Equipment reliability doesn't equal system reliability | Plant Engineering

Equipment reliability doesn't equal system reliability

The future of your electrical system's health rests in maintenance. A pragmatic approach is best to avoid potential shutdowns while ensuring everything runs smoothly.

EXA/3° Super lon Air Knife™ Powerful static eliminator prevents jamming, tearing, shocks and dust up to 20' awav!

The reliability of power systems varies greatly from site to site and from business to business. Operations teams work with dissimilar quantities and qualities of electrical equipment, support different mission critical processes, and pursue diverse maintenance strategies. Nevertheless, it is prudent to take into account the specific power issues of a site and determine how reliable the system is and how reliable it needs to be.

Charles Alvis, Schneider Electric

10/13/2016

When determining system reliability, it is important to not confuse the reliability of individual electrical components with the reliability of the electrical system as a whole. Overall

system reliability is only as good as its weakest link. Operations personnel can easily be misled if they focus on the reliability statistics of individual components. This false sense of security increases the risk of unplanned downtime.

Consider the following examples:

- Assume a simple electrical system configuration consisting of a transformer that is 90% reliable and switchgear that is 90% reliable. The reliability of this mini "system" is actually 81% (0.9 x 0.9).
- Or assume a system consisting of a transformer at 90% reliability, switchgear that is 90% reliable and a distribution panel at 90% reliability. This system's reliability is only 73%.
- Or, even more alarming, a transformer at 90%, switchgear at 70% and a distribution panel at 70%. Such a system would equate to 44% reliability.

Why is the system reliability always significantly lower than the individual component reliability?

Top 5 Plant **Engineering articles:** January 2-January 8: managing small capital projects, 2016 Product of the Year finalists, new EAB members, more

Events

Recent News

coatings system

How to integrate

Biobased/biodegradable

- Measurement technology modules
- Adjustable LED lamp
- Analytical measurement sensor series
- Plant Engineering names three to Editorial Advisorv

http://www.plantengineering.com/single-article/equipment-reliability-doesn-t-equal-system-reliability/c9d8cc600bc644146953f8bceff4e09a[1/12/2017 9:01:45 AM]

Equipment reliability doesn't equal system reliability | Plant Engineering

PRESENTING THE 21ST ANNUAL ARC INDUSTRY FORUM

Industry in Transition: Realizing the Digital Enterprise

> ORLANDO FEBRUARY 6-9

arcweb.com

Reliability is a property of an electrical power system that describes the likelihood that the system will operate or perform as designed, constructed and intended. Reliability is determined from the combination of failure rates of individual components and the configuration of the power system to which they are applied.

The notion of reliability is more of a mathematical probability than an actual physical condition. Electrical reliability is measured by its trouble-free time. For example, if a piece of equipment is designed and intended to continuously operate "X" years and it does, it is 100% reliable to "X" years. After that point in time, if there is an occasional breakdown, the reliability beyond the stated time is less than 100%.

Lowered reliability, especially in the realm of electrical systems, increases the risk of both employee safety and of downtime-related lost business productivity.

Therefore, it is prudent to build reliability enhancement investments into the annual operational expense (OPEX) budget. Such a budgetary line item should include three essential elements: electrical infrastructure assessment (evaluating the state of affairs),

recalibration of maintenance strategy (last year's strategy may not be relevant to this year's requirements) and upgrade of low reliability or aging/obsolete assets (upgrading equipment that may be on the verge of failing).

Power assessment of existing infrastructure

Your online source for troubleshooting

tools to keep your hydraulic

HYDRACHECK

system running reliably.

Facility managers may be unaware of the current reliability state of their electrical power sub-systems unless maintenance and test inventory data on all equipment is complete and readily available throughout the equipment's service life.

If documentation is unavailable or outdated, management may consider having a power system assessment performed by a professional engineer. This assessment determines the present state of electrical system, its associated equipment, its functionality and its reliability relative to the present needs of a facility's functions and operations.

The assessment should be performed by a registered professional engineer with in-depth experience surrounding the design, operation, maintenance, safety and reliability of AC and DC power systems and equipment. During an assessment, a facility's risk is determined by a combination of the following four factors:

- 1. The impact of a power event on critical business processes
- 2. The safety hazard threat to electrical workers
- 3. The probability of a power event occurring
- 4. The ability of the organization (or supporting vendors or partners) to quickly correct the negative effects of the power event.

Re-examination of the maintenance strategy

Over time, electrical equipment can break down for several reasons. One is mechanical failure. Another is the environmental conditions of the site. Human error also plays a factor (the less humans have to touch the equipment, the better). But in deciding on how to formulate an up-to-date maintenance strategy, how much maintenance is enough? And what type of maintenance should be performed? Board More Featured Content

Digital Report MAINTENANCE STRATEGIES

Strategic maintenance means understanding all the parts of your plant, understand what needs attention and when, and above all, how to make sure you take the machine down for maintenance on YOUR time, rather then when the machine wants to take itself down. When a machine breaks, it almost always is expensive and wasteful, and can be dangerous as well.

Click here to download the Maintenance Strategies Digital Report today.

