C280-16
Offshore
Generator Set

5375 ekW
5600 bkW (7510 bhp)
60 Hz (900 rpm)

CAT® GENERATOR SET SPECIFICATIONS

V-16, 4-Stroke-Cycle-Diesel
Emissions IMO Tier II/EPA Marine Tier 2
Bore 280 mm (11.0 in)
Stroke 300 mm (11.8 in)
Displacement 296 L (18,062 in³)
Aspiration Turbocharged-Aftercooled
Fuel System Dual ADEM™ A4
Engine Control EUI
Generator Set Control Cat® Alarm and Protection System

Refill Capacity
Cooling System 1245 L (329 U.S. gal)
Lube Oil System 1677 L (443 U.S. gal)
Oil Change Interval 1000 hours

FEATURES

Product Design
• Cat C280 engines are type approved by the following marine classification societies:
 - American Bureau of Shipping
 - Bureau Veritas
 - China Classification Society
 - Det Norske Veritas
 - Germanisher Lloyd
 - Lloyd’s Register of Shipping
• IMO Tier II emissions certification, GL and CCS approved
• Cat alarm and protection system provides redundancy and the latest technology in generator set control, protection, and operator interface; type approved by the following marine classification societies:
 - American Bureau of Shipping
 - Bureau Veritas
 - China Classification Society
 - Det Norske Veritas
 - Germanisher Lloyd
 - Lloyd’s Register of Shipping
• Optimized to lower specific fuel consumption at 35% load

Simplified Packaging Concept
• Front-mounted turbocharger configuration allows for simplified rig integration
• Engine design can take up to 38°C coolant to the aftercooler, allowing integration with flexible cooling system designs and reducing installation cost
• Single-point AC and DC connection points at distribution panel
• Ready-to-run package, includes most ancillary equipment
• Few shipped-loose parts simplify handling at installation
• Single-lift handling
• Caterpillar warranty covers all factory package components worldwide

Custom Packaging
For any petroleum application, trust Caterpillar to meet your project needs with custom factory generator sets and mechanical packages. Cat engines, generators, controls, radiators, and transmissions can be custom designed and matched in collaboration with our local dealers to create unique solutions. Custom packages are globally supported and are covered by a one-year warranty after startup.

Full Range of Attachments
Large variety of factory-installed engine attachments increases application flexibility and reduces installation time.

Testing
• Every unit is full-load tested to ensure proper package performance
• Full range of factory tests and reports are available including performance, torsional-vibration analysis, fuel consumption, engine, and generator special tests

Product Support Offered Through Global Cat Dealer Network
More than 2,200 dealer outlets
Caterpillar factory-trained dealer technicians service every aspect of your Cat engine
Caterpillar parts and labor warranty
Preventive maintenance agreements available for repair-before-failure options
S•O•S™ program matches your oil and coolant samples against Caterpillar set standards to determine:
 - Internal engine component condition
 - Presence of unwanted fluids and combustion by-products
 - Site-specific oil change interval

Over 80 Years of Engine Manufacturing Experience
• C280 engines incorporate over 20 years of proven component reliability and durability from 3600 engines
• Large field population in offshore applications provides proven performance, reliability, durability, and established worldwide product support network

Web Site
Visit www.catoilandgasinfo.com to learn more.
CONFIGURATION

Product Consist
The engine is a turbocharged, aftercooled, four-stroke-cycle-diesel, electronic unit injection engine with a 280 mm (11 in) bore by 300 mm (11.8 in) stroke. SAE standard rotation is counterclockwise as viewed from the rear of engine flywheel.

