K9,-1,2 RELAY, HEAT CONTACTOR, ELECTRIC HEAT 1 CONTACTOR, ELECTRIC HEAT 2 K16, -1 CONTACTOR, ELECTRIC HEAT 3 K17, -1 J37 K18, -1 CONTACTOR, ELECTRIC HEAT 4 P37 RELAY, STAGE TWO HEAT P2 **⑤** 9.0 PLUG, ELECTRIC HEAT BUB BASE KIT P7 PLUG. ELECTRIC HEAT LIMIT SWITCH, LIMIT PRIMARY ELECTRIC HEAT S15 SWITCH, LIMIT SECONDARY ELECTRIC HEAT 1A S20 S107 SWITCH, LIMIT PRIMARY ELECTRIC HEAT P37 SWITCH, LIMIT SECONDARY ELECTRIC HEAT 2A SWITCH, LIMIT SECONDARY ELECTRIC HEAT 3,4 SWITCH, LIMIT SECONDARY ELECTRIC HEAT 5 S159 SWITCH, LIMIT SECONDARY ELECTRIC HEAT 6,7 0 0 43[[]F43 [[]F43 **14** (Д) CHEN OF C UNITS 156 TO 300 HE1 HE1A HE2A HE3 HE4 HE5 HE6 HE7 7.5 WIRING DIAGRAM 02/18 30 15 7.5 15 7.5 45 15 15 15 15 60 HEATING 15 15 90 EHA - 15,30,45,60,90 - G,J FOR USE WITH KCA/KCB AND KHA UNITS SECTION B REV. 1 Supersedes 537059-02

# Sequence of Operation - EHA15 ,30, 45, 60, 90kW - Y, G, J and M

NOTE - This sequence of operation is for all Electric Heat kW ratings Y, G, J and M voltages.

#### **HEATING ELEMENTS:**

1- Terminal Strip TB2 supplies power to TB3. TB3 supplies line voltage to electric heat elements HE1 through HE14. Each element is protected by fuse F3.

#### FIRST STAGE HEAT:

Heating demand initiates at W1 in thermostat.

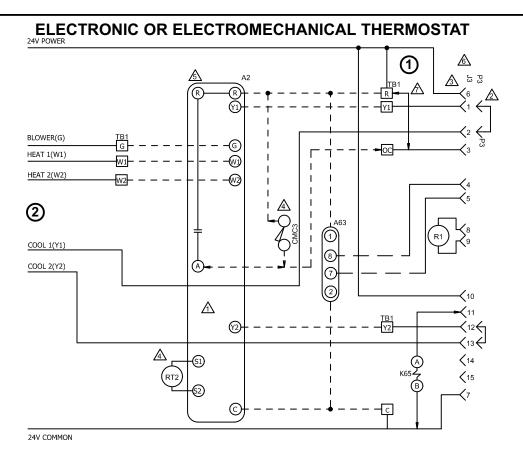
- TB1 receives W1 demand and energizes relay K9.
   N.O. K9-1 closes which allows 24VAC from TB1 to energize blower contactor K3.
- 2 24VAC is routed from T2, proving N.C. primary limits S15 (first heat section) and S107 (second heat section). Voltage then energizes contactors K15 and K17.
- 3 N.O. contact K15-1 closes allowing the first bank of elements to be energized. N.O. K17-1 closes allowing the second bank of elements to be energized.

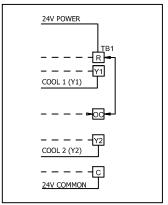
#### **SECOND STAGE HEAT:**

With the first stage heat operating, an additional heating demand initiates at W2 in the thermostat.

- 4 Relay K19 is energized. N.O. contacts K19-1 close energizing timer DL2.
- 5 After a 30 second delay, DL2 closes energizing contactor K16 and timer DL5.
- 6 N.O. contacts K16-1 close allowing the third bank of elements to be energized.
- 7 After a 30 second delay, DL5 closes energizing contactor K18. K18-1 closes allowing the fourth bank of elements to be energized.

# **END OF SECOND STAGE HEAT:**


Heating demand is satisfied. Terminal W2 in the thermostat is de-energized.


- 8 Electric heat contactors K16 and K18 are de-energized.
- 9 The fourth and third set of elements are de-energized.

#### **END OF FIRST STAGE HEAT:**

Heating demand is satisfied. Terminal W1 in the thermostat is de-energized.