> Sponsored by: Bosch Rexroth TPC Trainco

http://www.plantengineering.com/single-article/equipment-reliability-doesn-t-equal-system-reliability/c9d8cc600bc644146953f8bceff4e09a[1/12/2017 9:01:45 AM]

Look for the optimal blend of maintenance strategies that meet reliability and availability requirements at the lowest cost. Here are some of the common options:

Reactive maintenance

In a reactive or corrective-based maintenance approach support is only brought in to address an unanticipated problem or emergency. If a component breaks down, a technician is called in to service it. This approach is not advisable for any components that are linked in any way to critical systems and is the most expensive of all maintenance strategies.

Proactive maintenance

Preventive or "scheduled" maintenance is a very common proactive maintenance method. This type of maintenance approach is characterized by routinely performed maintenance (regardless of the equipment's condition). In some cases, maintenance may be unnecessary but is nevertheless performed on a regular time schedule. Preventive maintenance is a less expensive option than reactive maintenance but more costly than predictive maintenance.

Predictive or condition-based maintenance is another proactive maintenance approach that is scheduled. But that schedule is not based not on time intervals. Instead, the results of diagnostic evaluation drive the maintenance. Elements such as equipment age, environmental stresses, criticality of equipment and utilization are the determining factors.

These maintenance strategies, however, are often associated with maintenance of individual components. As we have seen, system reliability is more important than component reliability.

Reliability-centered maintenance

This brings us to the most advanced approach to maintenance: reliability-centered maintenance (RCM). Properly designed and executed, RCM takes a systems view as opposed to an equipment or a component view. This approach prioritizes the maintenance expense on critical vs. noncritical functions and integrates preventive maintenance, predictive testing and inspection and run-to-fail maintenance strategies to meet business objectives.

An ongoing process, RCM gathers performance data to improve equipment design and enables management to make more informed future maintenance decisions.

Take a pragmatic approach

A common rule of thumb for electrical infrastructure equipment is to consider upgrading if the equipment in question is over 15 years old. For equipment under 15 years old, select the most appropriate maintenance approach.

However, upgrade planning should not be random. Shutdowns should be avoided if possible, and the upgrade plan should be developed around equipment performance data. Are the components in question supporting critical or noncritical functions? If critical, the reliability and integrity of that equipment should be preserved at all costs.

Often, equipment upgrades are a cost-effective alternative to purchasing new equipment. In the case of low- and medium-voltage switchgear, aging or obsolete circuit breakers can be directly replaced with new circuit breakers, leaving the existing switchgear structure and footprint intact. The new direct replacement circuit breakers are designed to fit into the existing cubicle with little to no downtime since there is minimal (if any) outage to the equipment bus.

Salary Survey

Another switchgear upgrade option, a retrofill solution, involves modification of the internal circuit breaker cell to accept the new circuit breaker. In these cases, a bus outage is required for the modifications to take place. The retrofill approach is often used in lieu of the direct replacement option for larger devices, such as main circuit breakers and tie circuit breakers.

In both cases, the line-up is brought to current technology utilizing OPEX funds.

Charles Alvis is product line marketing and management for Schneider Electric.

Related News:

3 7 installation best practices to assure a reliable bolted joint - 06.09.2016 10:50

Shutdowns: planning for the planned and unplanned - 10.06.2016 14:55

Dashboard offers visibility into long-term asset reliability - 21.04.2016 10:16

Industrial communications - 14.03.2016 17:09

<- Back to: Home

Post a comment

Log in or create an account to submit your comment for this article.

No comments

http://www.plantengineering.com/single-article/equipment-reliability-doesn-t-equal-system-reliability/c9d8cc600bc644146953f8bceff4e09a[1/12/2017 9:01:45 AM]

Equipment reliability doesn't equal system reliability | Plant Engineering

	Lubrication Guide	Product Exclusive	Webcasts	Electrical News	Product of the Year	Hotwire	Plant Engineering Czech	Innovations from the	Applied Automation
	Integrator Guide		eGuides	Maintenance &	Marketing to Engineers	Energy Management	International articles	Industry	Pure Power
	Case Studies		Research	Management News	Upcoming Events	Safety	Advertise - Media Kits	eGuides	Gas Technology
	White Papers		Videos	Mechanical News	Global Manufacturing	Whitepaper Connection		Internet Profiles	Industrial Energy
	Webcasts			Plant Safety and Security	Automation Summit	PE Product & Media			Management
	eGuides			Machine Safety		Showcase			How to Contribute
	Top Stories			Marshall on Maintenance		Energy Management			Social Media
	Industry Trends			Lachance on CMMS		eNewsletter Archive			RSS Feeds
	Videos			The Maintenance and					Control Engineering
	Research Analyst Blogs			Reliability Professionals					Consulting-Specifying
	, ,			Blog					Engineer
				One Voice for					Oil & Gas Engineering
				Manufacturing					Subscribe
				The Maintenance and					Privacy Policy
				Reliability Coach's blog					
				Global SI Database					
-				The Association for					
				Manufacturing Excellence					
				Blog					- Media [®]