Air Inlet System
Fresh water aftercooler, corrosion resistant coated (air side); air inlet shutoff; crankcase breathers, top-mounted; turbochargers (2), front-mounted, oil lubricated

Control System
Dual Cat ADEM A4 electronic engine control module with electronic unit injector fuel system, rigid wiring harness (10 amp 24V power required to drive electronic engine control modules), direct rack control

Cooling System
Gear-driven jacket water (JW) pump, gear-driven separate-circuit aftercooler/oil cooler (AC/OC) pump, front-mounted water connections: JW and AC/OC, 6" ANSI

Exhaust System
Dry, gas tight exhaust manifold; dual turbocharger, front-mounted; dual wastegate; hard shielding – SOLAS compliant

Fuel System
Distillate fuel (requires viscosity ranging from 1.4 cSt to 20 cSt at 38°C); fuel pump, gear-driven; fuel transfer pump (mounted on left-hand side); duplex fuel filters, rear-engine-mounted; electronically controlled unit injectors

Lube System
Centrifugal oil filters and lines with single shutoff – RH mounted on cylinder block inspection covers, serviceable with the engine running; oil pump, gear-driven; oil filler and dipstick – located in base integrated tank; oil pressure regulating valve; crankcase explosion relief valves; duplex oil filter – accessory module mounted; off engine-mounted oil cooler – DTO quote required for package connections; base integrated tank – DTO required

Instrumentation
Cat Alarm and Protection System
Features:
- 145 mm (5.7") color monitor to display all engine parameters and alarm annunciation, alarms annunciated with a time and date stamp
- Annunciation of all engine shutdowns, alarms, and status points
- Start/prelube control switch and emergency stop button
- Selection of local/remote control of engine
- Customer connections at terminal blocks inside panel
- Equipped for remote communication MODBUS RS485 and MODBUS TCP
- Two configurable relay outputs
- All engine sensors are monitored by the ECU or the Cat alarm and protection system
- The panel can display all engine parameters

Starting System
TDI dual air starting motors, LH rear; shutoff valve; two integrated relay valves with built-in screen #40 mesh and solenoid; air pressure sensor, monitored by Cat alarm and protection system – requires customer wiring; maximum operating (dynamic) pressure: 10 bar (150 psi); maximum static pressure: 14 bar (200 psi); 3-inch ANSI flange customer connection; requires customer-provided 3-inch supply air line from receiver or regulator to air starter and flex connection; if regulator is used, Cv of 40 or greater is required
ATTACHMENTS

Emission Certification
GL and CCS approved IMO certificate — includes statement of compliance or Engine International Air Pollution Prevention (EIAPP) certificate, supplied by the Recognized Organization (RO) where available, and technical file to be kept on board per IMO regulations.

Marine Society Certifications
Societies currently granting approval to C280 engines are: ABS, BV, CCS, DnV, GL, LRS

Marine Society Requirements
Spray shielding to meet SOLAS regulations for flammable fluids

European Certifications
Declaration of Incorporation for EU Machinery Safety Directive and EU Low Voltage Safety Directive

Air Inlet System
90° adapter and straight adapters for air inlet to turbocharger

- Air cleaners
- Air cleaners with Cat dry paper filter elements (approximately 99.9% efficient at filtering SAE fine dust)
- Soot filter
- Air cleaner support bracket

Cooling System
Jacket Water Thermostat Options:
- 90°C thermostat, direct connection to expansion tank
- 90°C thermostat, for remote mounting
- 90°C thermostat, fully automatic 3-way with manual override
- Customer-provided thermostat

AC/OC Thermostat Options:
- 32°C thermostat, remote mounted
- 32°C thermostat, fully automatic, 3-way with manual override
- Customer-provided thermostat

Expansion Tank Options:
- Remote-mounted expansion tank
- Accessory-module-mounted expansion tank
- *Jacket water heaters
- *ANSI connection adapters

Exhaust System
Exhaust manifold shields
- Flexible exhaust fittings
- Weld flanges

Fuel System
- Manual fuel priming pump
- Duplex primary fuel strainer

Lube System
Redundant prelube with continuous electric prelube
- Intermittent air prelube backup
- Electric continuous prelube pump
- *Lube oil heater

Protection System
Flywheel and damper guards
- Cylinder pressure relief valve
- Spray shielding
- *Oil mist detector

Starting System
Pressure reducing valve

Mounting System
Design-To-Order (DTO) base
- *Vertically-restrained vibration isolators and weld plates

