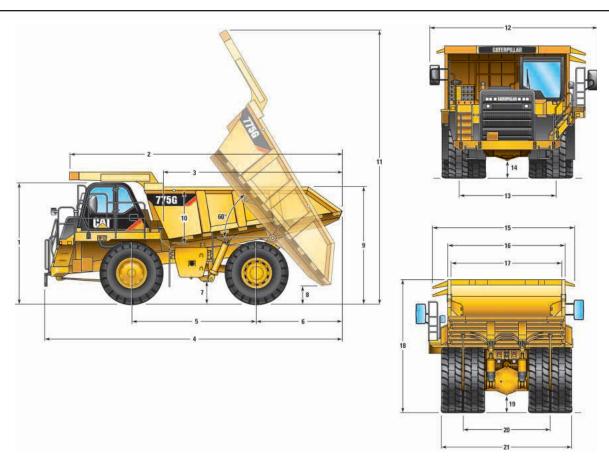

10/10/20 Payload Management Policy for Optimal Machine Life

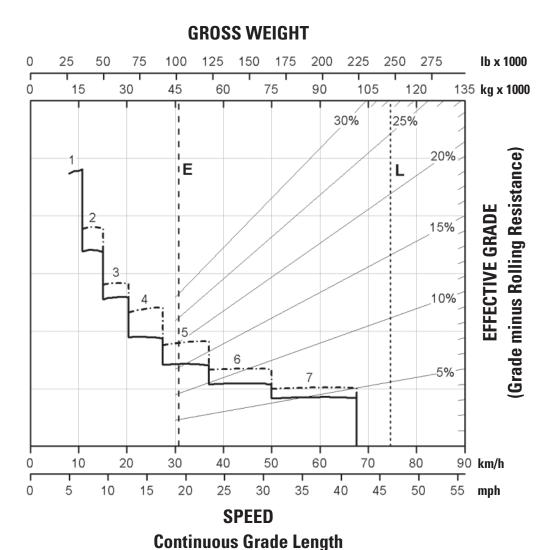
The ideal hauling strategy that maximizes machine and machine component life is to keep the mean of all payloads at or below the machine's rated target payload.


- 90% of loads should fall into this range
- No more than 10% of loads should exceed 10% of the target payload
- No loads should be above 20% of the target payload

775G Off-Highway Truck

Dimensions

All dimensions are approximate.


		Dual Slope		Flat Floor		Quarry	
1	Height to Top of ROPS	4108 mm	13.48 ft	4108 mm	13.48 ft	4108 mm	13.48 ft
2	Overall Body Length	9215 mm	30.23 ft	9293 mm	30.49 ft	9295 mm	30.50 ft
3	Inside Body Length	6100 mm	20.01 ft	6100 mm	20.01 ft	6100 mm	20.01 ft
4	Overall Length	10 073 mm	33.05 ft	10 151 mm	33.30 ft	10 151 mm	33.30 ft
5	Wheelbase	4215 mm	13.83 ft	4215 mm	13.83 ft	4215 mm	13.83 ft
6	Rear Axle to Tail	2925 mm	9.60 ft	3005 mm	9.86 ft	3005 mm	9.86 ft
7	Ground Clearance	759 mm	2.49 ft	759 mm	2.49 ft	759 mm	2.49 ft
8	Dump Clearance	650 mm	2.13 ft	639 mm	2.10 ft	639 mm	2.10 ft
9	Loading Height – Empty	3963 mm	13.00 ft	3964 mm	13.01 ft	3968 mm	13.02 ft
10	Inside Body Depth – Maximum	1945 mm	6.38 ft	1892 mm	6.21 ft	1892 mm	6.21 ft
11	Overall Height – Body Raised	9279 mm	30.44 ft	9279 mm	30.44 ft	9283 mm	30.46 ft
12	Operating Width	5673 mm	18.61 ft	5673 mm	18.61 ft	5673 mm	18.61 ft
13	Centerline Front Tire Width	3205 mm	10.52 ft	3205 mm	10.52 ft	3205 mm	10.52 ft
14	Engine Guard Clearance	703 mm	2.31 ft	703 mm	2.31 ft	703 mm	2.31 ft
15	Overall Canopy Width	5012 mm	16.44 ft	5012 mm	16.44 ft	5012 mm	16.44 ft
16	Outside Body Width	4254 mm	13.96 ft	4254 mm	13.96 ft	4254 mm	13.96 ft
17	Inside Body Width	3986 mm	13.08 ft	3986 mm	13.08 ft	3986 mm	13.08 ft
18	Front Canopy Height	4459 mm	14.63 ft	4457 mm	14.62 ft	4463 mm	14.64 ft
19	Rear Axle Clearance	560 mm	1.84 ft	560 mm	1.84 ft	560 mm	1.84 ft
20	Centerline Rear Dual Tire Width	2929 mm	9.61 ft	2929 mm	9.61 ft	2929 mm	9.61 ft
21	Overall Tire Width	4411 mm	14.47 ft	4411 mm	14.47 ft	4411 mm	14.47 ft

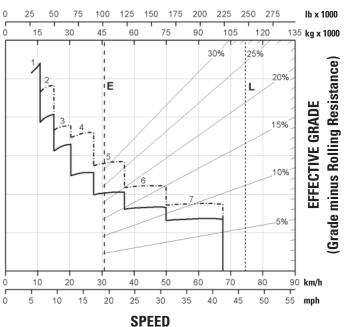
775G Off-Highway Truck

Retarding Performance (Tier 2 Equivalent)

To determine retarding performance: Add lengths of all downhill segments and, using this total, refer to proper retarding chart. Read from gross weight down to the percent effective grade. Effective grade equals actual % grade minus 1% for each 10 kg/t (20 lb/ton) of rolling resistance. From this weight-effective grade point, read horizontally to the curve with the highest obtainable gear, then down to maximum descent speed brakes can properly handle without exceeding cooling capacity. The following charts are based on these conditions: 32° C (90° F) ambient temperature, at sea level, with 24.00R35 (E4) tires.