- 10 Electric heat contactors K15 and K17 are de-energized.
- 11 The second and first set of electric heat elements are de-energized.





CONNECTION SCHEME FOR KCA, KGA AND KHA 092 THROUGH 150 UNITS WITHOUT ECONOMIZER ONLY



| KEY  | COMPONENT                        |  |  |  |  |
|------|----------------------------------|--|--|--|--|
| A2   | SENSOR, ELECTRONIC THERMOSTAT    |  |  |  |  |
| A63  | SENSOR, CO2                      |  |  |  |  |
| СМСЗ | CLOCK, TIME                      |  |  |  |  |
| J3   | JACK, UNIT ECONOMIZER            |  |  |  |  |
| K65  | RELAY, EXHAUST FAN               |  |  |  |  |
| P3   | PLUG, ECONOMIZER BYPASS          |  |  |  |  |
| R1   | SENSOR, MIXED AIR OR SUPPLY AIR  |  |  |  |  |
| RT2  | SENSOR, REMOTE THERMOSTAT        |  |  |  |  |
| TB1  | TERMINAL STRIP, CLASS II VOLTAGE |  |  |  |  |

⚠ THERMOSTAT SUPPLIED BY USER

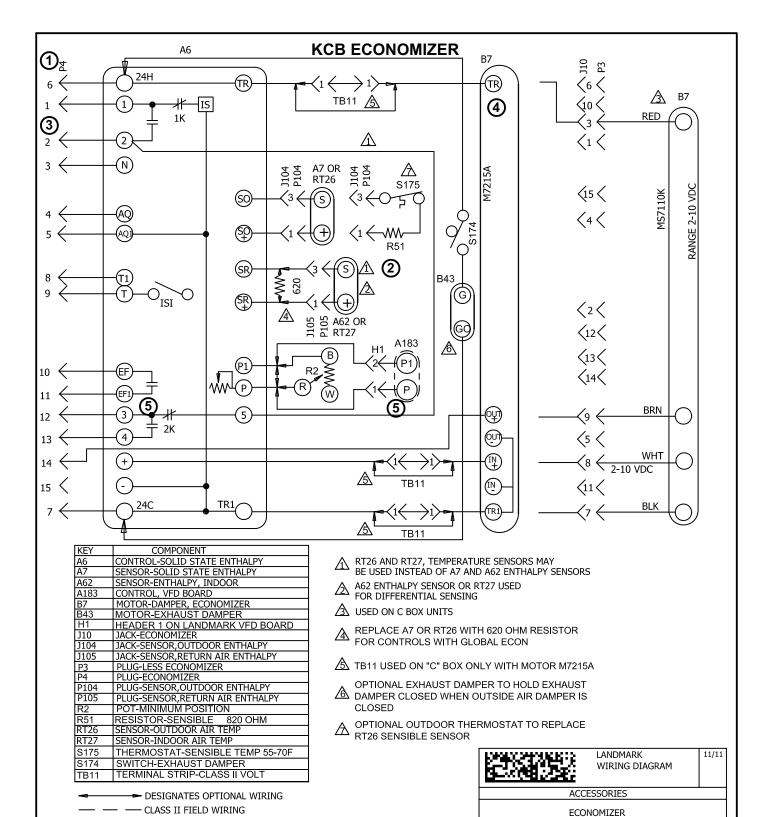
REMOVE P3 WHEN ECONOMIZER IS USED, ONLY ON KCA, KGA AND KHA 156 THROUGH 300 UNITS.

⚠ J3 MAXIMUM LOAD 20VA 24VAC CLASS II

⚠ TIME CLOCK CONTACTS (OPT) CLOSED OCCUPIED

★ TOUCHSCREEN THERMOSTAT

J3 AND P3 ARE NOT USED ON KCA, KGA AND KHA 092 THROUGH 150 UNITS WITHOUT ECONOMIZER


REMOVE JUMPER BETWEEN TB1-R AND TB1-OCP WHEN USING A NITE SETBACK THERMOSTAT

DENOTES OPTIONAL COMPONENTS
CLASS II FIELD WIRING

#### POWER:

1- Terminal strip TB1 found on the control panel energizes thermostat components with 24VAC. **OPERATION:** 

2- TB1 receives data from the electronic thermostat A2 (Y1, Y2, W1, W2, G, OCP) TB1 energizes the appropriate components for heat or cool demand.