General
Generator panel
- Torsional coupling
- Engine barring device options:
 - Manual 50:1
 - Electric 400V
 - Electric 480V
- *Accessory module — Front mounted for mounting expansion tank, heat exchanger, instrument panel, annunciator panel, alarm and shutdown contactors, and fuel strainer
- *Engine testing — full-load tested, fuel consumption test, rated speed performance test, overload test, minimum power setting, peak firing pressure test, turbo work certificates, crankshaft work certificates, standard and project-specific witness testing
- *Spare parts kit
- *Engine lifting eyes

Literature
- Project-specific installation drawings
- *Electrical schematics and P&ID drawings

*Indicates an optional attachment
C280-16 Engine — 5600 bkW (900 rpm)

Engine Speed (rpm): 900

Compression Ratio: 12.6:1

Aftercooler Water (°C): 38

Jacket Water Inlet (°C): 90

Ignition System: EU

Exhaust Manifold: DRY

Firing Pressure @ 100% load (kPa): 17300

DIESEL ENGINE TECHNICAL DATA

- **Certification Target:** IMO/EPA Marine Tier II
- **Turbocharger Part #:** 362-8652
- **Fuel Type:** Distilled
- **Rated Altitude @ 25°C (m):** 200
- **Assumed Generator Efficiency (%):** 96.0
- **Assumed Generator Power Factor:** 0.8
- **Mean Piston Speed (m/s):** 9

<table>
<thead>
<tr>
<th>RATING</th>
<th>NOTES</th>
<th>LOAD</th>
<th>110%</th>
<th>100%</th>
<th>75%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGINE POWER</td>
<td>(2)</td>
<td>bkW</td>
<td>6150</td>
<td>5600</td>
<td>4200</td>
<td>2800</td>
</tr>
<tr>
<td>GENERATOR POWER</td>
<td>(2)</td>
<td>kW</td>
<td>5913</td>
<td>5375</td>
<td>4031</td>
<td>2699</td>
</tr>
<tr>
<td>BMEP</td>
<td>(1)</td>
<td>kPa</td>
<td>2790</td>
<td>2527</td>
<td>1995</td>
<td>1284</td>
</tr>
<tr>
<td>ENGINE EFFICIENCY</td>
<td>(ISO 3046/1)</td>
<td>%</td>
<td>44.3%</td>
<td>44.0%</td>
<td>42.7%</td>
<td>41.5%</td>
</tr>
<tr>
<td>ENGINE EFFICIENCY</td>
<td>(NOMINAL)</td>
<td>%</td>
<td>43.9%</td>
<td>42.7%</td>
<td>41.4%</td>
<td>40.2%</td>
</tr>
</tbody>
</table>

ENGINE DATA

- **Fuel Consumption (ISO 3046/1):**
 - (1) g/kw-hr: 191.9
 - (2) g/kw-hr: 195.6
- **Fuel Consumption (NOMINAL):**
 - (1) g/kw-hr: 197.9
 - (2) g/kw-hr: 200.1
- **Air Flow @ 25°C, 101.3kPa-a:**
 - (1) Nm3/min: 549
 - (2) Nm3/min: 510
- **Air Mass Flow:**
 - (1) kg/hr: 36721
 - (2) kg/hr: 34138
- **Inlet Manifold Pressure:**
 - (1) kPa: 415
 - (2) kPa: 384
- **Inlet Manifold Temperature:**
 - (1) °C: 45
 - (2) °C: 44
- **Exhaust Stack Temperature:**
 - (1) kg/hr: 420
 - (2) kg/hr: 417
- **Exhaust Gas Flow (@ stack temp, 101.3kPa-a):**
 - (1) m3/min: 1191
 - (2) m3/min: 1122
- **Exhaust Gas Mass Flow:**
 - (1) kg/hr: 37528
 - (2) kg/hr: 35242

EMISSIONS "NOT TO EXCEED DATA"

NOx + HC	g/kw-hr	12.77	12.03	8.48	8.59
NOx	g/kw-hr	12.16	11.67	8.11	8.13
CO	g/kw-hr	0.70	0.61	0.55	0.74
HC	g/kw-hr	0.61	0.35	0.37	0.46
Particulates	g/kw-hr	0.22	0.18	0.13	0.21

