Dimensions

All dimensions are approximate.

	↓ 4504 mm (14' 9")
680 mm (2' 3") empty	ATERPILIAR 3275 mm 3966 mm (10' 9") (13' 0") 4040 mm 4732 mm (13' 5")
	<u>4242 mm</u> (13' 11") 11 →
9 empty 10 loaded	
650 mm (2' 2") empty	4457 mm

^{*} Operating width to r.h. mirror

	Quarry Flat Floor		Flat Floor	Lined	Dual-slope		
1	8625 mm	28' 4"	8625 mm	28' 4"	8552 mm	28' 1"	
2	1904 mm	6' 3"	1896 mm	6' 3"	1967 mm	6' 5"	
3	6537 mm	21' 5"	6513 mm	21' 5"	6526 mm	21' 5"	
4	8796 mm	28' 11"	8796 mm	28' 11"	8739 mm	28' 8"	
5	3912 mm	12' 10"	3912 mm	12' 10"	3927 mm	12' 11"	
6	660 mm	2' 2"	660 mm	2' 2"	673 mm	2' 3"	
7	550 mm	1' 9"	550 mm	1' 9"	563 mm	1' 10"	
8	2872 mm	9' 5"	2872 mm	9' 5"	2779 mm	9' 1"	
9	4410 mm	14' 6"	4410 mm	14' 6"	4424 mm	14' 6"	
10	4335 mm	14' 2"	4335 mm	14' 2"	4350 mm	14' 3"	
11	3990 mm	13' 1"	3974 mm	13' 1"	3988 mm	13' 1"	-

Weights

(Approximate)

	Quarry Flat Floor		Flat Floo	or Lined	Dual-slope		
	kg	lb	kg	lb	kg	lb	
Gross vehicle weight	108 400	239,000	108 400	239,000	108 400	239,000	
Chassis	30 400	67,000	30 400	67,000	30 400	67,000	
Body	13 070	28,810	14 350	31,640	9710	21,400	
Standard liner					4450	9810	

Weight Distribution:

	Empty	Loaded	Empty	Loaded	Empty	Loaded	
Front axle	44.3%	31.2%	44.3%	31.2%	45.9%	31.6%	
Rear axle	55.7%	68.8%	55.7%	68.8%	54.1%	68.4%	

Retarding Performance

The brake performance retarding curves shown in this section are for general guidance only. As each site has many unique environmental and operating conditions that will impact retarding performance, actual site performance could vary considerably from predicted performance. Users should use the retarding speed (gear) recommendations from these tables as a starting point for determining retarding performance and then adjust retarding speeds to their site-specific conditions. In adjusting retarding performance to continuously changing environmental and site-specific conditions, users need to exercise care to maintain brake cooling and machine controllability at all times.

To determine brake retarding performance from retarding tables:

1. Determine the total distance of all downhill grades combined for a given haul profile. This total distance determines the appropriate retarding table (continuous or one of the grade distance tables) applicable to your haul profile.

Empty Weight

Target Gross Machine Weight -

- 2. Read from the appropriate gross weight down to percent favorable effective grade. (For these retarding charts, effective grade equals the maximum grade of all downhill haul segments minus rolling resistance do not use an average grade value.)
- 3. From the intersection of the gross weight and effective grade line point, read horizontally to the appropriate gear curve. If the horizontal line intersects two gear curves, choose the first gear curve that the horizontal line intersects (reading from right to left) and read the retarding speed performance immediately below this point. If the intersection point falls on a vertical line between two gears, choose the lowest of the two gears to allow for higher engine rpm thus maximizing brake cooling capability.
- 4. Adjust recommended retarding speeds to site specific (environmental and operational) conditions. If the brake system overheats or specific site conditions dictate (tight turns, short steep grades, manual braking, etc.), reduce ground speed to allow the transmission to shift to the next lower speed range.

Retarding Performance (continued)

Grade Length - 450 m (1500 ft)

Speed

Gross Weight

Grade Length - 600 m (2000 ft)

Grade Length - 900 m (3000 ft)

Grade Length - 1500 m (5000 ft)

To determine gradeability performance, read from gross weight down to the percent of total resistance. Total resistance equals actual percent grade plus one percent for each 10 kg/tonne (20 lb/ton) of rolling resistance. From this weight-resistance point, read horizontally to the curve with the highest obtainable gear, then down to maximum speed. Usable rimpull will depend upon traction available and weight on drive wheels.

775E Off-Highway Truck

Optional Equipment

With approximate changes in operating weights. Optional equipment may vary. Consult a Caterpillar Dealer for specifics.

	kg	lb		kg	lb
Air conditioning	90	198	Integrated brake control	56	123
Automatic lube system	60	135	Muffler	116	256
Automatic Retarder Control (ARC)	6	13	Spare rim 432 mm (17")	390	860
Clustered grease fittings	20	50	Traction Control System (TCS)	50	110
Engine coolant heater - 120-volt	3	7	Truck Production Management		
Engine coolant heater - 240-volt	4	9	System (TPMS)	46	100
Ether starting aid	5	10	Wheel chocks	25	50
Exhaust diverter/muffler	93	205	Wiggins fast fuel change	2	5
Fuel heater kit	5	12	Wiggins high-speed oil change	1	2

Weight/Payload Calculation*

(Example)

	Quarry Flat Floor		Dual	Dual Slope		oor Lined
	kg	lb	kg	lb	kg	lb
Empty Chassis Weight	30 400	67,000	30 400	67,000	30 400	67,000
Fuel Correction (90% \times 185 gal \times 7.1 lbs/gal) 530	1,170	530	1,170	530	1,170
Optional Attachments Weight						
Debris Allowance (4% of chassis)	+1210	+2680	+1210	+2680	+1210	+2680
Chassis Weight	32 140	70,850	32 140	70,850	32 140	70,850
Body Weight	13 070	28,810	9710	21,400	14 350	31,640
Body Attachments Weight	+0	+0	+4450	+9810	+0	+0
Total Empty Operating Weight	45 210	99,660	46 300	102,060	46 490	102,490
Target Payload	+63 190	+139,340	+62 100	+136,940	+61 910	+136,510
Gross Machine Operating Weight	108 400	239,000	108 400	239,000	108 400	239,000

*Note: Refer to Caterpillar's 10/10/20 Payload Policy for Quarry and Construction Trucks.