# SEQUENCE OF OPERATION **POWER:**

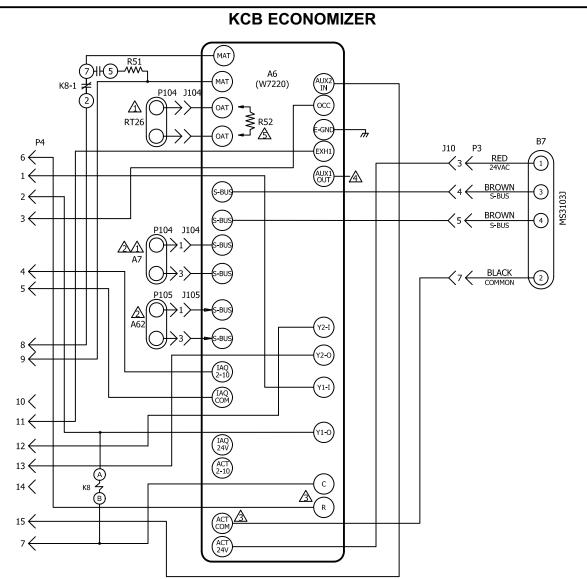
Economizer control module A6 is energized through P4-6.

# **OPERATION:**

- Temperature sensor S175 or enthalpy sensor A7 and A62 (if differential enthalpy is used) communicates to the economizer control module A6 when outdoor air is suitable for free cooling.
- A6 energizes the economizer. 3.
- Economizer control module A6 supplies B7 with 0 10 VDC to control the positioning of economizer. 4.
- 5. The damper actuator provides 2 to 10 VDC position feedback.