EMISSIONS "NOMINAL DATA"

NOx + HC	g/kw-hr	11.04	10.42	7.33	7.43
NOx	g/kw-hr	10.57	10.14	7.05	7.37
CO	g/kw-hr	0.54	0.47	0.42	0.57
HC	g/kw-hr	0.47	0.28	0.29	0.35
Particulates	g/kw-hr	0.16	0.13	0.09	0.15

ENERGY BALANCE DATA

Fuel Input Energy (LHV)	(NOMINAL)	kW	14321	13123	10142	6957
Heat Rej. to Jacket Water	(NOMINAL)	kW	1083	984	600	622
Heat Rej. to Atmosphere	(NOMINAL)	kW	344	338	266	229
Heat Rej. to Oil Cooler	(NOMINAL)	kW	565	542	459	362
Heat Rej. to Exh. (LHV to 25 deg C)	(NOMINAL)	kW	4390	4036	3114	2321
Heat Rej. to Exh. (LHV to 177 deg G)	(NOMINAL)	kW	2895	2471	1714	1398
Heat Rej. to Aftercooler	(NOMINAL)	kW	1799	1623	1303	663

NOTES

1) Fuel Consumption Tolerance, ISO 3046/1 ± 5% of Full Load Data. Nominal is ± 3% of Full Load Data.
2) Engine Power Tolerance is ± 3% of Full Load Data.
3) Heat Rejection to Jacket Water and Exhaust Tolerance is ± 10% of Full Load Data. (Heat rate based on treated water)
4) Heat Rejection to Atmosphere Tolerance is ± 50% of Full Load Data. (Heat rate based on treated water)
5) Heat Rejection to Exhaust Oil Tolerance is ± 20% of Full Load Data. (Heat rate based on treated water)
6) Heat Rejection to Aftercooler Tolerance is ± 5% of Full Load Data. (Heat rate based on treated water)
7) Total Aftercooler Heat = Aftercooler Heat x ACHR. (Heat rate based on treated water)
DIESEL ENGINE TECHNICAL DATA

C280-16 Engine — 5600 bkW (900 rpm)

ALTITUDE DERATION FACTORS

<table>
<thead>
<tr>
<th>Altitude (Meters)</th>
<th>0</th>
<th>250</th>
<th>500</th>
<th>750</th>
<th>1000</th>
<th>1250</th>
<th>1500</th>
<th>1750</th>
<th>2000</th>
<th>2250</th>
<th>2500</th>
<th>2750</th>
<th>3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.98</td>
<td>0.96</td>
<td>0.93</td>
<td>0.91</td>
<td>0.88</td>
<td>0.86</td>
<td>0.84</td>
<td>0.82</td>
<td>0.80</td>
<td>0.78</td>
</tr>
<tr>
<td>45</td>
<td>1.00</td>
<td>1.00</td>
<td>0.98</td>
<td>0.93</td>
<td>0.90</td>
<td>0.87</td>
<td>0.84</td>
<td>0.81</td>
<td>0.79</td>
<td>0.77</td>
<td>0.75</td>
<td>0.73</td>
<td>0.71</td>
</tr>
<tr>
<td>40</td>
<td>1.00</td>
<td>1.00</td>
<td>0.94</td>
<td>0.91</td>
<td>0.89</td>
<td>0.86</td>
<td>0.83</td>
<td>0.81</td>
<td>0.79</td>
<td>0.76</td>
<td>0.74</td>
<td>0.72</td>
<td>0.70</td>
</tr>
<tr>
<td>35</td>
<td>1.00</td>
<td>1.00</td>
<td>0.96</td>
<td>0.93</td>
<td>0.90</td>
<td>0.87</td>
<td>0.84</td>
<td>0.82</td>
<td>0.80</td>
<td>0.77</td>
<td>0.75</td>
<td>0.73</td>
<td>0.71</td>
</tr>
<tr>
<td>30</td>
<td>1.00</td>
<td>1.00</td>
<td>0.98</td>
<td>0.94</td>
<td>0.91</td>
<td>0.88</td>
<td>0.85</td>
<td>0.83</td>
<td>0.81</td>
<td>0.79</td>
<td>0.77</td>
<td>0.75</td>
<td>0.73</td>
</tr>
<tr>
<td>25</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.96</td>
<td>0.93</td>
<td>0.90</td>
<td>0.88</td>
<td>0.85</td>
<td>0.83</td>
<td>0.81</td>
<td>0.79</td>
<td>0.77</td>
<td>0.75</td>
</tr>
<tr>
<td>20</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.98</td>
<td>0.95</td>
<td>0.92</td>
<td>0.89</td>
<td>0.86</td>
<td>0.84</td>
<td>0.82</td>
<td>0.80</td>
<td>0.78</td>
<td>0.76</td>
</tr>
<tr>
<td>15</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
<td>0.96</td>
<td>0.93</td>
<td>0.91</td>
<td>0.88</td>
<td>0.86</td>
<td>0.84</td>
<td>0.82</td>
<td>0.80</td>
<td>0.78</td>
</tr>
<tr>
<td>10</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.98</td>
<td>0.95</td>
<td>0.92</td>
<td>0.89</td>
<td>0.87</td>
<td>0.85</td>
<td>0.83</td>
<td>0.81</td>
<td>0.79</td>
</tr>
</tbody>
</table>