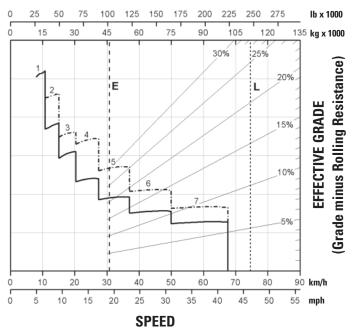
NOTE: Select the proper gear to maintain engine rpm at the highest possible level, without overspeeding the engine. If cooling oil overheats, reduce ground speed to allow transmission to shift to the next lower speed range.

----- with ARC only


 $[\]cdot$ — \cdot — ARC and Engine Brake

 $[\]pmb{\mathsf{E}}-\pmb{\mathsf{Typical}}\;\pmb{\mathsf{Field}}\;\pmb{\mathsf{Empty}}\;\pmb{\mathsf{Weight}}$

L – Target Gross Machine Operating Weight 111 811 kg (246,500 lb)

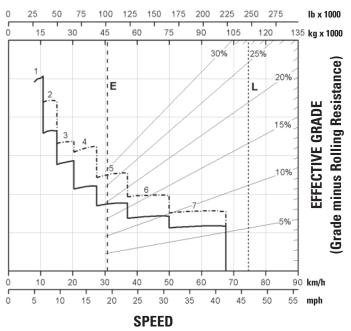

Retarding Performance (Tier 2 Equivalent)

Grade Distance – 450 m (1,500 ft)

GROSS WEIGHT

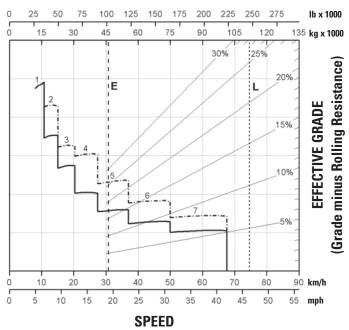
Grade Distance - 600 m (2,000 ft)

with ARC only


⁻⁻⁻⁻ ARC and Engine Brake

E – Typical Field Empty Weight

L – Target Gross Machine Operating Weight 111 811 kg (246,500 lb)


Retarding Performance (Tier 2 Equivalent)

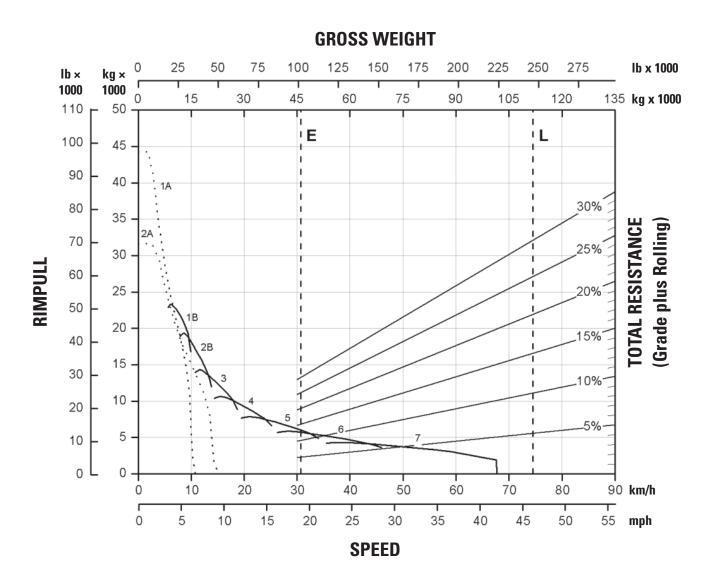
Grade Distance – 900 m (3,000 ft)

GROSS WEIGHT

Grade Distance – 1500 m (5,000 ft)

with ARC only

^{— - — - —} ARC and Engine Brake


E – Typical Field Empty Weight

L – Target Gross Machine Operating Weight 111 811 kg (246,500 lb)

775G Off-Highway Truck

Gradeability/Speed/Rimpull (Tier 2 Equivalent)

To determine gradeability performance: Read from gross weight down to the percent of total resistance. Total resistance equals actual percent grade plus 1% for each 10 kg/t (20 lb/ton) of rolling resistance. From this weight-resistance point, read horizontally to the curve with the highest obtainable gear, then down to maximum speed. Usable rimpull will depend upon traction available and weight on drive wheels.

----- with ARC only

· · · · · · ARC and Engine Brake

E – Typical Field Empty Weight

L – Target Gross Machine Operating Weight 111 811 kg (246,500 lb)