Supersedes

O 2011


SECTION D

New Form No

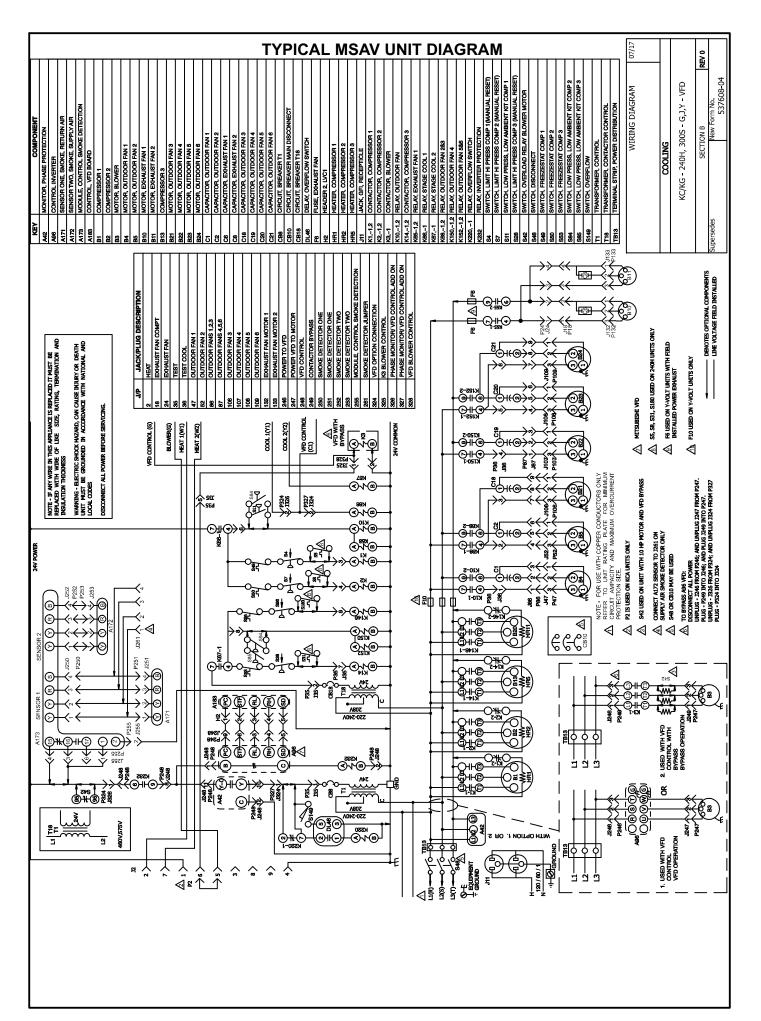
537080-02

REV 0

Lennox Commercial



| KEY  | COMPONENT                  |  |  |  |
|------|----------------------------|--|--|--|
| A6   | CONTROL - ECONOMIZER       |  |  |  |
| A7   | SENSOR - OUTDOOR ENTHALPY  |  |  |  |
| A62  | SENSOR - INDOOR ENTHALPY   |  |  |  |
| B7   | MOTOR - DAMPER, ECONOMIZER |  |  |  |
| J10  | JACK - ECONOMIZER MOTOR    |  |  |  |
| J104 | JACK - SENSOR OUTDOOR      |  |  |  |
| J105 | JACK - SENSOR RETURN AIR   |  |  |  |
| K8   | TRANSFER RELAY             |  |  |  |
| P3   | PLUG - ECONOMIZER MOTOR    |  |  |  |
| P4   | PLUG - ECONOMIZER          |  |  |  |
| P104 | PLUG - SENSOR OUTDOOR      |  |  |  |
| P105 | PLUG - SENSOR RETURN AIR   |  |  |  |
| RT26 | SENSOR - OUTDOOR AIR TEMP  |  |  |  |
| R51  | RESISTOR, MAT BYPASS       |  |  |  |
| R52  | RESISTOR, OAT BYPASS       |  |  |  |


→ DESIGNATES OPTIONAL WIRING→ CLASS II FIELD WIRING

- ⚠ OUTDOOR AIR TEMP SENSOR RT26 OR OUTDOOR AIR ENTHALPY SENSOR A7 MAY BE USED
- A FOR DIFFERENTIAL ENTHALPY SENSING USE OUTDOOR ENTHALPY SENSOR A7 AND INDOOR ENTHALPY SENSOR A62
- A REFER ALSO TO MAIN UNIT WIRING DIAGRAM SECTION C
- PROGRAMMABLE, USE FOR EXHAUST FAN 2 OUTPUT OR ERV OR SYSTEM ALARM OUTPUT
- A R52 USED WITH NOVAR 2024 OR 2051 DDC CONTROLS.



#### **OPERATION:**

When the outdoor air is suitable and a thermostat demand calls for 1st. stage cooling (Y1), the economizer will modulate the dampers between the minimum and fully open positions to maintain a 55°F (12.8°C) mixed air temperature. When there is an increased thermostat demand for second stage cooling (Y2), the economizer damper opens 100% and the economizer controller (A6) will bring on the compressor. At that point, K8 relay will switch from the R1 mixed air sensor to R51 resistor allowing the economizer damper to stay open 100%. The damper will stay open 100% with the compressor running simultaneously until Y2 demand is met.





#### VFD BLOWER OPERATION

Cooling and heating operate the same as non-VFD units except for blower operation.

During heating, the blower operates on high speed. See table 22 for blower speed during cooling.

During ventilation, the blower speed is determined by the low/high switch on the A183 VFD control board.

#### **TABLE 22**

| Diagram<br>Reference No. | Outdoor Air Condition<br>For Free Cooling | Thermostat<br>Demand | A183 Terminals<br>Energized | Blower Speed |
|--------------------------|-------------------------------------------|----------------------|-----------------------------|--------------|
| 1                        | Not Suitable<br>(or no economizer)        | Y1                   | Y1 and C1*                  | Low          |
| 2                        | Suitable                                  | Y1                   | Y1                          | High         |
| 3                        | Not Suitable<br>(or no economizer)        | Y1 and Y2            | Y1, C1* and Y2              | High         |
| 4                        | Suitable                                  | Y1 and Y2            | Y1, C1* and Y2              | High         |

<sup>\*</sup>C1 is energized via A6 enthalpy control.

## Y1 thermostat demand, outdoor air NOT suitable for free cooling (or no economizer):

1- 24v is routed to A183 VFD control board Y1 and C1 (via A6-2) terminals. A183 operates the blower in low speed.

#### Y1 thermostat demand, outdoor air SUITABLE for free cooling:

2- 24v is routed to A183 VFD control board Y1 terminal. A183 operates the blower in high speed.

#### Y1 and Y2 thermostat demand, outdoor air NOT suitable for free cooling (or no economizer)

3- 24v is routed to A183 VFD control board Y1, Y2 and C1 (via A6-2) terminals. A183 operates the blower in high speed.

#### Y1 and Y2 thermostat demand, outdoor air SUITABLE for free cooling:

4- 24v is routed to A183 VFD control board Y1, Y2 and C1 (via A6-3) terminals. A183 operates the blower in high speed.