AFTERCOOLER HEAT REJECTION FACTORS

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>0</th>
<th>250</th>
<th>500</th>
<th>750</th>
<th>1000</th>
<th>1250</th>
<th>1500</th>
<th>1750</th>
<th>2000</th>
<th>2250</th>
<th>2500</th>
<th>2750</th>
<th>3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>10</td>
<td>1.00</td>
<td>0.90</td>
<td>0.89</td>
<td>0.88</td>
<td>0.87</td>
<td>0.86</td>
<td>0.85</td>
<td>0.84</td>
<td>0.83</td>
<td>0.81</td>
<td>0.80</td>
<td>0.78</td>
<td>0.76</td>
</tr>
<tr>
<td>15</td>
<td>1.00</td>
<td>0.88</td>
<td>0.87</td>
<td>0.86</td>
<td>0.85</td>
<td>0.84</td>
<td>0.83</td>
<td>0.82</td>
<td>0.81</td>
<td>0.79</td>
<td>0.78</td>
<td>0.76</td>
<td>0.74</td>
</tr>
<tr>
<td>20</td>
<td>1.00</td>
<td>0.86</td>
<td>0.85</td>
<td>0.84</td>
<td>0.83</td>
<td>0.82</td>
<td>0.81</td>
<td>0.80</td>
<td>0.79</td>
<td>0.77</td>
<td>0.76</td>
<td>0.74</td>
<td>0.72</td>
</tr>
<tr>
<td>25</td>
<td>1.00</td>
<td>0.84</td>
<td>0.83</td>
<td>0.82</td>
<td>0.81</td>
<td>0.80</td>
<td>0.79</td>
<td>0.78</td>
<td>0.77</td>
<td>0.76</td>
<td>0.75</td>
<td>0.74</td>
<td>0.73</td>
</tr>
<tr>
<td>30</td>
<td>1.00</td>
<td>0.82</td>
<td>0.81</td>
<td>0.80</td>
<td>0.79</td>
<td>0.78</td>
<td>0.77</td>
<td>0.76</td>
<td>0.75</td>
<td>0.74</td>
<td>0.73</td>
<td>0.72</td>
<td>0.71</td>
</tr>
<tr>
<td>35</td>
<td>1.00</td>
<td>0.80</td>
<td>0.79</td>
<td>0.78</td>
<td>0.77</td>
<td>0.76</td>
<td>0.75</td>
<td>0.74</td>
<td>0.73</td>
<td>0.72</td>
<td>0.71</td>
<td>0.70</td>
<td>0.69</td>
</tr>
<tr>
<td>40</td>
<td>1.00</td>
<td>0.78</td>
<td>0.77</td>
<td>0.76</td>
<td>0.75</td>
<td>0.74</td>
<td>0.73</td>
<td>0.72</td>
<td>0.71</td>
<td>0.70</td>
<td>0.69</td>
<td>0.68</td>
<td>0.67</td>
</tr>
<tr>
<td>45</td>
<td>1.00</td>
<td>0.76</td>
<td>0.75</td>
<td>0.74</td>
<td>0.73</td>
<td>0.72</td>
<td>0.71</td>
<td>0.70</td>
<td>0.69</td>
<td>0.68</td>
<td>0.67</td>
<td>0.66</td>
<td>0.65</td>
</tr>
</tbody>
</table>

FREE_FIELD MECHANICAL NOISE

<table>
<thead>
<tr>
<th>Distance from the engine (M)</th>
<th>1.5M</th>
<th>7M</th>
<th>15M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Octave Band (Hz)</td>
<td>63</td>
<td>125</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>1000</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>8000</td>
<td></td>
</tr>
</tbody>
</table>

FREE_FIELD EXHAUST NOISE

<table>
<thead>
<tr>
<th>Distance from the engine (M)</th>
<th>1.5M</th>
<th>7M</th>
<th>15M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Octave Band (Hz)</td>
<td>63</td>
<td>125</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>1000</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>8000</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL DERATION FACTORS:

This table shows the deration required for various air inlet temperatures and altitudes. Use this information to help determine actual engine power for your site. The total deration factor includes deration due to altitude and ambient temperature, and air inlet manifold temperature deration.

AFTERCOOLER HEAT REJECTION FACTORS:

Aftercooler heat rejection is given for standard conditions of 25°C and 150 m altitude. To maintain a constant air inlet manifold temperature, as the air to turbo temperature goes up, so must the heat rejection. As altitude increases, the turbocharger must work harder to overcome the lower atmospheric pressure. This increases the amount of heat that must be removed from the inlet air by the aftercooler. Use the aftercooler heat rejection factor to adjust for ambient and altitude conditions. Multiply this factor by the standard aftercooler heat rejection.

GENERATOR EFFICIENCY:

Generator power determined with an assumed generator efficiency of 96% [generator power = engine power x 0.96]. If the actual generator efficiency is less than 96% (and greater than 94.5%), the generator power [ekW] listed in the technical data can still be achieved. The BSFC values must be increased by a factor. The factor is a percentage = 96% - actual generator efficiency.

SOUND DATA:

Data determined by methods similar to ISO Standard DIS-8528-10. Accuracy Grade 3.

7/28/2010 DMxxxx-00
RATING DEFINITIONS AND CONDITIONS

Rating Definition — Maximum Continuous Rating (MCR) following reference conditions according to the International Association of Classification Societies (IACS) for main and auxiliary engines. An overload of 10% is permitted for one hour within 12 hours of operation.

Fuel consumption has a tolerance of +5% and is based on fuel oil of 35° API [16°C (60°F)] gravity having an LHV of 62 780 kJ/kg (18,390 Btu/lb) when used at 29°C (85°F) and weighing 838.9 g/liter (7.001 lbs/U.S. gal). Fuel consumption shown with all oil, fuel, and water pumps, engine driven.

Dimensions and Weight

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Length</th>
<th>Width</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>10 283 mm</td>
<td>2800 mm</td>
<td>4092 mm</td>
</tr>
<tr>
<td>Width</td>
<td>404.8 in</td>
<td>110.2 in</td>
<td>161.1 in</td>
</tr>
<tr>
<td>Weight — dry</td>
<td>66 000 kg</td>
<td>145,505 lb</td>
<td></td>
</tr>
</tbody>
</table>

Note: Dimensions are dependent on generator and options. See general dimension drawings for details.

Note: Weight includes engine, generator, base, coupling, water/lube oil heater, generator lubrication module, and piping. Weight may vary depending upon individual configuration.

Information contained in this publication may be considered confidential. Discretion is recommended when distributing.

Materials and specifications are subject to change without notice. The International System of Units (SI) is used in this publication.

CAT, CATERPILLAR, their respective logos, ADEM, S•O•S, “Caterpillar Yellow” and the “Power Edge” trade dress, as well as corporate and product identity used herein, are trademarks of Caterpillar and may not be used without permission.

©2013 Caterpillar
All rights reserved.